gerbonara/gerber/render/cairo_backend.py

617 wiersze
28 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2014 Hamilton Kibbe <ham@hamiltonkib.be>
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
try:
import cairo
except ImportError:
import cairocffi as cairo
from operator import mul
import tempfile
import copy
import os
from .render import GerberContext, RenderSettings
from .theme import THEMES
from ..primitives import *
from ..utils import rotate_point
from io import BytesIO
class GerberCairoContext(GerberContext):
def __init__(self, scale=300):
super(GerberCairoContext, self).__init__()
self.scale = (scale, scale)
self.surface = None
self.surface_buffer = None
self.ctx = None
self.active_layer = None
self.active_matrix = None
self.output_ctx = None
self.has_bg = False
self.origin_in_inch = None
self.size_in_inch = None
self._xform_matrix = None
self._render_count = 0
@property
def origin_in_pixels(self):
return (self.scale_point(self.origin_in_inch)
if self.origin_in_inch is not None else (0.0, 0.0))
@property
def size_in_pixels(self):
return (self.scale_point(self.size_in_inch)
if self.size_in_inch is not None else (0.0, 0.0))
def set_bounds(self, bounds, new_surface=False):
origin_in_inch = (bounds[0][0], bounds[1][0])
size_in_inch = (abs(bounds[0][1] - bounds[0][0]),
abs(bounds[1][1] - bounds[1][0]))
size_in_pixels = self.scale_point(size_in_inch)
self.origin_in_inch = origin_in_inch if self.origin_in_inch is None else self.origin_in_inch
self.size_in_inch = size_in_inch if self.size_in_inch is None else self.size_in_inch
self._xform_matrix = cairo.Matrix(xx=1.0, yy=-1.0,
x0=-self.origin_in_pixels[0],
y0=self.size_in_pixels[1])
if (self.surface is None) or new_surface:
self.surface_buffer = tempfile.NamedTemporaryFile()
self.surface = cairo.SVGSurface(self.surface_buffer, size_in_pixels[0], size_in_pixels[1])
self.output_ctx = cairo.Context(self.surface)
def render_layer(self, layer, filename=None, settings=None, bgsettings=None,
verbose=False, bounds=None):
if settings is None:
settings = THEMES['default'].get(layer.layer_class, RenderSettings())
if bgsettings is None:
bgsettings = THEMES['default'].get('background', RenderSettings())
if self._render_count == 0:
if verbose:
print('[Render]: Rendering Background.')
self.clear()
if bounds is not None:
self.set_bounds(bounds)
else:
self.set_bounds(layer.bounds)
self.paint_background(bgsettings)
if verbose:
print('[Render]: Rendering {} Layer.'.format(layer.layer_class))
self._render_count += 1
self._render_layer(layer, settings)
if filename is not None:
self.dump(filename, verbose)
def render_layers(self, layers, filename, theme=THEMES['default'],
verbose=False, max_width=800, max_height=600):
""" Render a set of layers
"""
# Calculate scale parameter
x_range = [10000, -10000]
y_range = [10000, -10000]
for layer in layers:
bounds = layer.bounds
if bounds is not None:
layer_x, layer_y = bounds
x_range[0] = min(x_range[0], layer_x[0])
x_range[1] = max(x_range[1], layer_x[1])
y_range[0] = min(y_range[0], layer_y[0])
y_range[1] = max(y_range[1], layer_y[1])
width = x_range[1] - x_range[0]
height = y_range[1] - y_range[0]
scale = math.floor(min(float(max_width)/width, float(max_height)/height))
self.scale = (scale, scale)
self.clear()
# Render layers
bgsettings = theme['background']
for layer in layers:
settings = theme.get(layer.layer_class, RenderSettings())
self.render_layer(layer, settings=settings, bgsettings=bgsettings,
verbose=verbose)
self.dump(filename, verbose)
def dump(self, filename=None, verbose=False):
""" Save image as `filename`
"""
try:
is_svg = os.path.splitext(filename.lower())[1] == '.svg'
except:
is_svg = False
if verbose:
print('[Render]: Writing image to {}'.format(filename))
if is_svg:
self.surface.finish()
self.surface_buffer.flush()
with open(filename, "wb") as f:
self.surface_buffer.seek(0)
f.write(self.surface_buffer.read())
f.flush()
else:
return self.surface.write_to_png(filename)
def dump_str(self):
""" Return a byte-string containing the rendered image.
"""
fobj = BytesIO()
self.surface.write_to_png(fobj)
return fobj.getvalue()
def dump_svg_str(self):
""" Return a string containg the rendered SVG.
"""
self.surface.finish()
self.surface_buffer.flush()
return self.surface_buffer.read()
def clear(self):
self.surface = None
self.output_ctx = None
self.has_bg = False
self.origin_in_inch = None
self.size_in_inch = None
self._xform_matrix = None
self._render_count = 0
self.surface_buffer = None
def _new_mask(self):
class Mask:
def __enter__(msk):
size_in_pixels = self.size_in_pixels
msk.surface = cairo.SVGSurface(None, size_in_pixels[0],
size_in_pixels[1])
msk.ctx = cairo.Context(msk.surface)
msk.ctx.translate(-self.origin_in_pixels[0], -self.origin_in_pixels[1])
return msk
def __exit__(msk, exc_type, exc_val, traceback):
if hasattr(msk.surface, 'finish'):
msk.surface.finish()
return Mask()
def _render_layer(self, layer, settings):
self.invert = settings.invert
# Get a new clean layer to render on
self.new_render_layer(mirror=settings.mirror)
for prim in layer.primitives:
self.render(prim)
# Add layer to image
self.flatten(settings.color, settings.alpha)
def _render_line(self, line, color):
start = self.scale_point(line.start)
end = self.scale_point(line.end)
self.ctx.set_operator(cairo.OPERATOR_OVER
if (not self.invert)
and line.level_polarity == 'dark'
else cairo.OPERATOR_CLEAR)
with self._clip_primitive(line):
with self._new_mask() as mask:
if isinstance(line.aperture, Circle):
width = line.aperture.diameter
mask.ctx.set_line_width(width * self.scale[0])
mask.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
mask.ctx.move_to(*start)
mask.ctx.line_to(*end)
mask.ctx.stroke()
elif hasattr(line, 'vertices') and line.vertices is not None:
points = [self.scale_point(x) for x in line.vertices]
mask.ctx.set_line_width(0)
mask.ctx.move_to(*points[-1])
for point in points:
mask.ctx.line_to(*point)
mask.ctx.fill()
self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0])
def _render_arc(self, arc, color):
center = self.scale_point(arc.center)
start = self.scale_point(arc.start)
end = self.scale_point(arc.end)
radius = self.scale[0] * arc.radius
two_pi = 2 * math.pi
angle1 = (arc.start_angle + two_pi) % two_pi
angle2 = (arc.end_angle + two_pi) % two_pi
if angle1 == angle2 and arc.quadrant_mode != 'single-quadrant':
# Make the angles slightly different otherwise Cario will draw nothing
angle2 -= 0.000000001
if isinstance(arc.aperture, Circle):
width = arc.aperture.diameter if arc.aperture.diameter != 0 else 0.001
else:
width = max(arc.aperture.width, arc.aperture.height, 0.001)
self.ctx.set_operator(cairo.OPERATOR_OVER
if (not self.invert)
and arc.level_polarity == 'dark'
else cairo.OPERATOR_CLEAR)
with self._clip_primitive(arc):
with self._new_mask() as mask:
mask.ctx.set_line_width(width * self.scale[0])
mask.ctx.set_line_cap(cairo.LINE_CAP_ROUND if isinstance(arc.aperture, Circle) else cairo.LINE_CAP_SQUARE)
mask.ctx.move_to(*start) # You actually have to do this...
if arc.direction == 'counterclockwise':
mask.ctx.arc(center[0], center[1], radius, angle1, angle2)
else:
mask.ctx.arc_negative(center[0], center[1], radius,
angle1, angle2)
mask.ctx.move_to(*end) # ...lame
mask.ctx.stroke()
#if isinstance(arc.aperture, Rectangle):
# print("Flash Rectangle Ends")
# print(arc.aperture.rotation * 180/math.pi)
# rect = arc.aperture
# width = self.scale[0] * rect.width
# height = self.scale[1] * rect.height
# for point, angle in zip((start, end), (angle1, angle2)):
# print("{} w {} h{}".format(point, rect.width, rect.height))
# mask.ctx.rectangle(point[0] - width/2.0,
# point[1] - height/2.0, width, height)
# mask.ctx.fill()
self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0])
def _render_region(self, region, color):
self.ctx.set_operator(cairo.OPERATOR_OVER
if (not self.invert) and region.level_polarity == 'dark'
else cairo.OPERATOR_CLEAR)
with self._clip_primitive(region):
with self._new_mask() as mask:
mask.ctx.set_line_width(0)
mask.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
mask.ctx.move_to(*self.scale_point(region.primitives[0].start))
for prim in region.primitives:
if isinstance(prim, Line):
mask.ctx.line_to(*self.scale_point(prim.end))
else:
center = self.scale_point(prim.center)
radius = self.scale[0] * prim.radius
angle1 = prim.start_angle
angle2 = prim.end_angle
if prim.direction == 'counterclockwise':
mask.ctx.arc(center[0], center[1], radius,
angle1, angle2)
else:
mask.ctx.arc_negative(center[0], center[1], radius,
angle1, angle2)
mask.ctx.fill()
self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0])
def _render_circle(self, circle, color):
center = self.scale_point(circle.position)
self.ctx.set_operator(cairo.OPERATOR_OVER
if (not self.invert)
and circle.level_polarity == 'dark'
else cairo.OPERATOR_CLEAR)
with self._clip_primitive(circle):
with self._new_mask() as mask:
mask.ctx.set_line_width(0)
mask.ctx.arc(center[0], center[1], (circle.radius * self.scale[0]), 0, (2 * math.pi))
mask.ctx.fill()
if hasattr(circle, 'hole_diameter') and circle.hole_diameter is not None and circle.hole_diameter > 0:
mask.ctx.set_operator(cairo.OPERATOR_CLEAR)
mask.ctx.arc(center[0], center[1], circle.hole_radius * self.scale[0], 0, 2 * math.pi)
mask.ctx.fill()
if (hasattr(circle, 'hole_width') and hasattr(circle, 'hole_height')
and circle.hole_width is not None and circle.hole_height is not None
and circle.hole_width > 0 and circle.hole_height > 0):
mask.ctx.set_operator(cairo.OPERATOR_CLEAR
if circle.level_polarity == 'dark'
and (not self.invert)
else cairo.OPERATOR_OVER)
width, height = self.scale_point((circle.hole_width, circle.hole_height))
lower_left = rotate_point(
(center[0] - width / 2.0, center[1] - height / 2.0),
circle.rotation, center)
lower_right = rotate_point((center[0] + width / 2.0, center[1] - height / 2.0),
circle.rotation, center)
upper_left = rotate_point((center[0] - width / 2.0, center[1] + height / 2.0),
circle.rotation, center)
upper_right = rotate_point((center[0] + width / 2.0, center[1] + height / 2.0),
circle.rotation, center)
points = (lower_left, lower_right, upper_right, upper_left)
mask.ctx.move_to(*points[-1])
for point in points:
mask.ctx.line_to(*point)
mask.ctx.fill()
self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0])
def _render_rectangle(self, rectangle, color):
lower_left = self.scale_point(rectangle.lower_left)
width, height = tuple([abs(coord) for coord in
self.scale_point((rectangle.width,
rectangle.height))])
self.ctx.set_operator(cairo.OPERATOR_OVER
if (not self.invert)
and rectangle.level_polarity == 'dark'
else cairo.OPERATOR_CLEAR)
with self._clip_primitive(rectangle):
with self._new_mask() as mask:
mask.ctx.set_line_width(0)
mask.ctx.rectangle(lower_left[0], lower_left[1], width, height)
mask.ctx.fill()
center = self.scale_point(rectangle.position)
if rectangle.hole_diameter > 0:
# Render the center clear
mask.ctx.set_operator(cairo.OPERATOR_CLEAR
if rectangle.level_polarity == 'dark'
and (not self.invert)
else cairo.OPERATOR_OVER)
mask.ctx.arc(center[0], center[1], rectangle.hole_radius * self.scale[0], 0, 2 * math.pi)
mask.ctx.fill()
if rectangle.hole_width > 0 and rectangle.hole_height > 0:
mask.ctx.set_operator(cairo.OPERATOR_CLEAR
if rectangle.level_polarity == 'dark'
and (not self.invert)
else cairo.OPERATOR_OVER)
width, height = self.scale_point((rectangle.hole_width, rectangle.hole_height))
lower_left = rotate_point((center[0] - width/2.0, center[1] - height/2.0), rectangle.rotation, center)
lower_right = rotate_point((center[0] + width/2.0, center[1] - height/2.0), rectangle.rotation, center)
upper_left = rotate_point((center[0] - width / 2.0, center[1] + height / 2.0), rectangle.rotation, center)
upper_right = rotate_point((center[0] + width / 2.0, center[1] + height / 2.0), rectangle.rotation, center)
points = (lower_left, lower_right, upper_right, upper_left)
mask.ctx.move_to(*points[-1])
for point in points:
mask.ctx.line_to(*point)
mask.ctx.fill()
self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0])
def _render_obround(self, obround, color):
self.ctx.set_operator(cairo.OPERATOR_OVER
if (not self.invert)
and obround.level_polarity == 'dark'
else cairo.OPERATOR_CLEAR)
with self._clip_primitive(obround):
with self._new_mask() as mask:
mask.ctx.set_line_width(0)
# Render circles
for circle in (obround.subshapes['circle1'], obround.subshapes['circle2']):
center = self.scale_point(circle.position)
mask.ctx.arc(center[0], center[1], (circle.radius * self.scale[0]), 0, (2 * math.pi))
mask.ctx.fill()
# Render Rectangle
rectangle = obround.subshapes['rectangle']
lower_left = self.scale_point(rectangle.lower_left)
width, height = tuple([abs(coord) for coord in
self.scale_point((rectangle.width,
rectangle.height))])
mask.ctx.rectangle(lower_left[0], lower_left[1], width, height)
mask.ctx.fill()
center = self.scale_point(obround.position)
if obround.hole_diameter > 0:
# Render the center clear
mask.ctx.set_operator(cairo.OPERATOR_CLEAR)
mask.ctx.arc(center[0], center[1], obround.hole_radius * self.scale[0], 0, 2 * math.pi)
mask.ctx.fill()
if obround.hole_width > 0 and obround.hole_height > 0:
mask.ctx.set_operator(cairo.OPERATOR_CLEAR
if rectangle.level_polarity == 'dark'
and (not self.invert)
else cairo.OPERATOR_OVER)
width, height =self.scale_point((obround.hole_width, obround.hole_height))
lower_left = rotate_point((center[0] - width / 2.0, center[1] - height / 2.0),
obround.rotation, center)
lower_right = rotate_point((center[0] + width / 2.0, center[1] - height / 2.0),
obround.rotation, center)
upper_left = rotate_point((center[0] - width / 2.0, center[1] + height / 2.0),
obround.rotation, center)
upper_right = rotate_point((center[0] + width / 2.0, center[1] + height / 2.0),
obround.rotation, center)
points = (lower_left, lower_right, upper_right, upper_left)
mask.ctx.move_to(*points[-1])
for point in points:
mask.ctx.line_to(*point)
mask.ctx.fill()
self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0])
def _render_polygon(self, polygon, color):
self.ctx.set_operator(cairo.OPERATOR_OVER
if (not self.invert)
and polygon.level_polarity == 'dark'
else cairo.OPERATOR_CLEAR)
with self._clip_primitive(polygon):
with self._new_mask() as mask:
vertices = polygon.vertices
mask.ctx.set_line_width(0)
mask.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
# Start from before the end so it is easy to iterate and make sure
# it is closed
mask.ctx.move_to(*self.scale_point(vertices[-1]))
for v in vertices:
mask.ctx.line_to(*self.scale_point(v))
mask.ctx.fill()
center = self.scale_point(polygon.position)
if polygon.hole_radius > 0:
# Render the center clear
mask.ctx.set_operator(cairo.OPERATOR_CLEAR
if polygon.level_polarity == 'dark'
and (not self.invert)
else cairo.OPERATOR_OVER)
mask.ctx.set_line_width(0)
mask.ctx.arc(center[0],
center[1],
polygon.hole_radius * self.scale[0], 0, 2 * math.pi)
mask.ctx.fill()
if polygon.hole_width > 0 and polygon.hole_height > 0:
mask.ctx.set_operator(cairo.OPERATOR_CLEAR
if polygon.level_polarity == 'dark'
and (not self.invert)
else cairo.OPERATOR_OVER)
width, height = self.scale_point((polygon.hole_width, polygon.hole_height))
lower_left = rotate_point((center[0] - width / 2.0, center[1] - height / 2.0),
polygon.rotation, center)
lower_right = rotate_point((center[0] + width / 2.0, center[1] - height / 2.0),
polygon.rotation, center)
upper_left = rotate_point((center[0] - width / 2.0, center[1] + height / 2.0),
polygon.rotation, center)
upper_right = rotate_point((center[0] + width / 2.0, center[1] + height / 2.0),
polygon.rotation, center)
points = (lower_left, lower_right, upper_right, upper_left)
mask.ctx.move_to(*points[-1])
for point in points:
mask.ctx.line_to(*point)
mask.ctx.fill()
self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0])
def _render_drill(self, circle, color=None):
color = color if color is not None else self.drill_color
self._render_circle(circle, color)
def _render_slot(self, slot, color):
start = map(mul, slot.start, self.scale)
end = map(mul, slot.end, self.scale)
width = slot.diameter
self.ctx.set_operator(cairo.OPERATOR_OVER
if slot.level_polarity == 'dark' and
(not self.invert) else cairo.OPERATOR_CLEAR)
with self._clip_primitive(slot):
with self._new_mask() as mask:
mask.ctx.set_line_width(width * self.scale[0])
mask.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
mask.ctx.move_to(*start)
mask.ctx.line_to(*end)
mask.ctx.stroke()
self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0])
def _render_amgroup(self, amgroup, color):
for primitive in amgroup.primitives:
self.render(primitive)
def _render_test_record(self, primitive, color):
position = [pos + origin for pos, origin in
zip(primitive.position, self.origin_in_inch)]
self.ctx.select_font_face(
'monospace', cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_BOLD)
self.ctx.set_font_size(13)
self._render_circle(Circle(position, 0.015), color)
self.ctx.set_operator(cairo.OPERATOR_OVER
if primitive.level_polarity == 'dark' and
(not self.invert) else cairo.OPERATOR_CLEAR)
self.ctx.move_to(*[self.scale[0] * (coord + 0.015) for coord in position])
self.ctx.scale(1, -1)
self.ctx.show_text(primitive.net_name)
self.ctx.scale(1, -1)
def new_render_layer(self, color=None, mirror=False):
size_in_pixels = self.scale_point(self.size_in_inch)
matrix = copy.copy(self._xform_matrix)
layer = cairo.SVGSurface(None, size_in_pixels[0], size_in_pixels[1])
ctx = cairo.Context(layer)
if self.invert:
ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0)
ctx.set_operator(cairo.OPERATOR_OVER)
ctx.paint()
if mirror:
matrix.xx = -1.0
matrix.x0 = self.origin_in_pixels[0] + self.size_in_pixels[0]
self.ctx = ctx
self.ctx.set_matrix(matrix)
self.active_layer = layer
self.active_matrix = matrix
def flatten(self, color=None, alpha=None):
color = color if color is not None else self.color
alpha = alpha if alpha is not None else self.alpha
self.output_ctx.set_source_rgba(color[0], color[1], color[2], alpha)
self.output_ctx.mask_surface(self.active_layer)
self.ctx = None
self.active_layer = None
self.active_matrix = None
def paint_background(self, settings=None):
color = settings.color if settings is not None else self.background_color
alpha = settings.alpha if settings is not None else 1.0
if not self.has_bg:
self.has_bg = True
self.output_ctx.set_source_rgba(color[0], color[1], color[2], alpha)
self.output_ctx.paint()
def _clip_primitive(self, primitive):
""" Clip rendering context to pixel-aligned bounding box
Calculates pixel- and axis- aligned bounding box, and clips current
context to that region. Improves rendering speed significantly. This
returns a context manager, use as follows:
with self._clip_primitive(some_primitive):
do_rendering_stuff()
do_more_rendering stuff(with, arguments)
The context manager will reset the context's clipping region when it
goes out of scope.
"""
class Clip:
def __init__(clp, primitive):
x_range, y_range = primitive.bounding_box
xmin, xmax = x_range
ymin, ymax = y_range
# Round bounds to the nearest pixel outside of the primitive
clp.xmin = math.floor(self.scale[0] * xmin)
clp.xmax = math.ceil(self.scale[0] * xmax)
# We need to offset Y to take care of the difference in y-pos
# caused by flipping the axis.
clp.ymin = math.floor(
(self.scale[1] * ymin) - math.ceil(self.origin_in_pixels[1]))
clp.ymax = math.floor(
(self.scale[1] * ymax) - math.floor(self.origin_in_pixels[1]))
# Calculate width and height, rounded to the nearest pixel
clp.width = abs(clp.xmax - clp.xmin)
clp.height = abs(clp.ymax - clp.ymin)
def __enter__(clp):
# Clip current context to primitive's bounding box
self.ctx.rectangle(clp.xmin, clp.ymin, clp.width, clp.height)
self.ctx.clip()
def __exit__(clp, exc_type, exc_val, traceback):
# Reset context clip region
self.ctx.reset_clip()
return Clip(primitive)
def scale_point(self, point):
return tuple([coord * scale for coord, scale in zip(point, self.scale)])