Added mag/phase data in waterfall and resynth function

pull/37/head
Karlis Goba 2022-08-03 16:01:52 +03:00
commit 62f7aeecac
15 zmienionych plików z 125 dodań i 962 usunięć

Wyświetl plik

@ -1,22 +1,25 @@
BUILD_DIR = .build
FT8_SRC = $(wildcard ft8/*.c)
FT8_OBJ = $(patsubst %.c,$(BUILD_DIR)/%.o,$(FT8_SRC))
FT8_SRC = $(wildcard ft8/*.c)
FT8_OBJ = $(patsubst %.c,$(BUILD_DIR)/%.o,$(FT8_SRC))
COMMON_SRC = $(wildcard common/*.c)
COMMON_OBJ = $(patsubst %.c,$(BUILD_DIR)/%.o,$(COMMON_SRC))
FFT_SRC = $(wildcard fft/*.c)
FFT_OBJ = $(patsubst %.c,$(BUILD_DIR)/%.o,$(FFT_SRC))
FFT_SRC = $(wildcard fft/*.c)
FFT_OBJ = $(patsubst %.c,$(BUILD_DIR)/%.o,$(FFT_SRC))
TARGETS = gen_ft8 decode_ft8 test_ft8
TARGETS = gen_ft8 decode_ft8 test_ft8
CFLAGS = -O3 -ggdb3 -fsanitize=address
CPPFLAGS = -std=c11 -I. -I/opt/local/include
LDFLAGS = -lm -fsanitize=address -lportaudio -L/opt/local/lib
CFLAGS = -fsanitize=address -O3 -ggdb3
CPPFLAGS = -std=c11 -I.
LDFLAGS = -fsanitize=address -lm
CPPFLAGS += -DUSE_PORTAUDIO -I/opt/local/include
LDFLAGS += -lportaudio -L/opt/local/lib
# Optionally, use Portaudio for live audio input
ifdef PORTAUDIO_PREFIX
CPPFLAGS += -DUSE_PORTAUDIO -I$(PORTAUDIO_PREFIX)/include
LDFLAGS += -lportaudio -L$(PORTAUDIO_PREFIX)/lib
endif
.PHONY: all clean run_tests install

Wyświetl plik

@ -167,4 +167,25 @@ int audio_read(float* buffer, int num_samples)
return 0;
}
#else
int audio_init(void)
{
return -1;
}
void audio_list(void)
{
}
int audio_open(const char* name)
{
return -1;
}
int audio_read(float* buffer, int num_samples)
{
return -1;
}
#endif

Wyświetl plik

@ -1,4 +1,5 @@
#include "monitor.h"
#include <common/common.h>
#define LOG_LEVEL LOG_INFO
#include <ft8/debug.h>
@ -33,7 +34,7 @@ static float hann_i(int i, int N)
// return a0 - a1 * x1 + a2 * x2;
// }
static void waterfall_init(waterfall_t* me, int max_blocks, int num_bins, int time_osr, int freq_osr)
static void waterfall_init(ftx_waterfall_t* me, int max_blocks, int num_bins, int time_osr, int freq_osr)
{
size_t mag_size = max_blocks * time_osr * freq_osr * num_bins * sizeof(me->mag[0]);
me->max_blocks = max_blocks;
@ -46,7 +47,7 @@ static void waterfall_init(waterfall_t* me, int max_blocks, int num_bins, int ti
LOG(LOG_DEBUG, "Waterfall size = %zu\n", mag_size);
}
static void waterfall_free(waterfall_t* me)
static void waterfall_free(ftx_waterfall_t* me)
{
free(me->mag);
}

Wyświetl plik

@ -25,16 +25,16 @@ typedef struct
typedef struct
{
float symbol_period; ///< FT4/FT8 symbol period in seconds
int min_bin;
int max_bin;
int block_size; ///< Number of samples per symbol (block)
int subblock_size; ///< Analysis shift size (number of samples)
int nfft; ///< FFT size
float fft_norm; ///< FFT normalization factor
float* window; ///< Window function for STFT analysis (nfft samples)
float* last_frame; ///< Current STFT analysis frame (nfft samples)
waterfall_t wf; ///< Waterfall object
float max_mag; ///< Maximum detected magnitude (debug stats)
int min_bin; ///< First FFT bin in the frequency range (begin)
int max_bin; ///< First FFT bin outside the frequency range (end)
int block_size; ///< Number of samples per symbol (block)
int subblock_size; ///< Analysis shift size (number of samples)
int nfft; ///< FFT size
float fft_norm; ///< FFT normalization factor
float* window; ///< Window function for STFT analysis (nfft samples)
float* last_frame; ///< Current STFT analysis frame (nfft samples)
ftx_waterfall_t wf; ///< Waterfall object
float max_mag; ///< Maximum detected magnitude (debug stats)
// KISS FFT housekeeping variables
void* fft_work; ///< Work area required by Kiss FFT

Wyświetl plik

@ -7,7 +7,6 @@
#include <ft8/decode.h>
#include <ft8/encode.h>
#include <ft8/unpack.h>
#include <ft8/message.h>
#include <common/common.h>
@ -33,7 +32,7 @@ void usage(const char* error_msg)
{
fprintf(stderr, "ERROR: %s\n", error_msg);
}
fprintf(stderr, "Usage: decode_ft8 [-list|-ft4] INPUT\n\n");
fprintf(stderr, "Usage: decode_ft8 [-list|([-ft4] [INPUT|-dev DEVICE])]\n\n");
fprintf(stderr, "Decode a 15-second (or slighly shorter) WAV file.\n");
}
@ -41,8 +40,8 @@ void usage(const char* error_msg)
static struct
{
char callsign[12];
uint32_t hash;
char callsign[12]; ///> Up to 11 symbols of callsign + trailing zeros (always filled)
uint32_t hash; ///> 8 MSBs contain the age of callsign; 22 LSBs contain hash value
} callsign_hashtable[CALLSIGN_HASHTABLE_SIZE];
static int callsign_hashtable_size;
@ -103,10 +102,10 @@ void hashtable_add(const char* callsign, uint32_t hash)
callsign_hashtable[idx_hash].hash = hash;
}
bool hashtable_lookup(ftx_callsign_hash_type_e hash_type, uint32_t hash, char* callsign)
bool hashtable_lookup(ftx_callsign_hash_type_t hash_type, uint32_t hash, char* callsign)
{
uint8_t hash_shift = (hash_type == FTX_CALLSIGN_HASH_10_BITS) ? 12 : (hash_type == FTX_CALLSIGN_HASH_12_BITS ? 10 : 0);
uint16_t hash10 = (hash >> (12 - hash_shift)) & 0x3FF;
uint16_t hash10 = (hash >> (12 - hash_shift)) & 0x3FFu;
int idx_hash = (hash10 * 23) % CALLSIGN_HASHTABLE_SIZE;
while (callsign_hashtable[idx_hash].callsign[0] != '\0')
{
@ -127,12 +126,12 @@ ftx_callsign_hash_interface_t hash_if = {
.save_hash = hashtable_add
};
void decode(const monitor_t* mon)
void decode(const monitor_t* mon, struct tm* tm_slot_start)
{
const waterfall_t* wf = &mon->wf;
const ftx_waterfall_t* wf = &mon->wf;
// Find top candidates by Costas sync score and localize them in time and frequency
candidate_t candidate_list[kMax_candidates];
int num_candidates = ftx_find_sync(wf, kMax_candidates, candidate_list, kMin_score);
ftx_candidate_t candidate_list[kMax_candidates];
int num_candidates = ftx_find_candidates(wf, kMax_candidates, candidate_list, kMin_score);
// Hash table for decoded messages (to check for duplicates)
int num_decoded = 0;
@ -148,7 +147,7 @@ void decode(const monitor_t* mon)
// Go over candidates and attempt to decode messages
for (int idx = 0; idx < num_candidates; ++idx)
{
const candidate_t* cand = &candidate_list[idx];
const ftx_candidate_t* cand = &candidate_list[idx];
float freq_hz = (mon->min_bin + cand->freq_offset + (float)cand->freq_sub / wf->freq_osr) / mon->symbol_period;
float time_sec = (cand->time_offset + (float)cand->time_sub / wf->time_osr) * mon->symbol_period;
@ -167,11 +166,9 @@ void decode(const monitor_t* mon)
#endif
ftx_message_t message;
decode_status_t status;
if (!ftx_decode(wf, cand, kLDPC_iterations, &message, &status))
ftx_decode_status_t status;
if (!ftx_decode_candidate(wf, cand, kLDPC_iterations, &message, &status))
{
// float snr = cand->score * 0.5f; // TODO: compute better approximation of SNR
// printf("000000 %2.1f %+4.2f %4.0f ~ %s\n", snr, time_sec, freq_hz, "---");
if (status.ldpc_errors > 0)
{
LOG(LOG_DEBUG, "LDPC decode: %d errors\n", status.ldpc_errors);
@ -215,25 +212,17 @@ void decode(const monitor_t* mon)
++num_decoded;
char text[FTX_MAX_MESSAGE_LENGTH];
// int unpack_status = unpack77(message.payload, text, NULL);
int unpack_status = ftx_message_decode(&message, &hash_if, text);
if (unpack_status != 0)
ftx_message_rc_t unpack_status = ftx_message_decode(&message, &hash_if, text);
if (unpack_status != FTX_MESSAGE_RC_OK)
{
strcpy(text, "Error while unpacking!");
snprintf(text, sizeof(text), "Error [%d] while unpacking!", (int)unpack_status);
}
// uint8_t i3 = ftx_message_get_i3(&message);
// if (i3 == 0)
// {
// uint8_t n3 = ftx_message_get_n3(&message);
// printf("000000 %02d %+4.2f %4.0f [%d.%d] ~ %s\n", cand->score, time_sec, freq_hz, i3, n3, text);
// }
// else
// printf("000000 %02d %+4.2f %4.0f [%d ] ~ %s\n", cand->score, time_sec, freq_hz, i3, text);
// Fake WSJT-X-like output for now
float snr = cand->score * 0.5f; // TODO: compute better approximation of SNR
printf("000000 %+05.1f %+4.2f %4.0f ~ %s\n", snr, time_sec, freq_hz, text);
printf("%02d%02d%02d %+05.1f %+4.2f %4.0f ~ %s\n",
tm_slot_start->tm_hour, tm_slot_start->tm_min, tm_slot_start->tm_sec,
snr, time_sec, freq_hz, text);
}
}
LOG(LOG_INFO, "Decoded %d messages, callsign hashtable size %d\n", num_decoded, callsign_hashtable_size);
@ -306,9 +295,9 @@ int main(int argc, char** argv)
return -1;
}
float slot_time = ((protocol == FTX_PROTOCOL_FT8) ? FT8_SLOT_TIME : FT4_SLOT_TIME);
float slot_period = ((protocol == FTX_PROTOCOL_FT8) ? FT8_SLOT_TIME : FT4_SLOT_TIME);
int sample_rate = 12000;
int num_samples = slot_time * sample_rate;
int num_samples = slot_period * sample_rate;
float signal[num_samples];
bool is_live = false;
@ -326,7 +315,7 @@ int main(int argc, char** argv)
{
audio_init();
audio_open(dev_name);
num_samples = (slot_time - 0.4f) * sample_rate;
num_samples = (slot_period - 0.4f) * sample_rate;
is_live = true;
}
@ -348,6 +337,7 @@ int main(int argc, char** argv)
do
{
struct tm tm_slot_start = { 0 };
if (is_live)
{
// Wait for the start of time slot
@ -355,12 +345,18 @@ int main(int argc, char** argv)
{
struct timespec spec;
clock_gettime(CLOCK_REALTIME, &spec);
float time_within_slot = fmod((double)spec.tv_sec + (spec.tv_nsec * 1e-9) - time_shift, slot_time);
if (time_within_slot > slot_time / 3)
double time = (double)spec.tv_sec + (spec.tv_nsec / 1e9);
double time_within_slot = fmod(time - time_shift, slot_period);
if (time_within_slot > slot_period / 4)
{
audio_read(signal, mon.block_size);
}
else
{
LOG(LOG_INFO, "Time within slot: %.3f s\n", time_within_slot);
time_t time_slot_start = (time_t)(time - time_within_slot);
gmtime_r(&time_slot_start, &tm_slot_start);
LOG(LOG_INFO, "Time within slot %02d%02d%02d: %.3f s\n", tm_slot_start.tm_hour,
tm_slot_start.tm_min, tm_slot_start.tm_sec, time_within_slot);
break;
}
}
@ -383,7 +379,7 @@ int main(int argc, char** argv)
LOG(LOG_INFO, "Max magnitude: %.1f dB\n", mon.max_mag);
// Decode accumulated data (containing slightly less than a full time slot)
decode(&mon);
decode(&mon, &tm_slot_start);
// Reset internal variables for the next time slot
monitor_reset(&mon);

Wyświetl plik

@ -6,12 +6,12 @@
#include "common/common.h"
#include "common/wave.h"
#include "ft8/debug.h"
#include "ft8/pack.h"
#include "ft8/message.h"
#include "ft8/encode.h"
#include "ft8/constants.h"
#define LOG_LEVEL LOG_INFO
#include "ft8/debug.h"
#define FT8_SYMBOL_BT 2.0f ///< symbol smoothing filter bandwidth factor (BT)
#define FT4_SYMBOL_BT 1.0f ///< symbol smoothing filter bandwidth factor (BT)
@ -130,19 +130,19 @@ int main(int argc, char** argv)
bool is_ft4 = (argc > 4) && (0 == strcmp(argv[4], "-ft4"));
// First, pack the text data into binary message
uint8_t packed[FTX_LDPC_K_BYTES];
int rc = pack77(message, packed);
if (rc < 0)
ftx_message_t msg;
ftx_message_rc_t rc = ftx_message_encode(&msg, NULL, message);
if (rc != FTX_MESSAGE_RC_OK)
{
printf("Cannot parse message!\n");
printf("RC = %d\n", rc);
printf("RC = %d\n", (int)rc);
return -2;
}
printf("Packed data: ");
for (int j = 0; j < 10; ++j)
{
printf("%02x ", packed[j]);
printf("%02x ", msg.payload[j]);
}
printf("\n");
@ -155,11 +155,11 @@ int main(int argc, char** argv)
uint8_t tones[num_tones]; // Array of 79 tones (symbols)
if (is_ft4)
{
ft4_encode(packed, tones);
ft4_encode(msg.payload, tones);
}
else
{
ft8_encode(packed, tones);
ft8_encode(msg.payload, tones);
}
printf("FSK tones: ");

Wyświetl plik

@ -2,7 +2,6 @@
#include "constants.h"
#include "crc.h"
#include "ldpc.h"
#include "unpack.h"
#include <stdbool.h>
#include <math.h>
@ -15,8 +14,8 @@
/// @param[in] cand Candidate to extract the message from
/// @param[in] code_map Symbol encoding map
/// @param[out] log174 Output of decoded log likelihoods for each of the 174 message bits
static void ft4_extract_likelihood(const waterfall_t* wf, const candidate_t* cand, float* log174);
static void ft8_extract_likelihood(const waterfall_t* wf, const candidate_t* cand, float* log174);
static void ft4_extract_likelihood(const ftx_waterfall_t* wf, const ftx_candidate_t* cand, float* log174);
static void ft8_extract_likelihood(const ftx_waterfall_t* wf, const ftx_candidate_t* cand, float* log174);
/// Packs a string of bits each represented as a zero/non-zero byte in bit_array[],
/// as a string of packed bits starting from the MSB of the first byte of packed[]
@ -27,15 +26,15 @@ static void pack_bits(const uint8_t bit_array[], int num_bits, uint8_t packed[])
static float max2(float a, float b);
static float max4(float a, float b, float c, float d);
static void heapify_down(candidate_t heap[], int heap_size);
static void heapify_up(candidate_t heap[], int heap_size);
static void heapify_down(ftx_candidate_t heap[], int heap_size);
static void heapify_up(ftx_candidate_t heap[], int heap_size);
static void ftx_normalize_logl(float* log174);
static void ft4_extract_symbol(const WF_ELEM_T* wf, float* logl);
static void ft8_extract_symbol(const WF_ELEM_T* wf, float* logl);
static void ft8_decode_multi_symbols(const WF_ELEM_T* wf, int num_bins, int n_syms, int bit_idx, float* log174);
static const WF_ELEM_T* get_cand_mag(const waterfall_t* wf, const candidate_t* candidate)
static const WF_ELEM_T* get_cand_mag(const ftx_waterfall_t* wf, const ftx_candidate_t* candidate)
{
int offset = candidate->time_offset;
offset = (offset * wf->time_osr) + candidate->time_sub;
@ -44,7 +43,7 @@ static const WF_ELEM_T* get_cand_mag(const waterfall_t* wf, const candidate_t* c
return wf->mag + offset;
}
static int ft8_sync_score(const waterfall_t* wf, const candidate_t* candidate)
static int ft8_sync_score(const ftx_waterfall_t* wf, const ftx_candidate_t* candidate)
{
int score = 0;
int num_average = 0;
@ -110,7 +109,7 @@ static int ft8_sync_score(const waterfall_t* wf, const candidate_t* candidate)
return score;
}
static int ft4_sync_score(const waterfall_t* wf, const candidate_t* candidate)
static int ft4_sync_score(const ftx_waterfall_t* wf, const ftx_candidate_t* candidate)
{
int score = 0;
int num_average = 0;
@ -173,13 +172,13 @@ static int ft4_sync_score(const waterfall_t* wf, const candidate_t* candidate)
return score;
}
int ftx_find_sync(const waterfall_t* wf, int num_candidates, candidate_t heap[], int min_score)
int ftx_find_candidates(const ftx_waterfall_t* wf, int num_candidates, ftx_candidate_t heap[], int min_score)
{
int (*sync_fun)(const waterfall_t*, const candidate_t*) = (wf->protocol == FTX_PROTOCOL_FT4) ? ft4_sync_score : ft8_sync_score;
int (*sync_fun)(const ftx_waterfall_t*, const ftx_candidate_t*) = (wf->protocol == FTX_PROTOCOL_FT4) ? ft4_sync_score : ft8_sync_score;
int num_tones = (wf->protocol == FTX_PROTOCOL_FT4) ? 4 : 8;
int heap_size = 0;
candidate_t candidate;
ftx_candidate_t candidate;
// Here we allow time offsets that exceed signal boundaries, as long as we still have all data bits.
// I.e. we can afford to skip the first 7 or the last 7 Costas symbols, as long as we track how many
@ -226,7 +225,7 @@ int ftx_find_sync(const waterfall_t* wf, int num_candidates, candidate_t heap[],
// exchange it with the last element in the heap, and decrease the heap size.
// Then restore the heap property in the new, smaller heap.
// At the end the elements will be sorted in descending order.
candidate_t tmp = heap[len_unsorted - 1];
ftx_candidate_t tmp = heap[len_unsorted - 1];
heap[len_unsorted - 1] = heap[0];
heap[0] = tmp;
len_unsorted--;
@ -236,7 +235,7 @@ int ftx_find_sync(const waterfall_t* wf, int num_candidates, candidate_t heap[],
return heap_size;
}
static void ft4_extract_likelihood(const waterfall_t* wf, const candidate_t* cand, float* log174)
static void ft4_extract_likelihood(const ftx_waterfall_t* wf, const ftx_candidate_t* cand, float* log174)
{
const WF_ELEM_T* mag = get_cand_mag(wf, cand); // Pointer to 4 magnitude bins of the first symbol
@ -262,7 +261,7 @@ static void ft4_extract_likelihood(const waterfall_t* wf, const candidate_t* can
}
}
static void ft8_extract_likelihood(const waterfall_t* wf, const candidate_t* cand, float* log174)
static void ft8_extract_likelihood(const ftx_waterfall_t* wf, const ftx_candidate_t* cand, float* log174)
{
const WF_ELEM_T* mag = get_cand_mag(wf, cand); // Pointer to 8 magnitude bins of the first symbol
@ -310,7 +309,7 @@ static void ftx_normalize_logl(float* log174)
}
}
bool ftx_decode(const waterfall_t* wf, const candidate_t* cand, int max_iterations, ftx_message_t* message, decode_status_t* status)
bool ftx_decode_candidate(const ftx_waterfall_t* wf, const ftx_candidate_t* cand, int max_iterations, ftx_message_t* message, ftx_decode_status_t* status)
{
float log174[FTX_LDPC_N]; // message bits encoded as likelihood
if (wf->protocol == FTX_PROTOCOL_FT4)
@ -383,7 +382,7 @@ static float max4(float a, float b, float c, float d)
return max2(max2(a, b), max2(c, d));
}
static void heapify_down(candidate_t heap[], int heap_size)
static void heapify_down(ftx_candidate_t heap[], int heap_size)
{
// heapify from the root down
int current = 0; // root node
@ -409,14 +408,14 @@ static void heapify_down(candidate_t heap[], int heap_size)
}
// Exchange the current node with the smallest child and move down to it
candidate_t tmp = heap[smallest];
ftx_candidate_t tmp = heap[smallest];
heap[smallest] = heap[current];
heap[current] = tmp;
current = smallest;
}
}
static void heapify_up(candidate_t heap[], int heap_size)
static void heapify_up(ftx_candidate_t heap[], int heap_size)
{
// heapify from the last node up
int current = heap_size - 1;
@ -429,7 +428,7 @@ static void heapify_up(candidate_t heap[], int heap_size)
}
// Exchange the current node with its parent and move up
candidate_t tmp = heap[parent];
ftx_candidate_t tmp = heap[parent];
heap[parent] = heap[current];
heap[current] = tmp;
current = parent;

Wyświetl plik

@ -46,7 +46,7 @@ typedef struct
WF_ELEM_T* mag; ///< FFT magnitudes stored as uint8_t[blocks][time_osr][freq_osr][num_bins]
int block_stride; ///< Helper value = time_osr * freq_osr * num_bins
ftx_protocol_t protocol; ///< Indicate if using FT4 or FT8
} waterfall_t;
} ftx_waterfall_t;
/// Output structure of ftx_find_sync() and input structure of ftx_decode().
/// Holds the position of potential start of a message in time and frequency.
@ -57,7 +57,7 @@ typedef struct
int16_t freq_offset; ///< Index of the frequency bin
uint8_t time_sub; ///< Index of the time subdivision used
uint8_t freq_sub; ///< Index of the frequency subdivision used
} candidate_t;
} ftx_candidate_t;
/// Structure that contains the status of various steps during decoding of a message
typedef struct
@ -68,26 +68,26 @@ typedef struct
uint16_t crc_extracted; ///< CRC value recovered from the message
uint16_t crc_calculated; ///< CRC value calculated over the payload
// int unpack_status; ///< Return value of the unpack routine
} decode_status_t;
} ftx_decode_status_t;
/// Localize top N candidates in frequency and time according to their sync strength (looking at Costas symbols)
/// We treat and organize the candidate list as a min-heap (empty initially).
/// @param[in] power Waterfall data collected during message slot
/// @param[in] sync_pattern Synchronization pattern
/// @param[in] num_candidates Number of maximum candidates (size of heap array)
/// @param[in,out] heap Array of candidate_t type entries (with num_candidates allocated entries)
/// @param[in,out] heap Array of ftx_candidate_t type entries (with num_candidates allocated entries)
/// @param[in] min_score Minimal score allowed for pruning unlikely candidates (can be zero for no effect)
/// @return Number of candidates filled in the heap
int ftx_find_sync(const waterfall_t* power, int num_candidates, candidate_t heap[], int min_score);
int ftx_find_candidates(const ftx_waterfall_t* power, int num_candidates, ftx_candidate_t heap[], int min_score);
/// Attempt to decode a message candidate. Extracts the bit probabilities, runs LDPC decoder, checks CRC and unpacks the message in plain text.
/// @param[in] power Waterfall data collected during message slot
/// @param[in] cand Candidate to decode
/// @param[in] max_iterations Maximum allowed LDPC iterations (lower number means faster decode, but less precise)
/// @param[out] message ftx_message_t structure that will receive the decoded message
/// @param[out] status decode_status_t structure that will be filled with the status of various decoding steps
/// @param[out] status ftx_decode_status_t structure that will be filled with the status of various decoding steps
/// @return True if the decoding was successful, false otherwise (check status for details)
bool ftx_decode(const waterfall_t* power, const candidate_t* cand, int max_iterations, ftx_message_t* message, decode_status_t* status);
bool ftx_decode_candidate(const ftx_waterfall_t* power, const ftx_candidate_t* cand, int max_iterations, ftx_message_t* message, ftx_decode_status_t* status);
#ifdef __cplusplus
}

Wyświetl plik

@ -23,7 +23,7 @@ static void add_brackets(char* result, const char* original, int length);
/// @param[out] n10_out Pointer to store 10-bit hash value (can be NULL)
/// @return True on success
static bool save_callsign(const ftx_callsign_hash_interface_t* hash_if, const char* callsign, uint32_t* n22_out, uint16_t* n12_out, uint16_t* n10_out);
static bool lookup_callsign(const ftx_callsign_hash_interface_t* hash_if, ftx_callsign_hash_type_e hash_type, uint32_t hash, char* callsign);
static bool lookup_callsign(const ftx_callsign_hash_interface_t* hash_if, ftx_callsign_hash_type_t hash_type, uint32_t hash, char* callsign);
static int32_t pack_basecall(const char* callsign, int length);
@ -591,7 +591,7 @@ static bool save_callsign(const ftx_callsign_hash_interface_t* hash_if, const ch
return true;
}
static bool lookup_callsign(const ftx_callsign_hash_interface_t* hash_if, ftx_callsign_hash_type_e hash_type, uint32_t hash, char* callsign)
static bool lookup_callsign(const ftx_callsign_hash_interface_t* hash_if, ftx_callsign_hash_type_t hash_type, uint32_t hash, char* callsign)
{
char c11[12];

Wyświetl plik

@ -58,12 +58,12 @@ typedef enum
FTX_CALLSIGN_HASH_22_BITS,
FTX_CALLSIGN_HASH_12_BITS,
FTX_CALLSIGN_HASH_10_BITS
} ftx_callsign_hash_type_e;
} ftx_callsign_hash_type_t;
typedef struct
{
/// Called when a callsign is looked up by its 22/12/10 bit hash code
bool (*lookup_hash)(ftx_callsign_hash_type_e hash_type, uint32_t hash, char* callsign);
bool (*lookup_hash)(ftx_callsign_hash_type_t hash_type, uint32_t hash, char* callsign);
/// Called when a callsign should hashed and stored (by its 22, 12 and 10 bit hash codes)
void (*save_hash)(const char* callsign, uint32_t n22);
} ftx_callsign_hash_interface_t;
@ -78,9 +78,12 @@ typedef enum
FTX_MESSAGE_RC_ERROR_TYPE
} ftx_message_rc_t;
// Basecall - 1-2 letter/digit prefix (at least one letter), 1 digit area code, 1-3 letter suffix, total 3-6 chars (except for 7 char 3DA0- and 3X- calls)
// Ext. basecall - basecall followed by /R or /P
// Nonstd. call - all the rest, limited to 3-11 characters either alphanumeric or stroke (/)
// Callsign types and sizes:
// * Std. call (basecall) - 1-2 letter/digit prefix (at least one letter), 1 digit area code, 1-3 letter suffix,
// total 3-6 chars (exception: 7 character calls with prefixes 3DA0- and 3XA..3XZ-)
// * Ext. std. call - basecall followed by /R or /P
// * Nonstd. call - all the rest, limited to 3-11 characters either alphanumeric or stroke (/)
// In case a call is looked up from its hash value, the call is enclosed in angular brackets (<CA0LL>).
void ftx_message_init(ftx_message_t* msg);

Wyświetl plik

@ -1,365 +0,0 @@
#include "pack.h"
#include "text.h"
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#define NTOKENS ((uint32_t)2063592L)
#define MAX22 ((uint32_t)4194304L)
#define MAXGRID4 ((uint16_t)32400)
// Pack a special token, a 22-bit hash code, or a valid base call
// into a 28-bit integer.
static int32_t pack28(const char* callsign)
{
// Check for special tokens first
if (starts_with(callsign, "DE "))
return 0;
if (starts_with(callsign, "QRZ "))
return 1;
if (starts_with(callsign, "CQ "))
return 2;
if (starts_with(callsign, "CQ_"))
{
int nnum = 0, nlet = 0;
// TODO:
}
// TODO: Check for <...> callsign
char c6[6] = { ' ', ' ', ' ', ' ', ' ', ' ' };
int length = 0; // strlen(callsign); // We will need it later
while (callsign[length] != ' ' && callsign[length] != 0)
{
length++;
}
// Copy callsign to 6 character buffer
if (starts_with(callsign, "3DA0") && length <= 7)
{
// Work-around for Swaziland prefix: 3DA0XYZ -> 3D0XYZ
memcpy(c6, "3D0", 3);
memcpy(c6 + 3, callsign + 4, length - 4);
}
else if (starts_with(callsign, "3X") && is_letter(callsign[2]) && length <= 7)
{
// Work-around for Guinea prefixes: 3XA0XYZ -> QA0XYZ
memcpy(c6, "Q", 1);
memcpy(c6 + 1, callsign + 2, length - 2);
}
else
{
// Check the position of callsign digit and make a right-aligned copy into c6
if (is_digit(callsign[2]) && length <= 6)
{
// AB0XYZ
memcpy(c6, callsign, length);
}
else if (is_digit(callsign[1]) && length <= 5)
{
// A0XYZ -> " A0XYZ"
memcpy(c6 + 1, callsign, length);
}
}
// Check for standard callsign
int i0 = nchar(c6[0], FT8_CHAR_TABLE_ALPHANUM_SPACE);
int i1 = nchar(c6[1], FT8_CHAR_TABLE_ALPHANUM);
int i2 = nchar(c6[2], FT8_CHAR_TABLE_NUMERIC);
int i3 = nchar(c6[3], FT8_CHAR_TABLE_LETTERS_SPACE);
int i4 = nchar(c6[4], FT8_CHAR_TABLE_LETTERS_SPACE);
int i5 = nchar(c6[5], FT8_CHAR_TABLE_LETTERS_SPACE);
if ((i0 >= 0) && (i1 >= 0) && (i2 >= 0) && (i3 >= 0) && (i4 >= 0) && (i5 >= 0))
{
// This is a standard callsign
int32_t n28 = i0;
n28 = n28 * 36 + i1;
n28 = n28 * 10 + i2;
n28 = n28 * 27 + i3;
n28 = n28 * 27 + i4;
n28 = n28 * 27 + i5;
return NTOKENS + MAX22 + n28;
}
// char text[13];
// if (length > 13) return -1;
// TODO:
// Treat this as a nonstandard callsign: compute its 22-bit hash
return -1;
}
// Check if a string could be a valid standard callsign or a valid
// compound callsign.
// Return base call "bc" and a logical "cok" indicator.
static bool chkcall(const char* call, char* bc)
{
int length = strlen(call); // n1=len_trim(w)
if (length > 11)
return false;
if (0 != strchr(call, '.'))
return false;
if (0 != strchr(call, '+'))
return false;
if (0 != strchr(call, '-'))
return false;
if (0 != strchr(call, '?'))
return false;
if (length > 6 && 0 != strchr(call, '/'))
return false;
// TODO: implement suffix parsing (or rework?)
return true;
}
static uint16_t packgrid(const char* grid4)
{
if (grid4 == 0)
{
// Two callsigns only, no report/grid
return MAXGRID4 + 1;
}
// Take care of special cases
if (equals(grid4, "RRR"))
return MAXGRID4 + 2;
if (equals(grid4, "RR73"))
return MAXGRID4 + 3;
if (equals(grid4, "73"))
return MAXGRID4 + 4;
// Check for standard 4 letter grid
if (in_range(grid4[0], 'A', 'R') && in_range(grid4[1], 'A', 'R') && is_digit(grid4[2]) && is_digit(grid4[3]))
{
uint16_t igrid4 = (grid4[0] - 'A');
igrid4 = igrid4 * 18 + (grid4[1] - 'A');
igrid4 = igrid4 * 10 + (grid4[2] - '0');
igrid4 = igrid4 * 10 + (grid4[3] - '0');
return igrid4;
}
// Parse report: +dd / -dd / R+dd / R-dd
// TODO: check the range of dd
if (grid4[0] == 'R')
{
int dd = dd_to_int(grid4 + 1, 3);
uint16_t irpt = 35 + dd;
return (MAXGRID4 + irpt) | 0x8000; // ir = 1
}
else
{
int dd = dd_to_int(grid4, 3);
uint16_t irpt = 35 + dd;
return (MAXGRID4 + irpt); // ir = 0
}
return MAXGRID4 + 1;
}
// Pack Type 1 (Standard 77-bit message) and Type 2 (ditto, with a "/P" call)
static int pack77_1(const char* msg, uint8_t* b77)
{
// Locate the first delimiter
const char* s1 = strchr(msg, ' ');
if (s1 == 0)
return -1;
const char* call1 = msg; // 1st call
const char* call2 = s1 + 1; // 2nd call
int32_t n28a = pack28(call1);
int32_t n28b = pack28(call2);
if (n28a < 0 || n28b < 0)
return -1;
uint16_t igrid4;
// Locate the second delimiter
const char* s2 = strchr(s1 + 1, ' ');
if (s2 != 0)
{
igrid4 = packgrid(s2 + 1);
}
else
{
// Two callsigns, no grid/report
igrid4 = packgrid(0);
}
uint8_t i3 = 1; // No suffix or /R
// TODO: check for suffixes
// Shift in ipa and ipb bits into n28a and n28b
n28a <<= 1; // ipa = 0
n28b <<= 1; // ipb = 0
// Pack into (28 + 1) + (28 + 1) + (1 + 15) + 3 bits
b77[0] = (n28a >> 21);
b77[1] = (n28a >> 13);
b77[2] = (n28a >> 5);
b77[3] = (uint8_t)(n28a << 3) | (uint8_t)(n28b >> 26);
b77[4] = (n28b >> 18);
b77[5] = (n28b >> 10);
b77[6] = (n28b >> 2);
b77[7] = (uint8_t)(n28b << 6) | (uint8_t)(igrid4 >> 10);
b77[8] = (igrid4 >> 2);
b77[9] = (uint8_t)(igrid4 << 6) | (uint8_t)(i3 << 3);
return 0;
}
static void packtext77(const char* text, uint8_t* b77)
{
int length = strlen(text);
// Skip leading and trailing spaces
while (*text == ' ' && *text != 0)
{
++text;
--length;
}
while (length > 0 && text[length - 1] == ' ')
{
--length;
}
// Clear the first 72 bits representing a long number
for (int i = 0; i < 9; ++i)
{
b77[i] = 0;
}
// Now express the text as base-42 number stored
// in the first 72 bits of b77
for (int j = 0; j < 13; ++j)
{
// Multiply the long integer in b77 by 42
uint16_t x = 0;
for (int i = 8; i >= 0; --i)
{
x += b77[i] * (uint16_t)42;
b77[i] = (x & 0xFF);
x >>= 8;
}
// Get the index of the current char
if (j < length)
{
int q = nchar(text[j], FT8_CHAR_TABLE_FULL);
x = (q > 0) ? q : 0;
}
else
{
x = 0;
}
// Here we double each added number in order to have the result multiplied
// by two as well, so that it's a 71 bit number left-aligned in 72 bits (9 bytes)
x <<= 1;
// Now add the number to our long number
for (int i = 8; i >= 0; --i)
{
if (x == 0)
break;
x += b77[i];
b77[i] = (x & 0xFF);
x >>= 8;
}
}
// Set n3=0 (bits 71..73) and i3=0 (bits 74..76)
b77[8] &= 0xFE;
b77[9] &= 0x00;
}
int pack77(const char* msg, uint8_t* c77)
{
// Check Type 1 (Standard 77-bit message) or Type 2, with optional "/P"
if (0 == pack77_1(msg, c77))
{
return 0;
}
// TODO:
// Check 0.5 (telemetry)
// Check Type 4 (One nonstandard call and one hashed call)
// Default to free text
// i3=0 n3=0
packtext77(msg, c77);
return 0;
}
#ifdef UNIT_TEST
#include <iostream>
bool test1()
{
const char* inputs[] = {
"",
" ",
"ABC",
"A9",
"L9A",
"L7BC",
"L0ABC",
"LL3JG",
"LL3AJG",
"CQ ",
0
};
for (int i = 0; inputs[i]; ++i)
{
int32_t result = ft8_v2::pack28(inputs[i]);
printf("pack28(\"%s\") = %d\n", inputs[i], result);
}
return true;
}
bool test2()
{
const char* inputs[] = {
"CQ LL3JG",
"CQ LL3JG KO26",
"L0UAA LL3JG KO26",
"L0UAA LL3JG +02",
"L0UAA LL3JG RRR",
"L0UAA LL3JG 73",
0
};
for (int i = 0; inputs[i]; ++i)
{
uint8_t result[10];
int rc = ft8_v2::pack77_1(inputs[i], result);
printf("pack77_1(\"%s\") = %d\t[", inputs[i], rc);
for (int j = 0; j < 10; ++j)
{
printf("%02x ", result[j]);
}
printf("]\n");
}
return true;
}
int main()
{
test1();
test2();
return 0;
}
#endif

Wyświetl plik

@ -1,20 +0,0 @@
#ifndef _INCLUDE_PACK_H_
#define _INCLUDE_PACK_H_
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/// Parse and pack FT8/FT4 text message into 77 bit binary payload
/// @param[in] msg FT8/FT4 message (e.g. "CQ TE5T KN01")
/// @param[out] c77 10 byte array to store the 77 bit payload (MSB first)
/// @return Parsing result (0 - success, otherwise error)
int pack77(const char* msg, uint8_t* c77);
#ifdef __cplusplus
}
#endif
#endif // _INCLUDE_PACK_H_

Wyświetl plik

@ -1,435 +0,0 @@
#ifdef __linux__
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#endif
#include "unpack.h"
#include "text.h"
#include <string.h>
#define MAX22 ((uint32_t)4194304L)
#define NTOKENS ((uint32_t)2063592L)
#define MAXGRID4 ((uint16_t)32400L)
// n28 is a 28-bit integer, e.g. n28a or n28b, containing all the
// call sign bits from a packed message.
static int unpack_callsign(uint32_t n28, uint8_t ip, uint8_t i3, char* result, const unpack_hash_interface_t* hash_if)
{
// Check for special tokens DE, QRZ, CQ, CQ_nnn, CQ_aaaa
if (n28 < NTOKENS)
{
if (n28 <= 2)
{
if (n28 == 0)
strcpy(result, "DE");
if (n28 == 1)
strcpy(result, "QRZ");
if (n28 == 2)
strcpy(result, "CQ");
return 0; // Success
}
if (n28 <= 1002)
{
// CQ_nnn with 3 digits
strcpy(result, "CQ ");
int_to_dd(result + 3, n28 - 3, 3, false);
return 0; // Success
}
if (n28 <= 532443L)
{
// CQ_aaaa with 4 alphanumeric symbols
uint32_t n = n28 - 1003;
char aaaa[5];
aaaa[4] = '\0';
for (int i = 3; /* */; --i)
{
aaaa[i] = charn(n % 27, FT8_CHAR_TABLE_LETTERS_SPACE);
if (i == 0)
break;
n /= 27;
}
strcpy(result, "CQ ");
strcat(result, trim_front(aaaa));
return 0; // Success
}
// ? TODO: unspecified in the WSJT-X code
return -1;
}
n28 = n28 - NTOKENS;
if (n28 < MAX22)
{
// This is a 22-bit hash of a result
if (hash_if != NULL)
{
hash_if->hash22(n28, result);
}
else
{
strcpy(result, "<...>");
}
return 0;
}
// Standard callsign
uint32_t n = n28 - MAX22;
char callsign[7];
callsign[6] = '\0';
callsign[5] = charn(n % 27, FT8_CHAR_TABLE_LETTERS_SPACE);
n /= 27;
callsign[4] = charn(n % 27, FT8_CHAR_TABLE_LETTERS_SPACE);
n /= 27;
callsign[3] = charn(n % 27, FT8_CHAR_TABLE_LETTERS_SPACE);
n /= 27;
callsign[2] = charn(n % 10, FT8_CHAR_TABLE_NUMERIC);
n /= 10;
callsign[1] = charn(n % 36, FT8_CHAR_TABLE_ALPHANUM);
n /= 36;
callsign[0] = charn(n % 37, FT8_CHAR_TABLE_ALPHANUM_SPACE);
// Skip trailing and leading whitespace in case of a short callsign
strcpy(result, trim(callsign));
if (strlen(result) == 0)
return -1;
// Check if we should append /R or /P suffix
if (ip)
{
if (i3 == 1)
{
strcat(result, "/R");
}
else if (i3 == 2)
{
strcat(result, "/P");
}
}
return 0; // Success
}
static int unpack_type1(const uint8_t* a77, uint8_t i3, char* call_to, char* call_de, char* extra, const unpack_hash_interface_t* hash_if)
{
uint32_t n28a, n28b;
uint16_t igrid4;
uint8_t ir;
// Extract packed fields
n28a = (a77[0] << 21);
n28a |= (a77[1] << 13);
n28a |= (a77[2] << 5);
n28a |= (a77[3] >> 3);
n28b = ((a77[3] & 0x07) << 26);
n28b |= (a77[4] << 18);
n28b |= (a77[5] << 10);
n28b |= (a77[6] << 2);
n28b |= (a77[7] >> 6);
ir = ((a77[7] & 0x20) >> 5);
igrid4 = ((a77[7] & 0x1F) << 10);
igrid4 |= (a77[8] << 2);
igrid4 |= (a77[9] >> 6);
// Unpack both callsigns
if (unpack_callsign(n28a >> 1, n28a & 0x01, i3, call_to, hash_if) < 0)
{
return -1;
}
if (unpack_callsign(n28b >> 1, n28b & 0x01, i3, call_de, hash_if) < 0)
{
return -2;
}
// Fix "CQ_" to "CQ " -> already done in unpack_callsign()
// TODO: add to recent calls
if ((call_to[0] != '<') && (strlen(call_to) >= 4) && (hash_if != NULL))
{
hash_if->save_hash(call_to);
}
if ((call_de[0] != '<') && (strlen(call_de) >= 4) && (hash_if != NULL))
{
hash_if->save_hash(call_de);
}
char* dst = extra;
if (igrid4 <= MAXGRID4)
{
// Extract 4 symbol grid locator
if (ir > 0)
{
// In case of ir=1 add an "R" before grid
dst = stpcpy(dst, "R ");
}
uint16_t n = igrid4;
dst[4] = '\0';
dst[3] = '0' + (n % 10);
n /= 10;
dst[2] = '0' + (n % 10);
n /= 10;
dst[1] = 'A' + (n % 18);
n /= 18;
dst[0] = 'A' + (n % 18);
// if (ir > 0 && strncmp(call_to, "CQ", 2) == 0) return -1;
}
else
{
// Extract report
int irpt = igrid4 - MAXGRID4;
// Check special cases first (irpt > 0 always)
switch (irpt)
{
case 1:
extra[0] = '\0';
break;
case 2:
strcpy(dst, "RRR");
break;
case 3:
strcpy(dst, "RR73");
break;
case 4:
strcpy(dst, "73");
break;
default:
// Extract signal report as a two digit number with a + or - sign
if (ir > 0)
{
*dst++ = 'R'; // Add "R" before report
}
int_to_dd(dst, irpt - 35, 2, true);
break;
}
// if (irpt >= 2 && strncmp(call_to, "CQ", 2) == 0) return -1;
}
return 0; // Success
}
static int unpack_text(const uint8_t* a71, char* text)
{
uint8_t b71[9];
// Shift 71 bits right by 1 bit, so that it's right-aligned in the byte array
uint8_t carry = 0;
for (int i = 0; i < 9; ++i)
{
b71[i] = carry | (a71[i] >> 1);
carry = (a71[i] & 1) ? 0x80 : 0;
}
char c14[14];
c14[13] = 0;
for (int idx = 12; idx >= 0; --idx)
{
// Divide the long integer in b71 by 42
uint16_t rem = 0;
for (int i = 0; i < 9; ++i)
{
rem = (rem << 8) | b71[i];
b71[i] = rem / 42;
rem = rem % 42;
}
c14[idx] = charn(rem, FT8_CHAR_TABLE_FULL);
}
strcpy(text, trim(c14));
return 0; // Success
}
static int unpack_telemetry(const uint8_t* a71, char* telemetry)
{
uint8_t b71[9];
// Shift bits in a71 right by 1 bit
uint8_t carry = 0;
for (int i = 0; i < 9; ++i)
{
b71[i] = (carry << 7) | (a71[i] >> 1);
carry = (a71[i] & 0x01);
}
// Convert b71 to hexadecimal string
for (int i = 0; i < 9; ++i)
{
uint8_t nibble1 = (b71[i] >> 4);
uint8_t nibble2 = (b71[i] & 0x0F);
char c1 = (nibble1 > 9) ? (nibble1 - 10 + 'A') : nibble1 + '0';
char c2 = (nibble2 > 9) ? (nibble2 - 10 + 'A') : nibble2 + '0';
telemetry[i * 2] = c1;
telemetry[i * 2 + 1] = c2;
}
telemetry[18] = '\0';
return 0;
}
// none standard for wsjt-x 2.0
// by KD8CEC
static int unpack_nonstandard(const uint8_t* a77, char* call_to, char* call_de, char* extra, const unpack_hash_interface_t* hash_if)
{
uint32_t n12, iflip, nrpt, icq;
uint64_t n58;
n12 = (a77[0] << 4); // 11 ~4 : 8
n12 |= (a77[1] >> 4); // 3~0 : 12
n58 = ((uint64_t)(a77[1] & 0x0F) << 54); // 57 ~ 54 : 4
n58 |= ((uint64_t)a77[2] << 46); // 53 ~ 46 : 12
n58 |= ((uint64_t)a77[3] << 38); // 45 ~ 38 : 12
n58 |= ((uint64_t)a77[4] << 30); // 37 ~ 30 : 12
n58 |= ((uint64_t)a77[5] << 22); // 29 ~ 22 : 12
n58 |= ((uint64_t)a77[6] << 14); // 21 ~ 14 : 12
n58 |= ((uint64_t)a77[7] << 6); // 13 ~ 6 : 12
n58 |= ((uint64_t)a77[8] >> 2); // 5 ~ 0 : 765432 10
iflip = (a77[8] >> 1) & 0x01; // 76543210
nrpt = ((a77[8] & 0x01) << 1);
nrpt |= (a77[9] >> 7); // 76543210
icq = ((a77[9] >> 6) & 0x01);
char c11[12];
c11[11] = '\0';
for (int i = 10; /* no condition */; --i)
{
c11[i] = charn(n58 % 38, FT8_CHAR_TABLE_ALPHANUM_SPACE_SLASH);
if (i == 0)
break;
n58 /= 38;
}
char call_3[15];
if (hash_if != NULL)
{
hash_if->hash12(n12, call_3);
}
else
{
strcpy(call_3, "<...>");
}
char* call_1 = trim((iflip) ? c11 : call_3);
char* call_2 = trim((iflip) ? call_3 : c11);
if (hash_if != NULL)
{
hash_if->save_hash(c11);
}
if (icq == 0)
{
strcpy(call_to, call_1);
if (nrpt == 1)
strcpy(extra, "RRR");
else if (nrpt == 2)
strcpy(extra, "RR73");
else if (nrpt == 3)
strcpy(extra, "73");
else
{
extra[0] = '\0';
}
}
else
{
strcpy(call_to, "CQ");
extra[0] = '\0';
}
strcpy(call_de, call_2);
return 0;
}
int unpack77_fields(const uint8_t* a77, char* call_to, char* call_de, char* extra, const unpack_hash_interface_t* hash_if)
{
call_to[0] = call_de[0] = extra[0] = '\0';
// Extract i3 (bits 74..76)
uint8_t i3 = (a77[9] >> 3) & 0x07;
if (i3 == 0)
{
// Extract n3 (bits 71..73)
uint8_t n3 = ((a77[8] << 2) & 0x04) | ((a77[9] >> 6) & 0x03);
if (n3 == 0)
{
// 0.0 Free text
return unpack_text(a77, extra);
}
// else if (i3 == 0 && n3 == 1) {
// // 0.1 K1ABC RR73; W9XYZ <KH1/KH7Z> -11 28 28 10 5 71 DXpedition Mode
// }
// else if (i3 == 0 && n3 == 2) {
// // 0.2 PA3XYZ/P R 590003 IO91NP 28 1 1 3 12 25 70 EU VHF contest
// }
// else if (i3 == 0 && (n3 == 3 || n3 == 4)) {
// // 0.3 WA9XYZ KA1ABC R 16A EMA 28 28 1 4 3 7 71 ARRL Field Day
// // 0.4 WA9XYZ KA1ABC R 32A EMA 28 28 1 4 3 7 71 ARRL Field Day
// }
else if (n3 == 5)
{
// 0.5 0123456789abcdef01 71 71 Telemetry (18 hex)
return unpack_telemetry(a77, extra);
}
}
else if (i3 == 1 || i3 == 2)
{
// Type 1 (standard message) or Type 2 ("/P" form for EU VHF contest)
return unpack_type1(a77, i3, call_to, call_de, extra, hash_if);
}
// else if (i3 == 3) {
// // Type 3: ARRL RTTY Contest
// }
else if (i3 == 4)
{
// Type 4: Nonstandard calls, e.g. <WA9XYZ> PJ4/KA1ABC RR73
// One hashed call or "CQ"; one compound or nonstandard call with up
// to 11 characters; and (if not "CQ") an optional RRR, RR73, or 73.
return unpack_nonstandard(a77, call_to, call_de, extra, hash_if);
}
// else if (i3 == 5) {
// // Type 5: TU; W9XYZ K1ABC R-09 FN 1 28 28 1 7 9 74 WWROF contest
// }
// unknown type, should never get here
return -1;
}
int unpack77(const uint8_t* a77, char* message, const unpack_hash_interface_t* hash_if)
{
char call_to[14];
char call_de[14];
char extra[19];
int rc = unpack77_fields(a77, call_to, call_de, extra, hash_if);
if (rc < 0)
return rc;
// int msg_sz = strlen(call_to) + strlen(call_de) + strlen(extra) + 2;
char* dst = message;
dst[0] = '\0';
if (call_to[0] != '\0')
{
dst = stpcpy(dst, call_to);
*dst++ = ' ';
}
if (call_de[0] != '\0')
{
dst = stpcpy(dst, call_de);
*dst++ = ' ';
}
dst = stpcpy(dst, extra);
*dst = '\0';
return 0;
}

Wyświetl plik

@ -1,38 +0,0 @@
#ifndef _INCLUDE_UNPACK_H_
#define _INCLUDE_UNPACK_H_
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
typedef struct
{
/// Called when a callsign is looked up by its 22 bit hash code
void (*hash22)(uint32_t n22, char* callsign);
/// Called when a callsign is looked up by its 12 bit hash code
void (*hash12)(uint32_t n12, char* callsign);
/// Called when a callsign should hashed and stored (both by its 22 and 12 bit hash code)
void (*save_hash)(const char* callsign);
} unpack_hash_interface_t;
/// Unpack a 77 bit message payload into three fields (typically call_to, call_de and grid/report/other)
/// @param[in] a77 message payload in binary form (77 bits, MSB first)
/// @param[out] field1 at least 14 bytes (typically call_to)
/// @param[out] field2 at least 14 bytes (typically call_de)
/// @param[out] field3 at least 7 bytes (typically grid/report/other)
/// @param[in] hash_if hashing interface (can be NULL)
int unpack77_fields(const uint8_t* a77, char* field1, char* field2, char* field3, const unpack_hash_interface_t* hash_if);
/// Unpack a 77 bit message payload into text message
/// @param[in] a77 message payload in binary form (77 bits, MSB first)
/// @param[out] message should have at least 35 bytes allocated (34 characters + zero terminator)
/// @param[in] hash_if hashing interface (can be NULL)
int unpack77(const uint8_t* a77, char* message, const unpack_hash_interface_t* hash_if);
#ifdef __cplusplus
}
#endif
#endif // _INCLUDE_UNPACK_H_

Wyświetl plik

@ -4,10 +4,7 @@
#include <math.h>
#include <stdbool.h>
#include "ft8/debug.h"
#include "ft8/text.h"
#include "ft8/pack.h"
#include "ft8/encode.h"
#include "ft8/constants.h"
@ -16,6 +13,7 @@
#include "ft8/message.h"
#define LOG_LEVEL LOG_INFO
#include "ft8/debug.h"
// void convert_8bit_to_6bit(uint8_t* dst, const uint8_t* src, int nBits)
// {
@ -151,7 +149,7 @@ void hashtable_add(const char* callsign, uint32_t hash)
callsign_hashtable[idx_hash].hash = hash;
}
bool hashtable_lookup(ftx_callsign_hash_type_e hash_type, uint32_t hash, char* callsign)
bool hashtable_lookup(ftx_callsign_hash_type_t hash_type, uint32_t hash, char* callsign)
{
uint32_t hash_mask = (hash_type == FTX_CALLSIGN_HASH_10_BITS) ? 0x3FFu : (hash_type == FTX_CALLSIGN_HASH_12_BITS ? 0xFFFu : 0x3FFFFFu);
int idx_hash = (hash * 23) % CALLSIGN_HASHTABLE_SIZE;