/* This software is part of libcsdr, a set of simple DSP routines for Software Defined Radio. Copyright (c) 2014, Andras Retzler All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANDRAS RETZLER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "fastddc.h" //DDC implementation based on: //http://www.3db-labs.com/01598092_MultibandFilterbank.pdf inline int is_integer(float a) { return floorf(a) == a; } int fastddc_init(fastddc_t* ddc, float transition_bw, int decimation, float shift_rate) { ddc->pre_decimation = 1; //this will be done in the frequency domain ddc->post_decimation = decimation; //this will be done in the time domain while( is_integer((float)ddc->post_decimation/2) && ddc->post_decimation/2 != 1) { ddc->post_decimation/=2; ddc->pre_decimation*=2; } ddc->taps_min_length = firdes_filter_len(transition_bw); //his is the minimal number of taps to achieve the given transition_bw; we are likely to have more taps than this number. ddc->taps_length = next_pow2(ceil(ddc->taps_min_length/(float)ddc->pre_decimation) * ddc->pre_decimation) + 1; //the number of taps must be a multiple of the decimation factor ddc->fft_size = next_pow2(ddc->taps_length * 4); //it is a good rule of thumb for performance (based on the article), but we should do benchmarks while (ddc->fft_sizepre_decimation) ddc->fft_size*=2; //fft_size should be a multiple of pre_decimation. ddc->overlap_length = ddc->taps_length - 1; ddc->input_size = ddc->fft_size - ddc->overlap_length; ddc->fft_inv_size = ddc->fft_size / ddc->pre_decimation; //Shift operation in the frequency domain: we can shift by a multiple of v. ddc->v = ddc->fft_size/ddc->overlap_length; //overlap factor | +-1 ? (or maybe ceil() this?) int middlebin=ddc->fft_size / 2; ddc->startbin = middlebin + middlebin * (-shift_rate) * 2; //fprintf(stderr, "ddc->startbin=%g\n",(float)ddc->startbin); ddc->startbin = ddc->v * round( ddc->startbin / (float)ddc->v ); //fprintf(stderr, "ddc->startbin=%g\n",(float)ddc->startbin); ddc->offsetbin = ddc->startbin - middlebin; ddc->post_shift = (ddc->pre_decimation)*(shift_rate+((float)ddc->offsetbin/ddc->fft_size)); ddc->pre_shift = ddc->offsetbin/(float)ddc->fft_size; ddc->dsadata = decimating_shift_addition_init(ddc->post_shift, ddc->post_decimation); //Overlap is scrapped, not added ddc->scrap=ddc->overlap_length/ddc->pre_decimation; //TODO this is problematic sometimes! overlap_length = 401 :: scrap = 200 ddc->post_input_size=ddc->fft_inv_size-ddc->scrap; return ddc->fft_size<=2; //returns true on error } void fastddc_print(fastddc_t* ddc, char* source) { fprintf(stderr, "%s: fastddc_print_sizes(): (fft_size = %d) = (taps_length = %d) + (input_size = %d) - 1\n" " overlap :: (overlap_length = %d) = taps_length - 1, taps_min_length = %d\n" " decimation :: decimation = (pre_decimation = %d) * (post_decimation = %d), fft_inv_size = %d\n" " shift :: startbin = %d, offsetbin = %d, v = %d, pre_shift = %g, post_shift = %g\n" " o&s :: post_input_size = %d, scrap = %d\n" , source, ddc->fft_size, ddc->taps_length, ddc->input_size, ddc->overlap_length, ddc->taps_min_length, ddc->pre_decimation, ddc->post_decimation, ddc->fft_inv_size, ddc->startbin, ddc->offsetbin, ddc->v, ddc->pre_shift, ddc->post_shift, ddc->post_input_size, ddc->scrap ); } void fft_swap_sides(complexf* io, int fft_size) { int middle=fft_size/2; complexf temp; for(int i=0;ifft_size number of elements complexf* inv_input = plan_inverse->input; complexf* inv_output = plan_inverse->output; //Initialize buffers for inverse FFT to zero for(int i=0;isize;i++) { iof(inv_input,i)=0; qof(inv_input,i)=0; } //Alias & shift & filter at once fft_swap_sides(input, ddc->fft_size); //TODO this is not very optimal, but now we stick with this slow solution until we got the algorithm working //fprintf(stderr, " === fastddc_inv_cc() ===\n"); //The problem is, we have to say that the output_index should be the _center_ of the spectrum when i is at startbin! (startbin is at the _center_ of the input to downconvert, not at its first bin!) for(int i=0;ifft_size;i++) { int output_index = (ddc->fft_size+i-ddc->offsetbin+(ddc->fft_inv_size/2))%plan_inverse->size; int tap_index = i; //fprintf(stderr, "output_index = %d , tap_index = %d, input index = %d\n", output_index, tap_index, i); //cmultadd(inv_input+output_index, input+i, taps_fft+tap_index); //cmultadd(output, input1, input2): complex output += complex input1 * complex input 2 // (a+b*i)*(c+d*i) = (ac-bd)+(ad+bc)*i // a = iof(input,i) // b = qof(input,i) // c = iof(taps_fft,i) // d = qof(taps_fft,i) iof(inv_input,output_index) += iof(input,i) * iof(taps_fft,i) - qof(input,i) * qof(taps_fft,i); qof(inv_input,output_index) += iof(input,i) * qof(taps_fft,i) + qof(input,i) * iof(taps_fft,i); //iof(inv_input,output_index) += iof(input,i); //no filter //qof(inv_input,output_index) += qof(input,i); } //Normalize inv fft bins (now our output level is not higher than the input... but we may optimize this into the later loop when we normalize by size) for(int i=0;isize;i++) { iof(inv_input,i)/=ddc->pre_decimation; qof(inv_input,i)/=ddc->pre_decimation; } fft_swap_sides(inv_input,plan_inverse->size); fft_execute(plan_inverse); //Normalize data for(int i=0;isize;i++) //@fastddc_inv_cc: normalize by size { iof(inv_output,i)/=plan_inverse->size; qof(inv_output,i)/=plan_inverse->size; } //Overlap is scrapped, not added //Shift correction shift_stat=decimating_shift_addition_cc(inv_output+ddc->scrap, output, ddc->post_input_size, ddc->dsadata, ddc->post_decimation, shift_stat); //shift_stat.output_size = ddc->post_input_size; //bypass shift correction //memcpy(output, inv_output+ddc->scrap, sizeof(complexf)*ddc->post_input_size); return shift_stat; }