gerbonara/coil_gen.py

319 wiersze
12 KiB
Python

#!/usr/bin/env python3
import subprocess
import sys
import os
from math import *
from pathlib import Path
from itertools import cycle
from gerbonara.cad.kicad import pcb as kicad_pcb
from gerbonara.cad.kicad import footprints as kicad_fp
from gerbonara.cad.kicad import graphical_primitives as kicad_gr
import click
__version__ = '1.0.0'
def point_line_distance(p, l1, l2):
x0, y0 = p
x1, y1 = l1
x2, y2 = l2
# https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
return abs((x2-x1)*(y1-y0) - (x1-x0)*(y2-y1)) / sqrt((x2-x1)**2 + (y2-y1)**2)
def line_line_intersection(l1, l2):
p1, p2 = l1
p3, p4 = l2
x1, y1 = p1
x2, y2 = p2
x3, y3 = p3
x4, y4 = p4
# https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection
px = ((x1*y2-y1*x2)*(x3-x4)-(x1-x2)*(x3*y4-y3*x4))/((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4))
py = ((x1*y2-y1*x2)*(y3-y4)-(y1-y2)*(x3*y4-y3*x4))/((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4))
return px, py
def angle_between_vectors(va, vb):
angle = atan2(vb[1], vb[0]) - atan2(va[1], va[0])
if angle < 0:
angle += 2*pi
return angle
@click.command()
@click.argument('infile', required=False, type=click.Path(exists=True, dir_okay=False, path_type=Path))
@click.argument('outfile', required=False, type=click.Path(writable=True, dir_okay=False, path_type=Path))
@click.option('--footprint-name', help="Name for the generated footprint. Default: Output file name sans extension.")
@click.option('--target-layer', default='F.Cu', help="Target KiCad layer for the generated footprint. Default: F.Cu.")
@click.option('--polygon', type=int, default=0, help="Use n'th polygon instead of first one. 0-based index.")
@click.option('--start-angle', type=float, default=0, help='Angle for the start at the outermost layer of the spiral in degree')
@click.option('--windings', type=int, default=5, help='Number of windings to generate')
@click.option('--trace-width', type=float, default=0.15)
@click.option('--clearance', type=float, default=0.15)
@click.option('--clipboard/--no-clipboard', help='Use clipboard integration (requires wl-clipboard)')
@click.option('--counter-clockwise/--clockwise', help='Direction of generated spiral. Default: clockwise when wound from the inside.')
def generate(infile, outfile, polygon, start_angle, windings, trace_width, clearance, footprint_name, target_layer, clipboard, counter_clockwise):
if 'WAYLAND_DISPLAY' in os.environ:
copy, paste, cliputil = ['wl-copy'], ['wl-paste'], 'xclip'
else:
copy, paste, cliputil = ['xclip', '-i', '-sel', 'clipboard'], ['xclip', '-o', '-sel' 'clipboard'], 'wl-clipboard'
if clipboard:
try:
proc = subprocess.run(paste, capture_output=True, text=True, check=True)
except FileNotFoundError:
print(f'Error: --clipboard requires the {copy[0]} and {paste[0]} utilities from {cliputil} to be installed.', file=sys.stderr)
board = kicad_pcb.Board.load(proc.stdout)
elif not infile:
board = kicad_pcb.Board.load(sys.stdin.read())
else:
board = kicad_pcb.Board.open(infile)
objs = [obj for obj in board.objects() if isinstance(obj, kicad_gr.Polygon)]
print(f'Found {len(objs)} polygon(s).', file=sys.stderr)
poly = objs[polygon]
xy = [(pt.x, pt.y) for pt in poly.pts.xy]
if counter_clockwise:
xy = [(-x, y) for x, y in xy]
segments = list(zip(xy, xy[1:] + xy[:1]))
# normalize orientation, make xy counter-clockwise
if sum((x2 - x1) * (y2 + y1) for (x1, y1), (x2, y2) in segments) < 0:
print(f'Reversing polygon direction.', file=sys.stderr)
xy = xy[::-1]
segments = list(zip(xy, xy[1:] + xy[:1]))
vbx, vby = min(x for x, y in xy), min(y for x, y, in xy)
vbw, vbh = max(x for x, y in xy), max(y for x, y, in xy)
vbw, vbh = vbw-vbx, vbh-vby
vbx -= 5
vby -= 5
vbw += 10
vbh += 10
cx, cy = 0, 0
ls = 0
for (x1, y1), (x2, y2) in segments:
l = dist((x1, y1), (x2, y2))
cx += x1*l/2 + x2*l/2
cy += y1*l/2 + y2*l/2
ls += l
cx /= ls
cy /= ls
segment_angles = [(atan2(y1-cy, x1-cx) - atan2(y2-cy, x2-cx) + 2*pi) % (2*pi) for (x1, y1), (x2, y2) in segments]
angle_strs = [f'{degrees(a):.2f}' for a in segment_angles]
segment_heights = [point_line_distance((cx, cy), (x1, y1), (x2, y2)) for (x1, y1), (x2, y2) in segments]
segment_foo = list(zip(segment_heights, segments))
midpoints = []
for h, ((x1, y1), (x2, y2)) in segment_foo:
xb = (x1 + x2) / 2
yb = (y1 + y2) / 2
midpoints.append((xb, yb))
normals = []
for h, ((x1, y1), (x2, y2)) in segment_foo:
d12 = dist((x1, y1), (x2, y2))
dx = x2 - x1
dy = y2 - y1
normals.append((-dy/d12, dx/d12))
smallest_radius = min(segment_heights)
#trace_radius = smallest_radius - stop_radius
trace_radius = smallest_radius
segment_foo = list(zip(segment_heights, segments, segment_angles, midpoints, normals))
dbg_lines1, dbg_lines2 = [], []
spiral_points = []
dr_tot = trace_width/2
for n in range(windings):
for (ha, (pa1, pa2), aa, ma, na), (hb, (pb1, pb2), ab, mb, nb) in zip(segment_foo[-1:] + segment_foo[:-1], segment_foo):
pitch = clearance + trace_width
dr_tot_a = dr_tot
dr_tot_b = n * pitch + trace_width/2
xma, yma = ma
xna, yna = na
xmb, ymb = mb
xnb, ynb = nb
xa1, ya1 = pa1
xa2, ya2 = pa2
xb1, yb1 = pb1
xb2, yb2 = pb2
dma = dist(pa2, ma)
dmb = dist(pb1, mb)
x_cons_a, y_cons_a = p_cons_a = line_line_intersection((pa2, (cx, cy)), (ma, (xma-xna, yma-yna)))
d_cons_a = dist(p_cons_a, ma)
qa = dma * dr_tot_a / d_cons_a
dra = hypot(qa, dr_tot_a)
nrax = (xa2 - cx) / dist((cx, cy), pa2)
nray = (ya2 - cy) / dist((cx, cy), pa2)
xea = xa2 - nrax*dra
yea = ya2 - nray*dra
x_cons_b, y_cons_b = p_cons_b = line_line_intersection((pb1, (cx, cy)), (mb, (xmb-xnb, ymb-ynb)))
d_cons_b = dist(p_cons_b, mb)
qb = dmb * dr_tot_b / d_cons_b
drb = hypot(qb, dr_tot_b)
nrbx = (xb1 - cx) / dist((cx, cy), pb1)
nrby = (yb1 - cy) / dist((cx, cy), pb1)
xeb = xb1 - nrbx*drb
yeb = yb1 - nrby*drb
xsa = xma - xna*dr_tot_a
ysa = yma - yna*dr_tot_a
xsb = xmb - xnb*dr_tot_b
ysb = ymb - ynb*dr_tot_b
l1 = (xsa, ysa), (xea, yea)
l2 = (xsb, ysb), (xeb, yeb)
dbg_lines1.append(l1)
dbg_lines2.append(l2)
pic = line_line_intersection(l1, l2)
spiral_points.append(pic)
dr_tot = dr_tot_b
#spiral_points = []
#r_now = 0
#for winding in range(num_windings):
# for angle, ((x1, y1), (x2, y2)) in zip(segment_angles, segments):
# angle_frac = angle/(2*pi)
# d_r = angle_frac * (clearance + trace_width)
# r_pt = dist((cx, cy), (x1, y1)) * (num_windings - winding) / num_windings
#
# x1, y1 = x1-cx, y1-cy
# x2, y2 = x2-cx, y2-cy
# l1, l2 = hypot(x1, y1), hypot(x2, y2)
# x1, y1 = x1/l1, y1/l1
# x2, y2 = x2/l2, y2/l2
#
# r_now += d_r
# spiral_points.append((cx + x1*r_pt, cy + y1*r_pt))
out = [spiral_points[0]]
ndrop = 0
for i, (pa, pb, pc) in enumerate(zip(spiral_points, spiral_points[1:], spiral_points[2:])):
xa, ya = pa
xb, yb = pb
xc, yc = pc
if ndrop:
ndrop -= 1
continue
angle = angle_between_vectors((xa-xb, ya-yb), (xc-xb, yc-yb))
if angle > pi:
ndrop += 1
for pd, pe in zip(spiral_points[i+2:], spiral_points[i+3:]):
xd, yd = pd
xe, ye = pe
angle = angle_between_vectors((xa-xb, ya-yb), (xe-xd, ye-yd))
if angle > pi:
ndrop += 1
else:
out.append(line_line_intersection((pa, pb), (pd, pe)))
break
else:
out.append(pb)
spiral_points = out
path_d = ' '.join([f'M {xy[0][0]} {xy[0][1]}', *[f'L {x} {y}' for x, y in xy[1:]], 'Z'])
path_d2 = ' '.join(f'M {cx} {cy} L {x} {y}' for x, y in xy)
path_d3 = ' '.join([f'M {spiral_points[0][0]} {spiral_points[0][1]}', *[f'L {x} {y}' for x, y in spiral_points[1:]]])
with open('/tmp/test.svg', 'w') as f:
f.write('<?xml version="1.0" standalone="no"?>\n')
f.write('<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">\n')
f.write(f'<svg version="1.1" width="200mm" height="200mm" viewBox="{vbx} {vby} {vbw} {vbh}" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">>\n')
f.write(f'<path fill="none" stroke="#303030" stroke-width="0.05" d="{path_d}"/>\n')
f.write(f'<path fill="none" stroke="#a0a0a0" stroke-width="0.05" d="{path_d2}"/>\n')
f.write(f'<path fill="none" stroke="#ff00ff" opacity="0.5" stroke-width="{trace_width}" d="{path_d3}"/>\n')
for (x1, y1), (x2, y2) in dbg_lines1:
f.write(f'<path fill="none" stroke="#ff0000" opacity="0.2" stroke-width="0.05" d="M {x1} {y1} L {x2} {y2}"/>')
for (x1, y1), (x2, y2) in dbg_lines2:
f.write(f'<path fill="none" stroke="#0000ff" opacity="0.2" stroke-width="0.05" d="M {x1} {y1} L {x2} {y2}"/>')
for x, y in midpoints:
f.write(f'<path fill="none" stroke="#a0a0ff" stroke-width="0.05" d="M {cx} {cy} L {x} {y}"/>')
f.write(f'<circle r="0.1" fill="blue" stroke="none" cx="{x}" cy="{y}"/>\n')
f.write(f'<circle r="0.1" fill="red" stroke="none" cx="{cx}" cy="{cy}"/>\n')
f.write('</svg>\n')
if counter_clockwise:
spiral_points = [(-x, y) for x, y in spiral_points]
fp_lines = [
kicad_fp.Line(
start=kicad_fp.XYCoord(x=x1, y=y1),
end=kicad_fp.XYCoord(x=x2, y=y2),
layer=target_layer,
stroke=kicad_fp.Stroke(width=trace_width))
for (x1, y1), (x2, y2) in zip(spiral_points, spiral_points[1:])]
make_pad = lambda num, x, y: kicad_fp.Pad(
number=str(num),
type=kicad_fp.Atom.smd,
shape=kicad_fp.Atom.circle,
at=kicad_fp.AtPos(x=x, y=y),
size=kicad_fp.XYCoord(x=trace_width, y=trace_width),
layers=[target_layer],
clearance=clearance,
zone_connect=0,
)
if footprint_name:
name = footprint_name
elif outfile:
name = outfile.stem,
else:
name = 'generated_coil'
fp = kicad_fp.Footprint(
name=name,
generator=kicad_fp.Atom('GerbonaraCoilGenV1'),
layer='F.Cu',
descr=f"{windings} winding coil footprint generated by gerbonara'c Coil generator, version {__version__}",
clearance=clearance,
zone_connect=0,
lines=fp_lines,
pads=[make_pad(1, *spiral_points[0]), make_pad(2, *spiral_points[-1])],
)
if clipboard:
try:
print(f'Running {copy[0]}.')
proc = subprocess.Popen(copy, stdin=subprocess.PIPE, text=True)
proc.communicate(fp.serialize())
except FileNotFoundError:
print(f'Error: --clipboard requires the {copy[0]} and {paste[0]} utilities from {cliputil} to be installed.', file=sys.stderr)
elif not outfile:
print(fp.serialize())
else:
fp.write(outfile)
if __name__ == '__main__':
generate()