gerbonara/gerbonara/apertures.py

362 wiersze
13 KiB
Python

import math
from dataclasses import dataclass, replace, field, fields, InitVar, KW_ONLY
from .aperture_macros.parse import GenericMacros
from .utils import MM, Inch
from . import graphic_primitives as gp
def _flash_hole(self, x, y, unit=None, polarity_dark=True):
if getattr(self, 'hole_rect_h', None) is not None:
return [*self.primitives(x, y, unit, polarity_dark),
gp.Rectangle((x, y),
(self.unit.convert_to(unit, self.hole_dia), self.unit.convert_to(unit, self.hole_rect_h)),
rotation=self.rotation, polarity_dark=(not polarity_dark))]
elif self.hole_dia is not None:
return [*self.primitives(x, y, unit, polarity_dark),
gp.Circle(x, y, self.unit.convert_to(unit, self.hole_dia/2), polarity_dark=(not polarity_dark))]
else:
return self.primitives(x, y, unit, polarity_dark)
def strip_right(*args):
args = list(args)
while args and args[-1] is None:
args.pop()
return args
def none_close(a, b):
if a is None and b is None:
return True
elif a is not None and b is not None:
return math.isclose(a, b)
else:
return False
class Length:
def __init__(self, obj_type):
self.type = obj_type
@dataclass
class Aperture:
_ : KW_ONLY
unit : str = None
attrs : dict = field(default_factory=dict)
original_number : str = None
@property
def hole_shape(self):
if hasattr(self, 'hole_rect_h') and self.hole_rect_h is not None:
return 'rect'
else:
return 'circle'
def params(self, unit=None):
out = []
for f in fields(self):
if f.kw_only:
continue
val = getattr(self, f.name)
if isinstance(f.type, Length):
val = self.unit.convert_to(unit, val)
out.append(val)
return out
def flash(self, x, y, unit=None, polarity_dark=True):
return self.primitives(x, y, unit, polarity_dark)
def equivalent_width(self, unit=None):
raise ValueError('Non-circular aperture used in interpolation statement, line width is not properly defined.')
def to_gerber(self, settings=None):
# Hack: The standard aperture shapes C, R, O do not have a rotation parameter. To make this API easier to use,
# we emulate this parameter. Our circle, rectangle and oblong classes below have a rotation parameter. Only at
# export time during to_gerber, this parameter is evaluated.
unit = settings.unit if settings else None
actual_inst = self._rotated()
params = 'X'.join(f'{float(par):.4}' for par in actual_inst.params(unit) if par is not None)
if params:
return f'{actual_inst.gerber_shape_code},{params}'
else:
return actual_inst.gerber_shape_code
def __eq__(self, other):
# We need to choose some unit here.
return hasattr(other, 'to_gerber') and self.to_gerber(MM) == other.to_gerber(MM)
def _rotate_hole_90(self):
if self.hole_rect_h is None:
return {'hole_dia': self.hole_dia, 'hole_rect_h': None}
else:
return {'hole_dia': self.hole_rect_h, 'hole_rect_h': self.hole_dia}
@dataclass(unsafe_hash=True)
class ExcellonTool(Aperture):
gerber_shape_code = 'C'
human_readable_shape = 'drill'
diameter : Length(float)
plated : bool = None
depth_offset : Length(float) = 0
def primitives(self, x, y, unit=None, polarity_dark=True):
return [ gp.Circle(x, y, self.unit.convert_to(unit, self.diameter/2), polarity_dark=polarity_dark) ]
def to_xnc(self, settings):
z_off = 'Z' + settings.write_excellon_value(self.depth_offset, self.unit) if self.depth_offset is not None else ''
return 'C' + settings.write_excellon_value(self.diameter, self.unit) + z_off
def __eq__(self, other):
if not isinstance(other, ExcellonTool):
return False
if not self.plated == other.plated:
return False
if not none_close(self.depth_offset, self.unit(other.depth_offset, other.unit)):
return False
return none_close(self.diameter, self.unit(other.diameter, other.unit))
def __str__(self):
plated = '' if self.plated is None else (' plated' if self.plated else ' non-plated')
z_off = '' if self.depth_offset is None else f' z_offset={self.depth_offset}'
return f'<Excellon Tool d={self.diameter:.3f}{plated}{z_off} [{self.unit}]>'
def equivalent_width(self, unit=MM):
return unit(self.diameter, self.unit)
def dilated(self, offset, unit=MM):
offset = unit(offset, self.unit)
return replace(self, diameter=self.diameter+2*offset)
def _rotated(self):
return self
def to_macro(self):
return ApertureMacroInstance(GenericMacros.circle, self.params(unit=MM))
def params(self, unit=None):
return [self.unit.convert_to(unit, self.diameter)]
@dataclass
class CircleAperture(Aperture):
gerber_shape_code = 'C'
human_readable_shape = 'circle'
diameter : Length(float)
hole_dia : Length(float) = None
hole_rect_h : Length(float) = None
rotation : float = 0 # radians; for rectangular hole; see hack in Aperture.to_gerber
def primitives(self, x, y, unit=None, polarity_dark=True):
return [ gp.Circle(x, y, self.unit.convert_to(unit, self.diameter/2), polarity_dark=polarity_dark) ]
def __str__(self):
return f'<circle aperture d={self.diameter:.3} [{self.unit}]>'
flash = _flash_hole
def equivalent_width(self, unit=None):
return self.unit.convert_to(unit, self.diameter)
def dilated(self, offset, unit=MM):
offset = self.unit(offset, unit)
return replace(self, diameter=self.diameter+2*offset, hole_dia=None, hole_rect_h=None)
def _rotated(self):
if math.isclose(self.rotation % (2*math.pi), 0) or self.hole_rect_h is None:
return self
else:
return self.to_macro(self.rotation)
def to_macro(self):
return ApertureMacroInstance(GenericMacros.circle, self.params(unit=MM))
def params(self, unit=None):
return strip_right(
self.unit.convert_to(unit, self.diameter),
self.unit.convert_to(unit, self.hole_dia),
self.unit.convert_to(unit, self.hole_rect_h))
@dataclass
class RectangleAperture(Aperture):
gerber_shape_code = 'R'
human_readable_shape = 'rect'
w : Length(float)
h : Length(float)
hole_dia : Length(float) = None
hole_rect_h : Length(float) = None
rotation : float = 0 # radians
def primitives(self, x, y, unit=None, polarity_dark=True):
return [ gp.Rectangle(x, y, self.unit.convert_to(unit, self.w), self.unit.convert_to(unit, self.h),
rotation=self.rotation, polarity_dark=polarity_dark) ]
def __str__(self):
return f'<rect aperture {self.w:.3}x{self.h:.3} [{self.unit}]>'
flash = _flash_hole
def equivalent_width(self, unit=None):
return self.unit.convert_to(unit, math.sqrt(self.w**2 + self.h**2))
def dilated(self, offset, unit=MM):
offset = self.unit(offset, unit)
return replace(self, w=self.w+2*offset, h=self.h+2*offset, hole_dia=None, hole_rect_h=None)
def _rotated(self):
if math.isclose(self.rotation % math.pi, 0):
return self
elif math.isclose(self.rotation % math.pi, math.pi/2):
return replace(self, w=self.h, h=self.w, **self._rotate_hole_90(), rotation=0)
else: # odd angle
return self.to_macro()
def to_macro(self):
return ApertureMacroInstance(GenericMacros.rect,
[MM(self.w, self.unit),
MM(self.h, self.unit),
MM(self.hole_dia, self.unit) or 0,
MM(self.hole_rect_h, self.unit) or 0,
self.rotation])
def params(self, unit=None):
return strip_right(
self.unit.convert_to(unit, self.w),
self.unit.convert_to(unit, self.h),
self.unit.convert_to(unit, self.hole_dia),
self.unit.convert_to(unit, self.hole_rect_h))
@dataclass
class ObroundAperture(Aperture):
gerber_shape_code = 'O'
human_readable_shape = 'obround'
w : Length(float)
h : Length(float)
hole_dia : Length(float) = None
hole_rect_h : Length(float) = None
rotation : float = 0
def primitives(self, x, y, unit=None, polarity_dark=True):
return [ gp.Obround(x, y, self.unit.convert_to(unit, self.w), self.unit.convert_to(unit, self.h),
rotation=self.rotation, polarity_dark=polarity_dark) ]
def __str__(self):
return f'<obround aperture {self.w:.3}x{self.h:.3} [{self.unit}]>'
flash = _flash_hole
def dilated(self, offset, unit=MM):
offset = self.unit(offset, unit)
return replace(self, w=self.w+2*offset, h=self.h+2*offset, hole_dia=None, hole_rect_h=None)
def _rotated(self):
if math.isclose(self.rotation % math.pi, 0):
return self
elif math.isclose(self.rotation % math.pi, math.pi/2):
return replace(self, w=self.h, h=self.w, **self._rotate_hole_90(), rotation=0)
else:
return self.to_macro()
def to_macro(self):
# generic macro only supports w > h so flip x/y if h > w
inst = self if self.w > self.h else replace(self, w=self.h, h=self.w, **_rotate_hole_90(self), rotation=self.rotation-90)
return ApertureMacroInstance(GenericMacros.obround,
[MM(inst.w, self.unit),
MM(ints.h, self.unit),
MM(inst.hole_dia, self.unit),
MM(inst.hole_rect_h, self.unit),
inst.rotation])
def params(self, unit=None):
return strip_right(
self.unit.convert_to(unit, self.w),
self.unit.convert_to(unit, self.h),
self.unit.convert_to(unit, self.hole_dia),
self.unit.convert_to(unit, self.hole_rect_h))
@dataclass
class PolygonAperture(Aperture):
gerber_shape_code = 'P'
diameter : Length(float)
n_vertices : int
rotation : float = 0
hole_dia : Length(float) = None
def __post_init__(self):
self.n_vertices = int(self.n_vertices)
def primitives(self, x, y, unit=None, polarity_dark=True):
return [ gp.RegularPolygon(x, y, self.unit.convert_to(unit, self.diameter)/2, self.n_vertices,
rotation=self.rotation, polarity_dark=polarity_dark) ]
def __str__(self):
return f'<{self.n_vertices}-gon aperture d={self.diameter:.3} [{self.unit}]>'
def dilated(self, offset, unit=MM):
offset = self.unit(offset, unit)
return replace(self, diameter=self.diameter+2*offset, hole_dia=None)
flash = _flash_hole
def _rotated(self):
return self
def to_macro(self):
return ApertureMacroInstance(GenericMacros.polygon, self.params(MM))
def params(self, unit=None):
rotation = self.rotation % (2*math.pi / self.n_vertices) if self.rotation is not None else None
if self.hole_dia is not None:
return self.unit.convert_to(unit, self.diameter), self.n_vertices, rotation, self.unit.convert_to(unit, self.hole_dia)
elif rotation is not None and not math.isclose(rotation, 0):
return self.unit.convert_to(unit, self.diameter), self.n_vertices, rotation
else:
return self.unit.convert_to(unit, self.diameter), self.n_vertices
@dataclass
class ApertureMacroInstance(Aperture):
macro : object
parameters : [float]
rotation : float = 0
@property
def gerber_shape_code(self):
return self.macro.name
def primitives(self, x, y, unit=None, polarity_dark=True):
out = list(self.macro.to_graphic_primitives(
offset=(x, y), rotation=self.rotation,
parameters=self.parameters, unit=unit, polarity_dark=polarity_dark))
return out
def dilated(self, offset, unit=MM):
return replace(self, macro=self.macro.dilated(offset, unit))
def _rotated(self):
if math.isclose(self.rotation % (2*math.pi), 0):
return self
else:
return self.to_macro()
def to_macro(self):
return replace(self, macro=self.macro.rotated(self.rotation), rotation=0)
def __eq__(self, other):
return hasattr(other, 'macro') and self.macro == other.macro and \
hasattr(other, 'params') and self.params == other.params and \
hasattr(other, 'rotation') and self.rotation == other.rotation
def params(self, unit=None):
# We ignore "unit" here as we convert the actual macro, not this instantiation.
# We do this because here we do not have information about which parameter has which physical units.
return tuple(self.parameters)