gr-lora/lib/decoder_impl.cc

918 wiersze
38 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2017 Pieter Robyns, William Thenaers.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
* 2018: patches by wilfried.philips@wphilipe.eu for low data rate and implicit header decoding
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <gnuradio/io_signature.h>
#include <gnuradio/expj.h>
#include <liquid/liquid.h>
#include <numeric>
#include <algorithm>
#include <lora/loratap.h>
#include <lora/utilities.h>
#include "decoder_impl.h"
#include "tables.h"
#include "dbugr.hpp"
namespace gr {
namespace lora {
decoder::sptr decoder::make(float samp_rate, uint32_t bandwidth, uint8_t sf, bool implicit, uint8_t cr, bool crc, bool reduced_rate, bool disable_drift_correction) {
return gnuradio::get_initial_sptr
(new decoder_impl(samp_rate, bandwidth, sf, implicit, cr, crc, reduced_rate, disable_drift_correction));
}
/**
* The private constructor
*/
decoder_impl::decoder_impl(float samp_rate, uint32_t bandwidth, uint8_t sf, bool implicit, uint8_t cr, bool crc, bool reduced_rate, bool disable_drift_correction)
: gr::sync_block("decoder",
gr::io_signature::make(1, -1, sizeof(gr_complex)),
gr::io_signature::make(0, 0, 0)),
d_pwr_queue(MAX_PWR_QUEUE_SIZE) {
// Radio config
d_state = gr::lora::DecoderState::DETECT;
if (sf < 6 || sf > 13) {
std::cerr << "[LoRa Decoder] ERROR : Spreading factor should be between 6 and 12 (inclusive)!" << std::endl
<< " Other values are currently not supported." << std::endl;
exit(1);
}
#ifdef GRLORA_DEBUG
d_debug_samples.open("/tmp/grlora_debug", std::ios::out | std::ios::binary);
d_debug.open("/tmp/grlora_debug_txt", std::ios::out);
d_dbg.attach();
#endif
d_bw = bandwidth;
d_implicit = implicit;
d_reduced_rate = reduced_rate;
d_phdr.cr = cr;
d_phdr.has_mac_crc = crc;
d_samples_per_second = samp_rate;
d_payload_symbols = 0;
d_cfo_estimation = 0.0f;
d_dt = 1.0f / d_samples_per_second;
d_sf = sf;
d_bits_per_second = (double)d_sf * (double)(4.0 / (4.0 + d_phdr.cr)) / (1u << d_sf) * d_bw;
d_symbols_per_second = (double)d_bw / (1u << d_sf);
d_period = 1.0f / (double)d_symbols_per_second;
d_bits_per_symbol = (double)(d_bits_per_second / d_symbols_per_second);
d_samples_per_symbol = (uint32_t)(d_samples_per_second / d_symbols_per_second);
d_delay_after_sync = d_samples_per_symbol / 4u;
d_number_of_bins = (uint32_t)(1u << d_sf);
d_number_of_bins_hdr = (uint32_t)(1u << (d_sf-2));
d_decim_factor = d_samples_per_symbol / d_number_of_bins;
d_energy_threshold = 0.0f;
d_fine_sync = 0;
d_enable_fine_sync = !disable_drift_correction;
set_output_multiple(2 * d_samples_per_symbol);
std::cout << "Bits (nominal) per symbol: \t" << d_bits_per_symbol << std::endl;
std::cout << "Bins per symbol: \t" << d_number_of_bins << std::endl;
std::cout << "Samples per symbol: \t" << d_samples_per_symbol << std::endl;
std::cout << "Decimation: \t\t" << d_decim_factor << std::endl;
if(!d_enable_fine_sync) {
std::cout << "Warning: clock drift correction disabled" << std::endl;
}
if(d_implicit) {
std::cout << "CR: \t\t" << (int)d_phdr.cr << std::endl;
std::cout << "CRC: \t\t" << (int)d_phdr.has_mac_crc << std::endl;
}
// Locally generated chirps
build_ideal_chirps();
// FFT decoding preparations
d_fft.resize(d_samples_per_symbol);
d_mult_hf.resize(d_samples_per_symbol);
d_tmp.resize(d_number_of_bins);
d_q = fft_create_plan(d_samples_per_symbol, &d_mult_hf[0], &d_fft[0], LIQUID_FFT_FORWARD, 0);
d_qr = fft_create_plan(d_number_of_bins, &d_tmp[0], &d_mult_hf[0], LIQUID_FFT_BACKWARD, 0);
// Hamming coding
fec_scheme fs = LIQUID_FEC_HAMMING84;
d_h48_fec = fec_create(fs, NULL);
// Register gnuradio ports
message_port_register_out(pmt::mp("frames"));
message_port_register_out(pmt::mp("control"));
}
/**
* Our virtual destructor.
*/
decoder_impl::~decoder_impl() {
#ifdef GRLORA_DEBUG
if (d_debug_samples.is_open())
d_debug_samples.close();
if (d_debug.is_open())
d_debug.close();
#endif
fft_destroy_plan(d_q);
fft_destroy_plan(d_qr);
fec_destroy(d_h48_fec);
}
void decoder_impl::build_ideal_chirps(void) {
d_downchirp.resize(d_samples_per_symbol);
d_upchirp.resize(d_samples_per_symbol);
d_downchirp_ifreq.resize(d_samples_per_symbol);
d_upchirp_ifreq.resize(d_samples_per_symbol);
d_upchirp_ifreq_v.resize(d_samples_per_symbol*3);
gr_complex tmp[d_samples_per_symbol*3];
const double T = -0.5 * d_bw * d_symbols_per_second;
const double f0 = (d_bw / 2.0);
const double pre_dir = 2.0 * M_PI;
double t;
gr_complex cmx = gr_complex(1.0f, 1.0f);
for (uint32_t i = 0u; i < d_samples_per_symbol; i++) {
// Width in number of samples = samples_per_symbol
// See https://en.wikipedia.org/wiki/Chirp#Linear
t = d_dt * i;
d_downchirp[i] = cmx * gr_expj(pre_dir * t * (f0 + T * t));
d_upchirp[i] = cmx * gr_expj(pre_dir * t * (f0 + T * t) * -1.0f);
}
// Store instantaneous frequency
instantaneous_frequency(&d_downchirp[0], &d_downchirp_ifreq[0], d_samples_per_symbol);
instantaneous_frequency(&d_upchirp[0], &d_upchirp_ifreq[0], d_samples_per_symbol);
samples_to_file("/tmp/downchirp", &d_downchirp[0], d_downchirp.size(), sizeof(gr_complex));
samples_to_file("/tmp/upchirp", &d_upchirp[0], d_upchirp.size(), sizeof(gr_complex));
// Upchirp sequence
memcpy(tmp, &d_upchirp[0], sizeof(gr_complex) * d_samples_per_symbol);
memcpy(tmp+d_samples_per_symbol, &d_upchirp[0], sizeof(gr_complex) * d_samples_per_symbol);
memcpy(tmp+d_samples_per_symbol*2, &d_upchirp[0], sizeof(gr_complex) * d_samples_per_symbol);
instantaneous_frequency(tmp, &d_upchirp_ifreq_v[0], d_samples_per_symbol*3);
}
void decoder_impl::values_to_file(const std::string path, const unsigned char *v, const uint32_t length, const uint32_t ppm) {
std::ofstream out_file;
out_file.open(path.c_str(), std::ios::out | std::ios::app);
for (uint32_t i = 0u; i < length; i++) {
std::string tmp = gr::lora::to_bin(v[i], ppm);
out_file.write(tmp.c_str(), tmp.length());
out_file.write(" ", 1);
}
out_file.write("\n", 1);
out_file.close();
}
void decoder_impl::samples_to_file(const std::string path, const gr_complex *v, const uint32_t length, const uint32_t elem_size) {
#ifdef GRLORA_DEBUG
std::ofstream out_file;
out_file.open(path.c_str(), std::ios::out | std::ios::binary);
//for(std::vector<gr_complex>::const_iterator it = v.begin(); it != v.end(); ++it) {
for (uint32_t i = 0u; i < length; i++) {
out_file.write(reinterpret_cast<const char *>(&v[i]), elem_size);
}
out_file.close();
#else
(void) path;
(void) v;
(void) length;
(void) elem_size;
#endif
}
void decoder_impl::samples_debug(const gr_complex *v, const uint32_t length) {
#ifdef GRLORA_DEBUG
gr_complex start_indicator(0.0f, 32.0f);
d_debug_samples.write(reinterpret_cast<const char *>(&start_indicator), sizeof(gr_complex));
for (uint32_t i = 1u; i < length; i++) {
d_debug_samples.write(reinterpret_cast<const char *>(&v[i]), sizeof(gr_complex));
}
#else
(void) v;
(void) length;
#endif
}
inline void decoder_impl::instantaneous_frequency(const gr_complex *in_samples, float *out_ifreq, const uint32_t window) {
if (window < 2u) {
std::cerr << "[LoRa Decoder] WARNING : window size < 2 !" << std::endl;
return;
}
/* instantaneous_phase */
for (uint32_t i = 1u; i < window; i++) {
const float iphase_1 = std::arg(in_samples[i - 1]);
float iphase_2 = std::arg(in_samples[i]);
// Unwrapped loops from liquid_unwrap_phase
while ( (iphase_2 - iphase_1) > M_PI ) iphase_2 -= 2.0f*M_PI;
while ( (iphase_2 - iphase_1) < -M_PI ) iphase_2 += 2.0f*M_PI;
out_ifreq[i - 1] = iphase_2 - iphase_1;
}
// Make sure there is no strong gradient if this value is accessed by mistake
out_ifreq[window - 1] = out_ifreq[window - 2];
}
inline void decoder_impl::instantaneous_phase(const gr_complex *in_samples, float *out_iphase, const uint32_t window) {
out_iphase[0] = std::arg(in_samples[0]);
for (uint32_t i = 1u; i < window; i++) {
out_iphase[i] = std::arg(in_samples[i]);
// = the same as atan2(imag(in_samples[i]),real(in_samples[i]));
// Unwrapped loops from liquid_unwrap_phase
while ( (out_iphase[i] - out_iphase[i-1]) > M_PI ) out_iphase[i] -= 2.0f*M_PI;
while ( (out_iphase[i] - out_iphase[i-1]) < -M_PI ) out_iphase[i] += 2.0f*M_PI;
}
}
float decoder_impl::cross_correlate_ifreq_fast(const float *samples_ifreq, const float *ideal_chirp, const uint32_t window) {
float result = 0;
volk_32f_x2_dot_prod_32f(&result, samples_ifreq, ideal_chirp, window);
return result;
}
float decoder_impl::cross_correlate_fast(const gr_complex *samples, const gr_complex *ideal_chirp, const uint32_t window) {
gr_complex result = 0;
volk_32fc_x2_conjugate_dot_prod_32fc(&result, samples, ideal_chirp, window);
return abs(result);
}
float decoder_impl::cross_correlate(const gr_complex *samples_1, const gr_complex *samples_2, const uint32_t window) {
float result = 0.0f;
for (uint32_t i = 0u; i < window; i++) {
result += std::real(samples_1[i] * std::conj(samples_2[i]));
}
result /= (float)window;
return result;
}
float decoder_impl::cross_correlate_ifreq(const float *samples_ifreq, const std::vector<float>& ideal_chirp, const uint32_t to_idx) {
float result = 0.0f;
const float average = std::accumulate(samples_ifreq , samples_ifreq + to_idx, 0.0f) / (float)(to_idx);
const float chirp_avg = std::accumulate(&ideal_chirp[0], &ideal_chirp[to_idx] , 0.0f) / (float)(to_idx);
const float sd = stddev(samples_ifreq , to_idx, average)
* stddev(&ideal_chirp[0] , to_idx, chirp_avg);
for (uint32_t i = 0u; i < to_idx; i++) {
result += (samples_ifreq[i] - average) * (ideal_chirp[i] - chirp_avg) / sd;
}
result /= (float)(to_idx);
return result;
}
void decoder_impl::fine_sync(const gr_complex* in_samples, int32_t bin_idx, int32_t search_space) {
int32_t shift_ref = (bin_idx+1) * d_decim_factor;
float samples_ifreq[d_samples_per_symbol];
float max_correlation = 0.0f;
int32_t lag = 0;
instantaneous_frequency(in_samples, samples_ifreq, d_samples_per_symbol);
for(int32_t i = -search_space+1; i < search_space; i++) {
//float c = cross_correlate_fast(in_samples, &d_upchirp_v[shift_ref+i+d_samples_per_symbol], d_samples_per_symbol);
float c = cross_correlate_ifreq_fast(samples_ifreq, &d_upchirp_ifreq_v[shift_ref+i+d_samples_per_symbol], d_samples_per_symbol);
if(c > max_correlation) {
max_correlation = c;
lag = i;
}
}
#ifdef GRLORA_DEBUG
d_debug << "LAG : " << lag << std::endl;
#endif
d_fine_sync = -lag;
// Soft limit impact of correction
/*
if(lag > 0)
d_fine_sync = std::min(-lag / 2, -1);
else if(lag < 0)
d_fine_sync = std::max(-lag / 2, 1);*/
// Hard limit impact of correction
/*if(abs(d_fine_sync) >= d_decim_factor / 2)
d_fine_sync = 0;*/
//d_fine_sync = 0;
#ifdef GRLORA_DEBUG
d_debug << "FINE: " << d_fine_sync << std::endl;
#endif
}
float decoder_impl::detect_preamble_autocorr(const gr_complex *samples, const uint32_t window) {
const gr_complex* chirp1 = samples;
const gr_complex* chirp2 = samples + d_samples_per_symbol;
float magsq_chirp1[window];
float magsq_chirp2[window];
float energy_chirp1 = 0;
float energy_chirp2 = 0;
float autocorr = 0;
gr_complex dot_product;
volk_32fc_x2_conjugate_dot_prod_32fc(&dot_product, chirp1, chirp2, window);
volk_32fc_magnitude_squared_32f(magsq_chirp1, chirp1, window);
volk_32fc_magnitude_squared_32f(magsq_chirp2, chirp2, window);
volk_32f_accumulator_s32f(&energy_chirp1, magsq_chirp1, window);
volk_32f_accumulator_s32f(&energy_chirp2, magsq_chirp2, window);
// When using implicit mode, stop when energy is halved.
d_energy_threshold = energy_chirp2 / 2.0f;
// For calculating the SNR later on
d_pwr_queue.push_back(energy_chirp1 / d_samples_per_symbol);
// Autocorr value
autocorr = abs(dot_product / gr_complex(sqrt(energy_chirp1 * energy_chirp2), 0));
return autocorr;
}
float decoder_impl::determine_energy(const gr_complex *samples) {
float magsq_chirp[d_samples_per_symbol];
float energy_chirp = 0;
volk_32fc_magnitude_squared_32f(magsq_chirp, samples, d_samples_per_symbol);
volk_32f_accumulator_s32f(&energy_chirp, magsq_chirp, d_samples_per_symbol);
return energy_chirp;
}
void decoder_impl::determine_snr() {
if(d_pwr_queue.size() >= 2) {
float pwr_noise = d_pwr_queue[0];
float pwr_signal = d_pwr_queue[d_pwr_queue.size()-1];
d_snr = pwr_signal / pwr_noise;
}
}
float decoder_impl::detect_downchirp(const gr_complex *samples, const uint32_t window) {
float samples_ifreq[window];
instantaneous_frequency(samples, samples_ifreq, window);
return cross_correlate_ifreq(samples_ifreq, d_downchirp_ifreq, window - 1u);
}
float decoder_impl::detect_upchirp(const gr_complex *samples, const uint32_t window, int32_t *index) {
float samples_ifreq[window*2];
instantaneous_frequency(samples, samples_ifreq, window*2);
return sliding_norm_cross_correlate_upchirp(samples_ifreq, window, index);
}
float decoder_impl::sliding_norm_cross_correlate_upchirp(const float *samples_ifreq, const uint32_t window, int32_t *index) {
float max_correlation = 0;
// Cross correlate
for (uint32_t i = 0; i < window; i++) {
const float max_corr = cross_correlate_ifreq_fast(samples_ifreq + i, &d_upchirp_ifreq[0], window - 1u);
if (max_corr > max_correlation) {
*index = i;
max_correlation = max_corr;
}
}
return max_correlation;
}
float decoder_impl::stddev(const float *values, const uint32_t len, const float mean) {
float variance = 0.0f;
for (uint32_t i = 0u; i < len; i++) {
const float temp = values[i] - mean;
variance += temp * temp;
}
variance /= (float)len;
return std::sqrt(variance);
}
/**
* Currently unstable due to center frequency offset.
*/
uint32_t decoder_impl::get_shift_fft(const gr_complex *samples) {
float fft_mag[d_number_of_bins];
samples_to_file("/tmp/data", &samples[0], d_samples_per_symbol, sizeof(gr_complex));
// Multiply with ideal downchirp
for (uint32_t i = 0u; i < d_samples_per_symbol; i++) {
d_mult_hf[i] = samples[i] * d_downchirp[i];
}
samples_to_file("/tmp/mult", &d_mult_hf[0], d_samples_per_symbol, sizeof(gr_complex));
// Perform FFT
fft_execute(d_q);
// Decimate. Note: assumes fft size is multiple of decimation factor and number of bins is even
// This decimation should be identical to numpy's approach
const uint32_t N = d_number_of_bins;
memcpy(&d_tmp[0], &d_fft[0], (N + 1u) / 2u * sizeof(gr_complex));
memcpy(&d_tmp[ (N + 1u) / 2u ], &d_fft[d_samples_per_symbol - (N / 2u)], N / 2u * sizeof(gr_complex));
d_tmp[N / 2u] += d_fft[N / 2u];
// Get magnitude
for (uint32_t i = 0u; i < d_number_of_bins; i++) {
fft_mag[i] = std::abs(d_tmp[i]);
}
samples_to_file("/tmp/fft", &d_tmp[0], d_number_of_bins, sizeof(gr_complex));
fft_execute(d_qr); // For debugging
samples_to_file("/tmp/resampled", &d_mult_hf[0], d_number_of_bins, sizeof(gr_complex));
// Return argmax here
return (std::max_element(fft_mag, fft_mag + d_number_of_bins) - fft_mag);
}
uint32_t decoder_impl::max_frequency_gradient_idx(const gr_complex *samples) {
float samples_ifreq[d_samples_per_symbol];
float samples_ifreq_avg[d_number_of_bins];
samples_to_file("/tmp/data", &samples[0], d_samples_per_symbol, sizeof(gr_complex));
instantaneous_frequency(samples, samples_ifreq, d_samples_per_symbol);
for(uint32_t i = 0; i < d_number_of_bins; i++) {
volk_32f_accumulator_s32f(&samples_ifreq_avg[i], &samples_ifreq[i*d_decim_factor], d_decim_factor);
samples_ifreq_avg[i] /= d_decim_factor;
}
float max_gradient = 0.1f;
float gradient = 0.0f;
uint32_t max_index = 0;
for (uint32_t i = 1u; i < d_number_of_bins; i++) {
gradient = samples_ifreq_avg[i - 1] - samples_ifreq_avg[i];
if (gradient > max_gradient) {
max_gradient = gradient;
max_index = i+1;
}
}
return (d_number_of_bins - max_index) % d_number_of_bins;
}
bool decoder_impl::demodulate(const gr_complex *samples, const bool is_first) {
// DBGR_TIME_MEASUREMENT_TO_FILE("SFxx_method");
bool reduced_rate = is_first || d_reduced_rate;
// DBGR_START_TIME_MEASUREMENT(false, "only");
uint32_t bin_idx = max_frequency_gradient_idx(samples);
//uint32_t bin_idx = get_shift_fft(samples);
if(d_enable_fine_sync)
fine_sync(samples, bin_idx, std::max(d_decim_factor / 4u, 2u));
// DBGR_INTERMEDIATE_TIME_MEASUREMENT();
// Header has additional redundancy
if (reduced_rate) {
bin_idx = std::lround(bin_idx / 4.0f) % d_number_of_bins_hdr;
}
// Decode (actually gray encode) the bin to get the symbol value
const uint32_t word = bin_idx ^ (bin_idx >> 1u);
#ifdef GRLORA_DEBUG
d_debug << gr::lora::to_bin(word, reduced_rate ? d_sf - 2u : d_sf) << " " << word << " (bin " << bin_idx << ")" << std::endl;
#endif
d_words.push_back(word);
// Look for 4+cr symbols and stop
if (d_words.size() == (4u + (is_first ? 4u : d_phdr.cr))) {
// Deinterleave
deinterleave(reduced_rate ? d_sf - 2u : d_sf);
return true; // Signal that a block is ready for decoding
}
return false; // We need more words in order to decode a block
}
/**
* Correct the interleaving by extracting each column of bits after rotating to the left.
* <br/>(The words were interleaved diagonally, by rotating we make them straight into columns.)
*/
void decoder_impl::deinterleave(const uint32_t ppm) {
const uint32_t bits_per_word = d_words.size();
const uint32_t offset_start = ppm - 1u;
std::vector<uint8_t> words_deinterleaved(ppm, 0u);
if (bits_per_word > 8u) {
// Not sure if this can ever occur. It would imply coding rate high than 4/8 e.g. 4/9.
std::cerr << "[LoRa Decoder] WARNING : Deinterleaver: More than 8 bits per word. uint8_t will not be sufficient!\nBytes need to be stored in intermediate array and then packed into words_deinterleaved!" << std::endl;
exit(1);
}
for (uint32_t i = 0u; i < bits_per_word; i++) {
const uint32_t word = gr::lora::rotl(d_words[i], i, ppm);
for (uint32_t j = (1u << offset_start), x = offset_start; j; j >>= 1u, x--) {
words_deinterleaved[x] |= !!(word & j) << i;
}
}
#ifdef GRLORA_DEBUG
print_interleave_matrix(d_debug, d_words, ppm);
print_vector_bin(d_debug, words_deinterleaved, "D", sizeof(uint8_t) * 8u);
#endif
// Add to demodulated data
d_demodulated.insert(d_demodulated.end(), words_deinterleaved.begin(), words_deinterleaved.end());
// Cleanup
d_words.clear();
}
void decoder_impl::decode(const bool is_header) {
static const uint8_t shuffle_pattern[] = {5, 0, 1, 2, 4, 3, 6, 7};
// For determining shuffle pattern
//if (!is_header)
// values_to_file("/tmp/before_deshuffle", &d_demodulated[0], d_demodulated.size(), 8);
deshuffle(shuffle_pattern, is_header);
// For determining whitening sequence
//if (!is_header)
// values_to_file("/tmp/after_deshuffle", &d_words_deshuffled[0], d_words_deshuffled.size(), 8);
dewhiten(is_header ? gr::lora::prng_header :
(d_phdr.cr <=2) ? gr::lora::prng_payload_cr56 : gr::lora::prng_payload_cr78);
//if (!is_header)
// values_to_file("/tmp/after_dewhiten", &d_words_dewhitened[0], d_words_dewhitened.size(), 8);
hamming_decode(is_header);
}
void decoder_impl::msg_lora_frame(void) {
uint32_t len = sizeof(loratap_header_t) + sizeof(loraphy_header_t) + d_payload_length;
uint32_t offset = 0;
uint8_t buffer[len];
loratap_header_t loratap_header;
memset(buffer, 0, sizeof(uint8_t) * len);
memset(&loratap_header, 0, sizeof(loratap_header));
loratap_header.rssi.snr = (uint8_t)(10.0f * log10(d_snr) + 0.5);
offset = gr::lora::build_packet(buffer, offset, &loratap_header, sizeof(loratap_header_t));
offset = gr::lora::build_packet(buffer, offset, &d_phdr, sizeof(loraphy_header_t));
offset = gr::lora::build_packet(buffer, offset, &d_decoded[0], d_payload_length);
if(offset != len) {
std::cerr << "decoder_impl::msg_lora_frame: invalid write" << std::endl;
exit(1);
}
pmt::pmt_t payload_blob = pmt::make_blob(buffer, sizeof(uint8_t)*len);
message_port_pub(pmt::mp("frames"), payload_blob);
}
void decoder_impl::deshuffle(const uint8_t *shuffle_pattern, const bool is_header) {
const uint32_t to_decode = is_header ? 5u : d_demodulated.size();
const uint32_t len = sizeof(shuffle_pattern) / sizeof(uint8_t);
uint8_t result;
for (uint32_t i = 0u; i < to_decode; i++) {
result = 0u;
for (uint32_t j = 0u; j < len; j++) {
result |= !!(d_demodulated[i] & (1u << shuffle_pattern[j])) << j;
}
d_words_deshuffled.push_back(result);
}
#ifdef GRLORA_DEBUG
print_vector_bin(d_debug, d_words_deshuffled, "S", sizeof(uint8_t)*8);
#endif
// We're done with these words
if (is_header){
d_demodulated.erase(d_demodulated.begin(), d_demodulated.begin() + 5u);
d_words_deshuffled.push_back(0);
} else {
d_demodulated.clear();
}
}
void decoder_impl::dewhiten(const uint8_t *prng) {
const uint32_t len = d_words_deshuffled.size();
for (uint32_t i = 0u; i < len; i++) {
uint8_t xor_b = d_words_deshuffled[i] ^ prng[i];
d_words_dewhitened.push_back(xor_b);
}
#ifdef GRLORA_DEBUG
print_vector_bin(d_debug, d_words_dewhitened, "W", sizeof(uint8_t) * 8);
#endif
d_words_deshuffled.clear();
}
void decoder_impl::hamming_decode(bool is_header) {
switch(d_phdr.cr) {
case 4: case 3: { // Hamming(8,4) or Hamming(7,4)
//hamming_decode_soft(is_header);
uint32_t n = ceil(d_words_dewhitened.size() * 4.0f / (4.0f + d_phdr.cr));
uint8_t decoded[n];
fec_decode(d_h48_fec, n, &d_words_dewhitened[0], decoded);
if(!is_header)
swap_nibbles(decoded, n);
d_decoded.assign(decoded, decoded+n);
break;
}
case 2: case 1: { // Hamming(6,4) or Hamming(5,4)
// TODO: Report parity error to the user
extract_data_only(is_header);
break;
}
}
d_words_dewhitened.clear();
}
/**
* Deprecated
*/
void decoder_impl::hamming_decode_soft(bool is_header) {
uint32_t len = d_words_dewhitened.size();
for (uint32_t i = 0u; i < len; i += 2u) {
const uint8_t d2 = (i + 1u < len) ? hamming_decode_soft_byte(d_words_dewhitened[i + 1u]) : 0u;
const uint8_t d1 = hamming_decode_soft_byte(d_words_dewhitened[i]);
if(is_header)
d_decoded.push_back((d1 << 4u) | d2);
else
d_decoded.push_back((d2 << 4u) | d1);
}
}
void decoder_impl::extract_data_only(bool is_header) {
static const uint8_t data_indices[4] = {1, 2, 3, 5};
uint32_t len = d_words_dewhitened.size();
for (uint32_t i = 0u; i < len; i += 2u) {
const uint8_t d2 = (i + 1u < len) ? select_bits(d_words_dewhitened[i + 1u], data_indices, 4u) & 0xFF : 0u;
const uint8_t d1 = (select_bits(d_words_dewhitened[i], data_indices, 4u) & 0xFF);
if(is_header)
d_decoded.push_back((d1 << 4u) | d2);
else
d_decoded.push_back((d2 << 4u) | d1);
}
}
/**
* Old method to determine CFO. Currently unused.
*/
void decoder_impl::determine_cfo(const gr_complex *samples) {
float iphase[d_samples_per_symbol];
const float div = (float) d_samples_per_second / (2.0f * M_PI);
// Determine instant phase
instantaneous_phase(samples, iphase, d_samples_per_symbol);
float sum = 0.0f;
for (uint32_t i = 1u; i < d_samples_per_symbol; i++) {
sum += (float)((iphase[i] - iphase[i - 1u]) * div);
}
d_cfo_estimation = sum / (float)(d_samples_per_symbol - 1u);
}
/**
* New method to determine CFO.
*/
float decoder_impl::experimental_determine_cfo(const gr_complex *samples, uint32_t window) {
gr_complex mult[window];
float mult_ifreq[window];
volk_32fc_x2_multiply_32fc(mult, samples, &d_downchirp[0], window);
instantaneous_frequency(mult, mult_ifreq, window);
return mult_ifreq[256] / (2.0 * M_PI) * d_samples_per_second;
}
int decoder_impl::work(int noutput_items,
gr_vector_const_void_star& input_items,
gr_vector_void_star& output_items) {
(void) noutput_items;
(void) output_items;
const gr_complex *input = (gr_complex *) input_items[0];
//const gr_complex *raw_input = (gr_complex *) input_items[1]; // Input bypassed by low pass filter
d_fine_sync = 0; // Always reset fine sync
switch (d_state) {
case gr::lora::DecoderState::DETECT: {
float correlation = detect_preamble_autocorr(input, d_samples_per_symbol);
if (correlation >= 0.90f) {
determine_snr();
#ifdef GRLORA_DEBUG
d_debug << "Ca: " << correlation << std::endl;
#endif
d_corr_fails = 0u;
d_state = gr::lora::DecoderState::SYNC;
break;
}
consume_each(d_samples_per_symbol);
break;
}
case gr::lora::DecoderState::SYNC: {
int i = 0;
detect_upchirp(input, d_samples_per_symbol, &i);
//float cfo = experimental_determine_cfo(&input[i], d_samples_per_symbol);
//pmt::pmt_t kv = pmt::cons(pmt::intern(std::string("cfo")), pmt::from_double(cfo));
//message_port_pub(pmt::mp("control"), kv);
samples_to_file("/tmp/detect", &input[i], d_samples_per_symbol, sizeof(gr_complex));
consume_each(i);
d_state = gr::lora::DecoderState::FIND_SFD;
break;
}
case gr::lora::DecoderState::FIND_SFD: {
const float c = detect_downchirp(input, d_samples_per_symbol);
#ifdef GRLORA_DEBUG
d_debug << "Cd: " << c << std::endl;
#endif
if (c > 0.96f) {
#ifdef GRLORA_DEBUG
d_debug << "SYNC: " << c << std::endl;
#endif
// Debug stuff
samples_to_file("/tmp/sync", input, d_samples_per_symbol, sizeof(gr_complex));
d_state = gr::lora::DecoderState::PAUSE;
} else {
if(c < -0.97f) {
// TODO: Check d_upchirp_ifreq_v: bin -1 gives different result compared to bin d_number_of_bins-1, which shouldn't be the case.
fine_sync(input, -1, d_decim_factor * 4);
} else {
d_corr_fails++;
}
if (d_corr_fails > 4u) {
d_state = gr::lora::DecoderState::DETECT;
#ifdef GRLORA_DEBUG
d_debug << "Lost sync" << std::endl;
#endif
}
}
consume_each((int32_t)d_samples_per_symbol+d_fine_sync);
break;
}
case gr::lora::DecoderState::PAUSE: {
d_state = gr::lora::DecoderState::DECODE_HEADER;
consume_each(d_samples_per_symbol + d_delay_after_sync);
break;
}
case gr::lora::DecoderState::DECODE_HEADER: {
if (demodulate(input, true)) {
if (d_implicit) {
d_payload_symbols = 1;
} else {
decode(true);
gr::lora::print_vector_hex(std::cout, &d_decoded[0], d_decoded.size(), false, false);
memcpy(&d_phdr, &d_decoded[0], sizeof(loraphy_header_t));
if (d_phdr.cr > 4)
d_phdr.cr = 4;
d_decoded.clear();
d_payload_length = d_phdr.length + MAC_CRC_SIZE * d_phdr.has_mac_crc;
//d_phy_crc = SM(decoded[1], 4, 0xf0) | MS(decoded[2], 0xf0, 4);
// Calculate number of payload symbols needed
uint8_t redundancy = (d_reduced_rate ? 2 : 0);
const int symbols_per_block = d_phdr.cr + 4u;
const float bits_needed = float(d_payload_length) * 8.0f;
const float symbols_needed = bits_needed * (symbols_per_block / 4.0f) / float(d_sf - redundancy);
const int blocks_needed = (int)std::ceil(symbols_needed / symbols_per_block);
d_payload_symbols = blocks_needed * symbols_per_block;
#ifdef GRLORA_DEBUG
d_debug << "LEN: " << d_payload_length << " (" << d_payload_symbols << " symbols)" << std::endl;
#endif
}
d_state = gr::lora::DecoderState::DECODE_PAYLOAD;
}
consume_each((int32_t)d_samples_per_symbol+d_fine_sync);
break;
}
case gr::lora::DecoderState::DECODE_PAYLOAD: {
if (d_implicit && determine_energy(input) < d_energy_threshold) {
d_payload_symbols = 0;
//d_demodulated.erase(d_demodulated.begin(), d_demodulated.begin() + 7u); // Test for SF 8 with header
d_payload_length = (int32_t)(d_demodulated.size() / 2);
} else if (demodulate(input, false)) {
if(!d_implicit)
d_payload_symbols -= (4u + d_phdr.cr);
}
if (d_payload_symbols <= 0) {
decode(false);
gr::lora::print_vector_hex(std::cout, &d_decoded[0], d_payload_length, true, true);
msg_lora_frame();
d_state = gr::lora::DecoderState::DETECT;
d_decoded.clear();
d_words.clear();
d_words_dewhitened.clear();
d_words_deshuffled.clear();
d_demodulated.clear();
}
consume_each((int32_t)d_samples_per_symbol+d_fine_sync);
break;
}
case gr::lora::DecoderState::STOP: {
consume_each(d_samples_per_symbol);
break;
}
default: {
std::cerr << "[LoRa Decoder] WARNING : No state! Shouldn't happen\n";
break;
}
}
// DBGR_INTERMEDIATE_TIME_MEASUREMENT();
// Tell runtime system how many output items we produced.
return 0;
}
void decoder_impl::set_sf(const uint8_t sf) {
(void) sf;
std::cerr << "[LoRa Decoder] WARNING : Setting the spreading factor during execution is currently not supported." << std::endl
<< "Nothing set, kept SF of " << d_sf << "." << std::endl;
}
void decoder_impl::set_samp_rate(const float samp_rate) {
(void) samp_rate;
std::cerr << "[LoRa Decoder] WARNING : Setting the sample rate during execution is currently not supported." << std::endl
<< "Nothing set, kept SR of " << d_samples_per_second << "." << std::endl;
}
} /* namespace lora */
} /* namespace gr */