Updated the decoder from whole signal processing to frame processing

pull/16/merge
Karlis Goba 2021-12-11 07:48:15 +02:00
rodzic acea17221e
commit 927fae9d3a
3 zmienionych plików z 182 dodań i 87 usunięć

Wyświetl plik

@ -24,23 +24,26 @@ const int kLDPC_iterations = 20;
const int kMax_decoded_messages = 50;
const int kFreq_osr = 2;
const int kTime_osr = 2;
const int kFreq_osr = 2; // Frequency oversampling rate (bin subdivision)
const int kTime_osr = 2; // Time oversampling rate (symbol subdivision)
const float kFSK_dev = 6.25f; // tone deviation in Hz and symbol rate
// const float kSymbol_period = 0.048f; // governs FT4 tone deviation in Hz and symbol rate
// const float kSlot_time = 7.5f; // FT4 slot period
const float kSymbol_period = 0.160f; // governs FT8 tone deviation in Hz and symbol rate
const float kSlot_time = 15.0f; // FT8 slot period
void usage()
{
fprintf(stderr, "Decode a 15-second (or slighly shorter) WAV file.\n");
}
float hann_i(int i, int N)
static float hann_i(int i, int N)
{
float x = sinf((float)M_PI * i / N);
return x * x;
}
float hamming_i(int i, int N)
static float hamming_i(int i, int N)
{
const float a0 = (float)25 / 46;
const float a1 = 1 - a0;
@ -49,7 +52,7 @@ float hamming_i(int i, int N)
return a0 - a1 * x1;
}
float blackman_i(int i, int N)
static float blackman_i(int i, int N)
{
const float alpha = 0.16f; // or 2860/18608
const float a0 = (1 - alpha) / 2;
@ -62,88 +65,160 @@ float blackman_i(int i, int N)
return a0 - a1 * x1 + a2 * x2;
}
static float max2(float a, float b)
void waterfall_init(waterfall_t* me, int max_blocks, int num_bins, int time_osr, int freq_osr)
{
return (a >= b) ? a : b;
size_t mag_size = max_blocks * time_osr * freq_osr * num_bins * sizeof(me->mag[0]);
me->max_blocks = max_blocks;
me->num_blocks = 0;
me->num_bins = num_bins;
me->time_osr = time_osr;
me->freq_osr = freq_osr;
me->block_stride = (time_osr * freq_osr * num_bins);
me->mag = malloc(mag_size);
LOG(LOG_DEBUG, "Waterfall size = %lu\n", mag_size);
}
// Compute FFT magnitudes (log power) for each timeslot in the signal
void extract_power(const float signal[], waterfall_t* power, int block_size)
void waterfall_free(waterfall_t* me)
{
const int subblock_size = block_size / power->time_osr;
const int nfft = block_size * power->freq_osr;
const float fft_norm = 2.0f / nfft;
const int len_window = 1.8f * block_size; // hand-picked and optimized
free(me->mag);
}
float window[nfft];
for (int i = 0; i < nfft; ++i)
typedef struct
{
float slot_time;
float symbol_period;
float f_min;
float f_max;
int sample_rate;
int time_osr;
int freq_osr;
} monitor_config_t;
typedef struct
{
int block_size; ///< Number of samples per symbol (block)
int subblock_size; ///< Analysis shift size (number of samples)
int nfft; ///< FFT size
float fft_norm; ///< FFT normalization factor
float* window; ///< Window function for STFT analysis (nfft samples)
float* last_frame; ///< Current STFT analysis frame (nfft samples)
waterfall_t wf; ///< Waterfall object
float max_mag; ///< Maximum detected magnitude (debug stats)
// KISS FFT housekeeping variables
void* fft_work; ///< Work area required by Kiss FFT
kiss_fftr_cfg fft_cfg; ///< Kiss FFT housekeeping object
} monitor_t;
void monitor_init(monitor_t* me, const monitor_config_t* cfg)
{
// Compute DSP parameters that depend on the sample rate
me->block_size = (int)(cfg->sample_rate * cfg->symbol_period); // samples corresponding to one FSK symbol
me->subblock_size = me->block_size / cfg->time_osr;
me->nfft = me->block_size * cfg->freq_osr;
me->fft_norm = 2.0f / me->nfft;
const int len_window = 1.8f * me->block_size; // hand-picked and optimized
me->window = malloc(me->nfft * sizeof(me->window[0]));
for (int i = 0; i < me->nfft; ++i)
{
// window[i] = 1;
// window[i] = hann_i(i, nfft);
// window[i] = blackman_i(i, nfft);
// window[i] = hamming_i(i, nfft);
window[i] = (i < len_window) ? hann_i(i, len_window) : 0;
me->window[i] = (i < len_window) ? hann_i(i, len_window) : 0;
}
me->last_frame = malloc(me->nfft * sizeof(me->last_frame[0]));
size_t fft_work_size;
kiss_fftr_alloc(nfft, 0, 0, &fft_work_size);
kiss_fftr_alloc(me->nfft, 0, 0, &fft_work_size);
LOG(LOG_INFO, "Block size = %d\n", block_size);
LOG(LOG_INFO, "Subblock size = %d\n", subblock_size);
LOG(LOG_INFO, "N_FFT = %d\n", nfft);
LOG(LOG_INFO, "FFT work area = %lu\n", fft_work_size);
LOG(LOG_INFO, "Block size = %d\n", me->block_size);
LOG(LOG_INFO, "Subblock size = %d\n", me->subblock_size);
LOG(LOG_INFO, "N_FFT = %d\n", me->nfft);
LOG(LOG_DEBUG, "FFT work area = %lu\n", fft_work_size);
void* fft_work = malloc(fft_work_size);
kiss_fftr_cfg fft_cfg = kiss_fftr_alloc(nfft, 0, fft_work, &fft_work_size);
me->fft_work = malloc(fft_work_size);
me->fft_cfg = kiss_fftr_alloc(me->nfft, 0, me->fft_work, &fft_work_size);
int offset = 0;
float max_mag = -120.0f;
for (int idx_block = 0; idx_block < power->num_blocks; ++idx_block)
const int max_blocks = (int)(cfg->slot_time / cfg->symbol_period);
const int num_bins = (int)(cfg->sample_rate * kSymbol_period / 2);
waterfall_init(&me->wf, max_blocks, num_bins, cfg->time_osr, cfg->freq_osr);
me->max_mag = 0;
}
void monitor_free(monitor_t* me)
{
waterfall_free(&me->wf);
free(me->fft_work);
free(me->last_frame);
free(me->window);
}
// Compute FFT magnitudes (log wf) for a frame in the signal and update waterfall data
void monitor_process(monitor_t* me, const float* frame)
{
// Check if we can still store more waterfall data
if (me->wf.num_blocks >= me->wf.max_blocks)
return;
int offset = me->wf.num_blocks * me->wf.block_stride;
int frame_pos = 0;
// Loop over block subdivisions
for (int time_sub = 0; time_sub < me->wf.time_osr; ++time_sub)
{
// Loop over two possible time offsets (0 and block_size/2)
for (int time_sub = 0; time_sub < power->time_osr; ++time_sub)
kiss_fft_scalar timedata[me->nfft];
kiss_fft_cpx freqdata[me->nfft / 2 + 1];
// Shift the new data into analysis frame
for (int pos = 0; pos < me->nfft - me->subblock_size; ++pos)
{
kiss_fft_scalar timedata[nfft];
kiss_fft_cpx freqdata[nfft / 2 + 1];
float mag_db[nfft / 2 + 1];
me->last_frame[pos] = me->last_frame[pos + me->subblock_size];
}
for (int pos = me->nfft - me->subblock_size; pos < me->nfft; ++pos)
{
me->last_frame[pos] = frame[frame_pos];
++frame_pos;
}
// Extract windowed signal block
for (int pos = 0; pos < nfft; ++pos)
// Compute windowed analysis frame
for (int pos = 0; pos < me->nfft; ++pos)
{
timedata[pos] = me->fft_norm * me->window[pos] * me->last_frame[pos];
}
kiss_fftr(me->fft_cfg, timedata, freqdata);
// Loop over two possible frequency bin offsets (for averaging)
for (int freq_sub = 0; freq_sub < me->wf.freq_osr; ++freq_sub)
{
for (int bin = 0; bin < me->wf.num_bins; ++bin)
{
timedata[pos] = window[pos] * signal[(idx_block * block_size) + (time_sub * subblock_size) + pos];
}
int src_bin = (bin * me->wf.freq_osr) + freq_sub;
float mag2 = (freqdata[src_bin].i * freqdata[src_bin].i) + (freqdata[src_bin].r * freqdata[src_bin].r);
float db = 10.0f * log10f(1E-12f + mag2);
// Scale decibels to unsigned 8-bit range and clamp the value
// Range 0-240 covers -120..0 dB in 0.5 dB steps
int scaled = (int)(2 * db + 240);
kiss_fftr(fft_cfg, timedata, freqdata);
me->wf.mag[offset] = (scaled < 0) ? 0 : ((scaled > 255) ? 255 : scaled);
++offset;
// Compute log magnitude in decibels
for (int idx_bin = 0; idx_bin < nfft / 2 + 1; ++idx_bin)
{
float mag2 = (freqdata[idx_bin].i * freqdata[idx_bin].i) + (freqdata[idx_bin].r * freqdata[idx_bin].r);
mag_db[idx_bin] = 10.0f * log10f(1E-12f + mag2 * fft_norm * fft_norm);
}
// Loop over two possible frequency bin offsets (for averaging)
for (int freq_sub = 0; freq_sub < power->freq_osr; ++freq_sub)
{
for (int pos = 0; pos < power->num_bins; ++pos)
{
float db = mag_db[pos * power->freq_osr + freq_sub];
// Scale decibels to unsigned 8-bit range and clamp the value
// Range 0-240 covers -120..0 dB in 0.5 dB steps
int scaled = (int)(2 * db + 240);
power->mag[offset] = (scaled < 0) ? 0 : ((scaled > 255) ? 255 : scaled);
++offset;
if (db > max_mag)
max_mag = db;
}
if (db > me->max_mag)
me->max_mag = db;
}
}
}
LOG(LOG_INFO, "Max magnitude: %.1f dB\n", max_mag);
free(fft_work);
++me->wf.num_blocks;
}
void monitor_reset(monitor_t* me)
{
me->wf.num_blocks = 0;
me->max_mag = 0;
}
int main(int argc, char** argv)
@ -167,30 +242,32 @@ int main(int argc, char** argv)
return -1;
}
// Compute DSP parameters that depend on the sample rate
const int num_bins = (int)(sample_rate / (2 * kFSK_dev)); // number bins of FSK tone width that the spectrum can be divided into
const int block_size = (int)(sample_rate / kFSK_dev); // samples corresponding to one FSK symbol
const int subblock_size = block_size / kTime_osr;
const int nfft = block_size * kFreq_osr;
const int num_blocks = (num_samples - nfft + subblock_size) / block_size;
LOG(LOG_INFO, "Sample rate %d Hz, %d blocks, %d bins\n", sample_rate, num_blocks, num_bins);
LOG(LOG_INFO, "Sample rate %d Hz, %d samples, %.3f seconds\n", sample_rate, num_samples, (double)num_samples / sample_rate);
// Compute FFT over the whole signal and store it
uint8_t mag_power[num_blocks * kFreq_osr * kTime_osr * num_bins];
waterfall_t power = {
.num_blocks = num_blocks,
.num_bins = num_bins,
monitor_t mon;
monitor_config_t mon_cfg = {
.symbol_period = kSymbol_period,
.sample_rate = sample_rate,
.slot_time = kSlot_time,
.time_osr = kTime_osr,
.freq_osr = kFreq_osr,
.mag = mag_power,
.block_stride = (kTime_osr * kFreq_osr * num_bins)
.f_min = 100,
.f_max = 3000
};
extract_power(signal, &power, block_size);
monitor_init(&mon, &mon_cfg);
LOG(LOG_DEBUG, "Waterfall allocated %d symbols\n", mon.wf.max_blocks);
for (int frame_pos = 0; frame_pos + mon.block_size <= num_samples; frame_pos += mon.block_size)
{
// Process the waveform data frame by frame - you could have a live loop here with data from an audio device
monitor_process(&mon, signal + frame_pos);
}
LOG(LOG_DEBUG, "Waterfall accumulated %d symbols\n", mon.wf.num_blocks);
LOG(LOG_INFO, "Max magnitude: %.1f dB\n", mon.max_mag);
// Find top candidates by Costas sync score and localize them in time and frequency
candidate_t candidate_list[kMax_candidates];
int num_candidates = ft8_find_sync(&power, kMax_candidates, candidate_list, kMin_score);
int num_candidates = ft8_find_sync(&mon.wf, kMax_candidates, candidate_list, kMin_score);
// Hash table for decoded messages (to check for duplicates)
int num_decoded = 0;
@ -210,16 +287,17 @@ int main(int argc, char** argv)
if (cand->score < kMin_score)
continue;
float freq_hz = (cand->freq_offset + (float)cand->freq_sub / kFreq_osr) * kFSK_dev;
float time_sec = (cand->time_offset + (float)cand->time_sub / kTime_osr) / kFSK_dev;
float freq_hz = (cand->freq_offset + (float)cand->freq_sub / kFreq_osr) / kSymbol_period;
float time_sec = (cand->time_offset + (float)cand->time_sub / kTime_osr) * kSymbol_period;
message_t message;
decode_status_t status;
if (!ft8_decode(&power, cand, &message, kLDPC_iterations, &status))
if (!ft8_decode(&mon.wf, cand, &message, kLDPC_iterations, &status))
{
if (status.ldpc_errors > 0)
{
LOG(LOG_DEBUG, "LDPC decode: %d errors\n", status.ldpc_errors);
// printf("000000 %3d %+4.2f %4.0f ~ ---\n", cand->score, time_sec, freq_hz);
}
else if (status.crc_calculated != status.crc_extracted)
{

Wyświetl plik

@ -25,8 +25,9 @@ static float max2(float a, float b);
static float max4(float a, float b, float c, float d);
static void heapify_down(candidate_t heap[], int heap_size);
static void heapify_up(candidate_t heap[], int heap_size);
static void decode_symbol(const uint8_t* power, int bit_idx, float* log174);
static void decode_multi_symbols(const uint8_t* power, int num_bins, int n_syms, int bit_idx, float* log174);
static void ft4_decode_symbol(const uint8_t* power, int bit_idx, float* log174);
static void ft8_decode_symbol(const uint8_t* power, int bit_idx, float* log174);
static void ft8_decode_multi_symbols(const uint8_t* power, int num_bins, int n_syms, int bit_idx, float* log174);
static int get_index(const waterfall_t* power, const candidate_t* candidate)
{
@ -244,7 +245,7 @@ void ft8_extract_likelihood(const waterfall_t* power, const candidate_t* cand, f
// Pointer to 8 bins of the current symbol
const uint8_t* ps = mag_cand + (sym_idx * power->block_stride);
decode_symbol(ps, bit_idx, log174);
ft8_decode_symbol(ps, bit_idx, log174);
}
}
@ -369,8 +370,23 @@ static void heapify_up(candidate_t heap[], int heap_size)
}
}
// Compute unnormalized log likelihood log(p(1) / p(0)) of 2 message bits (1 FSK symbol)
static void ft4_decode_symbol(const uint8_t* power, int bit_idx, float* log174)
{
// Cleaned up code for the simple case of n_syms==1
float s2[4];
for (int j = 0; j < 4; ++j)
{
s2[j] = (float)power[kFT4_Gray_map[j]];
}
log174[bit_idx + 0] = max2(s2[2], s2[3]) - max2(s2[0], s2[1]);
log174[bit_idx + 1] = max2(s2[1], s2[3]) - max2(s2[0], s2[2]);
}
// Compute unnormalized log likelihood log(p(1) / p(0)) of 3 message bits (1 FSK symbol)
static void decode_symbol(const uint8_t* power, int bit_idx, float* log174)
static void ft8_decode_symbol(const uint8_t* power, int bit_idx, float* log174)
{
// Cleaned up code for the simple case of n_syms==1
float s2[8];
@ -386,7 +402,7 @@ static void decode_symbol(const uint8_t* power, int bit_idx, float* log174)
}
// Compute unnormalized log likelihood log(p(1) / p(0)) of bits corresponding to several FSK symbols at once
static void decode_multi_symbols(const uint8_t* power, int num_bins, int n_syms, int bit_idx, float* log174)
static void ft8_decode_multi_symbols(const uint8_t* power, int num_bins, int n_syms, int bit_idx, float* log174)
{
const int n_bits = 3 * n_syms;
const int n_tones = (1 << n_bits);

Wyświetl plik

@ -12,7 +12,8 @@
/// Values freq_osr > 1 mean the tone spacing is further subdivided by FFT analysis.
typedef struct
{
int num_blocks; ///< number of total blocks (symbols) in terms of 160 ms time periods
int max_blocks; ///< number of blocks (symbols) allocated in the mag array
int num_blocks; ///< number of blocks (symbols) stored in the mag array
int num_bins; ///< number of FFT bins in terms of 6.25 Hz
int time_osr; ///< number of time subdivisions
int freq_osr; ///< number of frequency subdivisions