kgoba-ft8_lib/common/monitor.c

264 wiersze
8.9 KiB
C

#include "monitor.h"
#include <common/common.h>
#define LOG_LEVEL LOG_INFO
#include <ft8/debug.h>
#include <stdlib.h>
static float hann_i(int i, int N)
{
float x = sinf((float)M_PI * i / N);
return x * x;
}
// static float hamming_i(int i, int N)
// {
// const float a0 = (float)25 / 46;
// const float a1 = 1 - a0;
// float x1 = cosf(2 * (float)M_PI * i / N);
// return a0 - a1 * x1;
// }
// static float blackman_i(int i, int N)
// {
// const float alpha = 0.16f; // or 2860/18608
// const float a0 = (1 - alpha) / 2;
// const float a1 = 1.0f / 2;
// const float a2 = alpha / 2;
// float x1 = cosf(2 * (float)M_PI * i / N);
// float x2 = 2 * x1 * x1 - 1; // Use double angle formula
// return a0 - a1 * x1 + a2 * x2;
// }
static void waterfall_init(ftx_waterfall_t* me, int max_blocks, int num_bins, int time_osr, int freq_osr)
{
size_t mag_size = max_blocks * time_osr * freq_osr * num_bins * sizeof(me->mag[0]);
me->max_blocks = max_blocks;
me->num_blocks = 0;
me->num_bins = num_bins;
me->time_osr = time_osr;
me->freq_osr = freq_osr;
me->block_stride = (time_osr * freq_osr * num_bins);
me->mag = (WF_ELEM_T*)malloc(mag_size);
LOG(LOG_DEBUG, "Waterfall size = %zu\n", mag_size);
}
static void waterfall_free(ftx_waterfall_t* me)
{
free(me->mag);
}
void monitor_init(monitor_t* me, const monitor_config_t* cfg)
{
float slot_time = (cfg->protocol == FTX_PROTOCOL_FT4) ? FT4_SLOT_TIME : FT8_SLOT_TIME;
float symbol_period = (cfg->protocol == FTX_PROTOCOL_FT4) ? FT4_SYMBOL_PERIOD : FT8_SYMBOL_PERIOD;
// Compute DSP parameters that depend on the sample rate
me->block_size = (int)(cfg->sample_rate * symbol_period); // samples corresponding to one FSK symbol
me->subblock_size = me->block_size / cfg->time_osr;
me->nfft = me->block_size * cfg->freq_osr;
me->fft_norm = 2.0f / me->nfft;
// const int len_window = 1.8f * me->block_size; // hand-picked and optimized
me->window = (float*)malloc(me->nfft * sizeof(me->window[0]));
for (int i = 0; i < me->nfft; ++i)
{
// window[i] = 1;
me->window[i] = me->fft_norm * hann_i(i, me->nfft);
// me->window[i] = blackman_i(i, me->nfft);
// me->window[i] = hamming_i(i, me->nfft);
// me->window[i] = (i < len_window) ? hann_i(i, len_window) : 0;
}
me->last_frame = (float*)calloc(me->nfft, sizeof(me->last_frame[0]));
LOG(LOG_INFO, "Block size = %d\n", me->block_size);
LOG(LOG_INFO, "Subblock size = %d\n", me->subblock_size);
size_t fft_work_size = 0;
kiss_fftr_alloc(me->nfft, 0, 0, &fft_work_size);
me->fft_work = malloc(fft_work_size);
me->fft_cfg = kiss_fftr_alloc(me->nfft, 0, me->fft_work, &fft_work_size);
LOG(LOG_INFO, "N_FFT = %d\n", me->nfft);
LOG(LOG_DEBUG, "FFT work area = %zu\n", fft_work_size);
#ifdef WATERFALL_USE_PHASE
me->nifft = 64; // Gives 200 Hz sample rate for FT8 (160ms symbol period)
size_t ifft_work_size = 0;
kiss_fft_alloc(me->nifft, 1, 0, &ifft_work_size);
me->ifft_work = malloc(ifft_work_size);
me->ifft_cfg = kiss_fft_alloc(me->nifft, 1, me->ifft_work, &ifft_work_size);
LOG(LOG_INFO, "N_iFFT = %d\n", me->nifft);
LOG(LOG_DEBUG, "iFFT work area = %zu\n", ifft_work_size);
#endif
// Allocate enough blocks to fit the entire FT8/FT4 slot in memory
const int max_blocks = (int)(slot_time / symbol_period);
// Keep only FFT bins in the specified frequency range (f_min/f_max)
me->min_bin = (int)(cfg->f_min * symbol_period);
me->max_bin = (int)(cfg->f_max * symbol_period) + 1;
const int num_bins = me->max_bin - me->min_bin;
waterfall_init(&me->wf, max_blocks, num_bins, cfg->time_osr, cfg->freq_osr);
me->wf.protocol = cfg->protocol;
me->symbol_period = symbol_period;
me->max_mag = -120.0f;
}
void monitor_free(monitor_t* me)
{
waterfall_free(&me->wf);
free(me->fft_work);
free(me->last_frame);
free(me->window);
}
void monitor_reset(monitor_t* me)
{
me->wf.num_blocks = 0;
me->max_mag = -120.0f;
}
// Compute FFT magnitudes (log wf) for a frame in the signal and update waterfall data
void monitor_process(monitor_t* me, const float* frame)
{
// Check if we can still store more waterfall data
if (me->wf.num_blocks >= me->wf.max_blocks)
return;
int offset = me->wf.num_blocks * me->wf.block_stride;
int frame_pos = 0;
// Loop over block subdivisions
for (int time_sub = 0; time_sub < me->wf.time_osr; ++time_sub)
{
kiss_fft_scalar timedata[me->nfft];
kiss_fft_cpx freqdata[me->nfft / 2 + 1];
// Shift the new data into analysis frame
for (int pos = 0; pos < me->nfft - me->subblock_size; ++pos)
{
me->last_frame[pos] = me->last_frame[pos + me->subblock_size];
}
for (int pos = me->nfft - me->subblock_size; pos < me->nfft; ++pos)
{
me->last_frame[pos] = frame[frame_pos];
++frame_pos;
}
// Do DFT of windowed analysis frame
for (int pos = 0; pos < me->nfft; ++pos)
{
timedata[pos] = me->window[pos] * me->last_frame[pos];
}
kiss_fftr(me->fft_cfg, timedata, freqdata);
// Loop over possible frequency OSR offsets
for (int freq_sub = 0; freq_sub < me->wf.freq_osr; ++freq_sub)
{
for (int bin = me->min_bin; bin < me->max_bin; ++bin)
{
int src_bin = (bin * me->wf.freq_osr) + freq_sub;
float mag2 = (freqdata[src_bin].i * freqdata[src_bin].i) + (freqdata[src_bin].r * freqdata[src_bin].r);
float db = 10.0f * log10f(1E-12f + mag2);
#ifdef WATERFALL_USE_PHASE
// Save the magnitude in dB and phase in radians
float phase = atan2f(freqdata[src_bin].i, freqdata[src_bin].r);
me->wf.mag[offset].mag = db;
me->wf.mag[offset].phase = phase;
#else
// Scale decibels to unsigned 8-bit range and clamp the value
// Range 0-240 covers -120..0 dB in 0.5 dB steps
int scaled = (int)(2 * db + 240);
me->wf.mag[offset] = (scaled < 0) ? 0 : ((scaled > 255) ? 255 : scaled);
#endif
++offset;
if (db > me->max_mag)
me->max_mag = db;
}
}
}
++me->wf.num_blocks;
}
#ifdef WATERFALL_USE_PHASE
void monitor_resynth(const monitor_t* me, const candidate_t* candidate, float* signal)
{
const int num_ifft = me->nifft;
const int num_shift = num_ifft / 2;
const int taper_width = 4;
const int num_tones = 8;
// Starting offset is 3 subblocks due to analysis buffer loading
int offset = 1; // candidate->time_offset;
offset = (offset * me->wf.time_osr) + 1; // + candidate->time_sub;
offset = (offset * me->wf.freq_osr); // + candidate->freq_sub;
offset = (offset * me->wf.num_bins); // + candidate->freq_offset;
WF_ELEM_T* el = me->wf.mag + offset;
// DFT frequency data - initialize to zero
kiss_fft_cpx freqdata[num_ifft];
for (int i = 0; i < num_ifft; ++i)
{
freqdata[i].r = 0;
freqdata[i].i = 0;
}
int pos = 0;
for (int num_block = 1; num_block < me->wf.num_blocks; ++num_block)
{
// Extract frequency data around the selected candidate only
for (int i = candidate->freq_offset - taper_width - 1; i < candidate->freq_offset + 8 + taper_width - 1; ++i)
{
if ((i >= 0) && (i < me->wf.num_bins))
{
int tgt_bin = (me->wf.freq_osr * (i - candidate->freq_offset) + num_ifft) % num_ifft;
float weight = 1.0f;
if (i < candidate->freq_offset)
{
weight = ((i - candidate->freq_offset) + taper_width) / (float)taper_width;
}
else if (i > candidate->freq_offset + 7)
{
weight = ((candidate->freq_offset + 7 - i) + taper_width) / (float)taper_width;
}
// Convert (dB magnitude, phase) to (real, imaginary)
float mag = powf(10.0f, el[i].mag / 20) / 2 * weight;
freqdata[tgt_bin].r = mag * cosf(el[i].phase);
freqdata[tgt_bin].i = mag * sinf(el[i].phase);
int i2 = i + me->wf.num_bins;
tgt_bin = (tgt_bin + 1) % num_ifft;
float mag2 = powf(10.0f, el[i2].mag / 20) / 2 * weight;
freqdata[tgt_bin].r = mag2 * cosf(el[i2].phase);
freqdata[tgt_bin].i = mag2 * sinf(el[i2].phase);
}
}
// Compute inverse DFT and overlap-add the waveform
kiss_fft_cpx timedata[num_ifft];
kiss_fft(me->ifft_cfg, freqdata, timedata);
for (int i = 0; i < num_ifft; ++i)
{
signal[pos + i] += timedata[i].i;
}
// Move to the next symbol
el += me->wf.block_stride;
pos += num_shift;
}
}
#endif