gerbonara/gerbonara/graphic_primitives.py

404 wiersze
14 KiB
Python

import math
import itertools
from dataclasses import dataclass, KW_ONLY, replace
@dataclass
class GraphicPrimitive:
_ : KW_ONLY
polarity_dark : bool = True
def rotate_point(x, y, angle, cx=0, cy=0):
""" rotate point (x,y) around (cx,cy) clockwise angle radians """
return (cx + (x - cx) * math.cos(-angle) - (y - cy) * math.sin(-angle),
cy + (x - cx) * math.sin(-angle) + (y - cy) * math.cos(-angle))
def min_none(a, b):
if a is None:
return b
if b is None:
return a
return min(a, b)
def max_none(a, b):
if a is None:
return b
if b is None:
return a
return max(a, b)
def add_bounds(b1, b2):
(min_x_1, min_y_1), (max_x_1, max_y_1) = b1
(min_x_2, min_y_2), (max_x_2, max_y_2) = b2
min_x, min_y = min_none(min_x_1, min_x_2), min_none(min_y_1, min_y_2)
max_x, max_y = max_none(max_x_1, max_x_2), max_none(max_y_1, max_y_2)
return ((min_x, min_y), (max_x, max_y))
def rad_to_deg(x):
return x/math.pi * 180
@dataclass
class Circle(GraphicPrimitive):
x : float
y : float
r : float # Here, we use radius as common in modern computer graphics, not diameter as gerber uses.
def bounding_box(self):
return ((self.x-self.r, self.y-self.r), (self.x+self.r, self.y+self.r))
def to_svg(self, tag, fg, bg):
color = fg if self.polarity_dark else bg
return tag('circle', cx=self.x, cy=self.y, r=self.r, style=f'fill: {color}')
@dataclass
class Obround(GraphicPrimitive):
x : float
y : float
w : float
h : float
rotation : float # radians!
def to_line(self):
if self.w > self.h:
w, a, b = self.h, self.w-self.h, 0
else:
w, a, b = self.w, 0, self.h-self.w
return Line(
*rotate_point(self.x-a/2, self.y-b/2, self.rotation, self.x, self.y),
*rotate_point(self.x+a/2, self.y+b/2, self.rotation, self.x, self.y),
w, polarity_dark=self.polarity_dark)
def bounding_box(self):
return self.to_line().bounding_box()
def to_svg(self, tag, fg, bg):
return self.to_line().to_svg(tag, fg, bg)
def arc_bounds(x1, y1, x2, y2, cx, cy, clockwise):
# This is one of these problems typical for computer geometry where out of nowhere a seemingly simple task just
# happens to be anything but in practice.
#
# Online there are a number of algorithms to be found solving this problem. Often, they solve the more general
# problem for elliptic arcs. We can keep things simple here since we only have circular arcs.
#
# This solution manages to handle circular arcs given in gerber format (with explicit center and endpoints, plus
# sweep direction instead of a format with e.g. angles and radius) without any trigonometric functions (e.g. atan2).
#
# cx, cy are relative to p1.
# Center arc on cx, cy
cx += x1
cy += y1
x1 -= cx
x2 -= cx
y1 -= cy
y2 -= cy
clockwise = bool(clockwise) # bool'ify for XOR/XNOR below
# Calculate radius
r = math.sqrt(x1**2 + y1**2)
# Calculate in which half-planes (north/south, west/east) P1 and P2 lie.
# Note that we assume the y axis points upwards, as in Gerber and maths.
# SVG has its y axis pointing downwards.
p1_west = x1 < 0
p1_north = y1 > 0
p2_west = x2 < 0
p2_north = y2 > 0
# Calculate bounding box of P1 and P2
min_x = min(x1, x2)
min_y = min(y1, y2)
max_x = max(x1, x2)
max_y = max(y1, y2)
# North
# ^
# |
# |(0,0)
# West <-----X-----> East
# |
# +Y |
# ^ v
# | South
# |
# +-----> +X
#
# Check whether the arc sweeps over any coordinate axes. If it does, add the intersection point to the bounding box.
# Note that, since this intersection point is at radius r, it has coordinate e.g. (0, r) for the north intersection.
# Since we know that the points lie on either side of the coordinate axis, the '0' coordinate of the intersection
# point will not change the bounding box in that axis--only its 'r' coordinate matters. We also know that the
# absolute value of that coordinate will be greater than or equal to the old coordinate in that direction since the
# intersection with the axis is the point where the full circle is tangent to the AABB. Thus, we can blindly set the
# corresponding coordinate of the bounding box without min()/max()'ing first.
# Handle north/south halfplanes
if p1_west != p2_west: # arc starts in west half-plane, ends in east half-plane
if p1_west == clockwise: # arc is clockwise west -> east or counter-clockwise east -> west
max_y = r # add north to bounding box
else: # arc is counter-clockwise west -> east or clockwise east -> west
min_y = -r # south
else: # Arc starts and ends in same halfplane west/east
# Since both points are on the arc (at same radius) in one halfplane, we can use the y coord as a proxy for
# angle comparisons.
small_arc_is_north_to_south = y1 > y2
small_arc_is_clockwise = small_arc_is_north_to_south == p1_west
if small_arc_is_clockwise != clockwise:
min_y, max_y = -r, r # intersect aabb with both north and south
# Handle west/east halfplanes
if p1_north != p2_north:
if p1_north == clockwise:
max_x = r # east
else:
min_x = -r # west
else:
small_arc_is_west_to_east = x1 < x2
small_arc_is_clockwise = small_arc_is_west_to_east == p1_north
if small_arc_is_clockwise != clockwise:
min_x, max_x = -r, r # intersect aabb with both north and south
return (min_x+cx, min_y+cy), (max_x+cx, max_y+cy)
def point_line_distance(l1, l2, p):
# https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
x1, y1 = l1
x2, y2 = l2
x0, y0 = p
length = math.dist(l1, l2)
if math.isclose(length, 0):
return math.dist(l1, p)
return ((x2-x1)*(y1-y0) - (x1-x0)*(y2-y1)) / length
def svg_arc(old, new, center, clockwise):
r = math.hypot(*center)
# invert sweep flag since the svg y axis is mirrored
sweep_flag = int(not clockwise)
# In the degenerate case where old == new, we always take the long way around. To represent this "full-circle arc"
# in SVG, we have to split it into two.
if math.isclose(math.dist(old, new), 0):
intermediate = old[0] + 2*center[0], old[1] + 2*center[1]
# Note that we have to preserve the sweep flag to avoid causing self-intersections by flipping the direction of
# a circular cutin
return f'A {r:.6} {r:.6} 0 1 {sweep_flag} {intermediate[0]:.6} {intermediate[1]:.6} ' +\
f'A {r:.6} {r:.6} 0 1 {sweep_flag} {new[0]:.6} {new[1]:.6}'
else: # normal case
d = point_line_distance(old, new, (old[0]+center[0], old[1]+center[1]))
large_arc = int((d < 0) == clockwise)
return f'A {r:.6} {r:.6} 0 {large_arc} {sweep_flag} {new[0]:.6} {new[1]:.6}'
@dataclass
class ArcPoly(GraphicPrimitive):
""" Polygon whose sides may be either straight lines or circular arcs """
# list of (x : float, y : float) tuples. Describes closed outline, i.e. first and last point are considered
# connected.
outline : [(float,)]
# must be either None (all segments are straight lines) or same length as outline.
# Straight line segments have None entry.
arc_centers : [(float,)] = None
@property
def segments(self):
ol = self.outline
return itertools.zip_longest(ol, ol[1:] + [ol[0]], self.arc_centers or [])
def bounding_box(self):
bbox = (None, None), (None, None)
for (x1, y1), (x2, y2), arc in self.segments:
if arc:
clockwise, (cx, cy) = arc
bbox = add_bounds(bbox, arc_bounds(x1, y1, x2, y2, cx, cy, clockwise))
else:
line_bounds = (min(x1, x2), min(y1, y2)), (max(x1, x2), max(y1, y2))
bbox = add_bounds(bbox, line_bounds)
return bbox
def __len__(self):
return len(self.outline)
def __bool__(self):
return bool(len(self))
def _path_d(self):
if len(self.outline) == 0:
return
yield f'M {self.outline[0][0]:.6} {self.outline[0][1]:.6}'
for old, new, arc in self.segments:
if not arc:
yield f'L {new[0]:.6} {new[1]:.6}'
else:
clockwise, center = arc
yield svg_arc(old, new, center, clockwise)
def to_svg(self, tag, fg, bg):
color = fg if self.polarity_dark else bg
return tag('path', d=' '.join(self._path_d()), style=f'fill: {color}')
class Polyline:
def __init__(self, *lines):
self.coords = []
self.polarity_dark = None
self.width = None
for line in lines:
self.append(line)
def append(self, line):
assert isinstance(line, Line)
if not self.coords:
self.coords.append((line.x1, line.y1))
self.coords.append((line.x2, line.y2))
self.polarity_dark = line.polarity_dark
self.width = line.width
return True
else:
x, y = self.coords[-1]
if self.polarity_dark == line.polarity_dark and self.width == line.width \
and math.isclose(line.x1, x) and math.isclose(line.y1, y):
self.coords.append((line.x2, line.y2))
return True
else:
return False
def to_svg(self, tag, fg, bg):
color = fg if self.polarity_dark else bg
if not self.coords:
return None
(x0, y0), *rest = self.coords
d = f'M {x0:.6} {y0:.6} ' + ' '.join(f'L {x:.6} {y:.6}' for x, y in rest)
width = f'{self.width:.6}' if not math.isclose(self.width, 0) else '0.01mm'
return tag('path', d=d, style=f'fill: none; stroke: {color}; stroke-width: {width}; stroke-linejoin: round; stroke-linecap: round')
@dataclass
class Line(GraphicPrimitive):
x1 : float
y1 : float
x2 : float
y2 : float
width : float
def bounding_box(self):
r = self.width / 2
return add_bounds(Circle(self.x1, self.y1, r).bounding_box(), Circle(self.x2, self.y2, r).bounding_box())
def to_svg(self, tag, fg, bg):
color = fg if self.polarity_dark else bg
width = f'{self.width:.6}' if not math.isclose(self.width, 0) else '0.01mm'
return tag('path', d=f'M {self.x1:.6} {self.y1:.6} L {self.x2:.6} {self.y2:.6}',
style=f'fill: none; stroke: {color}; stroke-width: {width}; stroke-linecap: round')
@dataclass
class Arc(GraphicPrimitive):
x1 : float
y1 : float
x2 : float
y2 : float
# absolute coordinates
cx : float
cy : float
clockwise : bool
width : float
def bounding_box(self):
r = self.width/2
endpoints = add_bounds(Circle(self.x1, self.y1, r).bounding_box(), Circle(self.x2, self.y2, r).bounding_box())
arc_r = math.dist((self.cx, self.cy), (self.x1, self.y1))
# extend C -> P1 line by line width / 2 along radius
dx, dy = self.x1 - self.cx, self.y1 - self.cy
x1 = self.x1 + dx/arc_r * r
y1 = self.y1 + dy/arc_r * r
# same for C -> P2
dx, dy = self.x2 - self.cx, self.y2 - self.cy
x2 = self.x2 + dx/arc_r * r
y2 = self.y2 + dy/arc_r * r
arc = arc_bounds(x1, y1, x2, y2, self.cx, self.cy, self.clockwise)
return add_bounds(endpoints, arc) # FIXME add "include_center" switch
def to_svg(self, tag, fg, bg):
color = fg if self.polarity_dark else bg
arc = svg_arc((self.x1, self.y1), (self.x2, self.y2), (self.cx, self.cy), self.clockwise)
width = f'{self.width:.6}' if not math.isclose(self.width, 0) else '0.01mm'
return tag('path', d=f'M {self.x1:.6} {self.y1:.6} {arc}',
style=f'fill: none; stroke: {color}; stroke-width: {width}; stroke-linecap: round; fill: none')
def svg_rotation(angle_rad, cx=0, cy=0):
return f'rotate({float(rad_to_deg(angle_rad)):.4} {float(cx):.6} {float(cy):.6})'
@dataclass
class Rectangle(GraphicPrimitive):
# coordinates are center coordinates
x : float
y : float
w : float
h : float
rotation : float # radians, around center!
def bounding_box(self):
return self.to_arc_poly().bounding_box()
def to_arc_poly(self):
sin, cos = math.sin(self.rotation), math.cos(self.rotation)
sw, cw = sin*self.w/2, cos*self.w/2
sh, ch = sin*self.h/2, cos*self.h/2
x, y = self.x, self.y
return ArcPoly([
(x - (cw+sh), y - (ch+sw)),
(x - (cw+sh), y + (ch+sw)),
(x + (cw+sh), y + (ch+sw)),
(x + (cw+sh), y - (ch+sw)),
])
@property
def center(self):
return self.x + self.w/2, self.y + self.h/2
def to_svg(self, tag, fg, bg):
color = fg if self.polarity_dark else bg
x, y = self.x - self.w/2, self.y - self.h/2
return tag('rect', x=x, y=y, width=self.w, height=self.h,
transform=svg_rotation(self.rotation, self.x, self.y), style=f'fill: {color}')
@dataclass
class RegularPolygon(GraphicPrimitive):
x : float
y : float
r : float
n : int
rotation : float # radians!
def to_arc_poly(self):
''' convert n-sided gerber polygon to normal ArcPoly defined by outline '''
delta = 2*math.pi / self.n
return ArcPoly([
(self.x + math.cos(self.rotation + i*delta) * self.r,
self.y + math.sin(self.rotation + i*delta) * self.r)
for i in range(self.n) ])
def bounding_box(self):
return self.to_arc_poly().bounding_box()
def to_svg(self, tag, fg, bg):
return self.to_arc_poly().to_svg(tag, fg, bg)