#include #include #include #include #include #include "common/common.h" #include "common/wave.h" #include "ft8/message.h" #include "ft8/encode.h" #include "ft8/constants.h" #define LOG_LEVEL LOG_INFO #include "ft8/debug.h" #define FT8_SYMBOL_BT 2.0f ///< symbol smoothing filter bandwidth factor (BT) #define FT4_SYMBOL_BT 1.0f ///< symbol smoothing filter bandwidth factor (BT) #define GFSK_CONST_K 5.336446f ///< == pi * sqrt(2 / log(2)) /// Computes a GFSK smoothing pulse. /// The pulse is theoretically infinitely long, however, here it's truncated at 3 times the symbol length. /// This means the pulse array has to have space for 3*n_spsym elements. /// @param[in] n_spsym Number of samples per symbol /// @param[in] b Shape parameter (values defined for FT8/FT4) /// @param[out] pulse Output array of pulse samples /// void gfsk_pulse(int n_spsym, float symbol_bt, float* pulse) { for (int i = 0; i < 3 * n_spsym; ++i) { float t = i / (float)n_spsym - 1.5f; float arg1 = GFSK_CONST_K * symbol_bt * (t + 0.5f); float arg2 = GFSK_CONST_K * symbol_bt * (t - 0.5f); pulse[i] = (erff(arg1) - erff(arg2)) / 2; } } /// Synthesize waveform data using GFSK phase shaping. /// The output waveform will contain n_sym symbols. /// @param[in] symbols Array of symbols (tones) (0-7 for FT8) /// @param[in] n_sym Number of symbols in the symbol array /// @param[in] f0 Audio frequency in Hertz for the symbol 0 (base frequency) /// @param[in] symbol_bt Symbol smoothing filter bandwidth (2 for FT8, 1 for FT4) /// @param[in] symbol_period Symbol period (duration), seconds /// @param[in] signal_rate Sample rate of synthesized signal, Hertz /// @param[out] signal Output array of signal waveform samples (should have space for n_sym*n_spsym samples) /// void synth_gfsk(const uint8_t* symbols, int n_sym, float f0, float symbol_bt, float symbol_period, int signal_rate, float* signal) { int n_spsym = (int)(0.5f + signal_rate * symbol_period); // Samples per symbol int n_wave = n_sym * n_spsym; // Number of output samples float hmod = 1.0f; LOG(LOG_DEBUG, "n_spsym = %d\n", n_spsym); // Compute the smoothed frequency waveform. // Length = (nsym+2)*n_spsym samples, first and last symbols extended float dphi_peak = 2 * M_PI * hmod / n_spsym; float dphi[n_wave + 2 * n_spsym]; // Shift frequency up by f0 for (int i = 0; i < n_wave + 2 * n_spsym; ++i) { dphi[i] = 2 * M_PI * f0 / signal_rate; } float pulse[3 * n_spsym]; gfsk_pulse(n_spsym, symbol_bt, pulse); for (int i = 0; i < n_sym; ++i) { int ib = i * n_spsym; for (int j = 0; j < 3 * n_spsym; ++j) { dphi[j + ib] += dphi_peak * symbols[i] * pulse[j]; } } // Add dummy symbols at beginning and end with tone values equal to 1st and last symbol, respectively for (int j = 0; j < 2 * n_spsym; ++j) { dphi[j] += dphi_peak * pulse[j + n_spsym] * symbols[0]; dphi[j + n_sym * n_spsym] += dphi_peak * pulse[j] * symbols[n_sym - 1]; } // Calculate and insert the audio waveform float phi = 0; for (int k = 0; k < n_wave; ++k) { // Don't include dummy symbols signal[k] = sinf(phi); phi = fmodf(phi + dphi[k + n_spsym], 2 * M_PI); } // Apply envelope shaping to the first and last symbols int n_ramp = n_spsym / 8; for (int i = 0; i < n_ramp; ++i) { float env = (1 - cosf(2 * M_PI * i / (2 * n_ramp))) / 2; signal[i] *= env; signal[n_wave - 1 - i] *= env; } } void usage() { printf("Generate a 15-second WAV file encoding a given message.\n"); printf("Usage:\n"); printf("\n"); printf("gen_ft8 MESSAGE WAV_FILE [FREQUENCY]\n"); printf("\n"); printf("(Note that you might have to enclose your message in quote marks if it contains spaces)\n"); } int main(int argc, char** argv) { // Expect two command-line arguments if (argc < 3) { usage(); return -1; } const char* message = argv[1]; const char* wav_path = argv[2]; float frequency = 1000.0; if (argc > 3) { frequency = atof(argv[3]); } bool is_ft4 = (argc > 4) && (0 == strcmp(argv[4], "-ft4")); // First, pack the text data into binary message ftx_message_t msg; ftx_message_rc_t rc = ftx_message_encode(&msg, NULL, message); if (rc != FTX_MESSAGE_RC_OK) { printf("Cannot parse message!\n"); printf("RC = %d\n", (int)rc); return -2; } printf("Packed data: "); for (int j = 0; j < 10; ++j) { printf("%02x ", msg.payload[j]); } printf("\n"); int num_tones = (is_ft4) ? FT4_NN : FT8_NN; float symbol_period = (is_ft4) ? FT4_SYMBOL_PERIOD : FT8_SYMBOL_PERIOD; float symbol_bt = (is_ft4) ? FT4_SYMBOL_BT : FT8_SYMBOL_BT; float slot_time = (is_ft4) ? FT4_SLOT_TIME : FT8_SLOT_TIME; // Second, encode the binary message as a sequence of FSK tones uint8_t tones[num_tones]; // Array of 79 tones (symbols) if (is_ft4) { ft4_encode(msg.payload, tones); } else { ft8_encode(msg.payload, tones); } printf("FSK tones: "); for (int j = 0; j < num_tones; ++j) { printf("%d", tones[j]); } printf("\n"); // Third, convert the FSK tones into an audio signal int sample_rate = 12000; int num_samples = (int)(0.5f + num_tones * symbol_period * sample_rate); // Number of samples in the data signal int num_silence = (slot_time * sample_rate - num_samples) / 2; // Silence padding at both ends to make 15 seconds int num_total_samples = num_silence + num_samples + num_silence; // Number of samples in the padded signal float signal[num_total_samples]; for (int i = 0; i < num_silence; i++) { signal[i] = 0; signal[i + num_samples + num_silence] = 0; } // Synthesize waveform data (signal) and save it as WAV file synth_gfsk(tones, num_tones, frequency, symbol_bt, symbol_period, sample_rate, signal + num_silence); save_wav(signal, num_total_samples, sample_rate, wav_path); return 0; }