gerbonara/gerbonara/aperture_macros/parse.py

192 wiersze
6.4 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2021 Jan Sebastian Götte <gerbonara@jaseg.de>
import operator
import re
import ast
import copy
import math
from . import primitive as ap
from .expression import *
from ..utils import MM
def rad_to_deg(x):
return (x / math.pi) * 180
def _map_expression(node):
if isinstance(node, ast.Num):
return ConstantExpression(node.n)
elif isinstance(node, ast.BinOp):
op_map = {ast.Add: operator.add, ast.Sub: operator.sub, ast.Mult: operator.mul, ast.Div: operator.truediv}
return OperatorExpression(op_map[type(node.op)], _map_expression(node.left), _map_expression(node.right))
elif isinstance(node, ast.UnaryOp):
if type(node.op) == ast.UAdd:
return _map_expression(node.operand)
else:
return OperatorExpression(operator.sub, ConstantExpression(0), _map_expression(node.operand))
elif isinstance(node, ast.Name):
return VariableExpression(int(node.id[3:])) # node.id has format var[0-9]+
else:
raise SyntaxError('Invalid aperture macro expression')
def _parse_expression(expr):
expr = expr.lower().replace('x', '*')
expr = re.sub(r'\$([0-9]+)', r'var\1', expr)
try:
parsed = ast.parse(expr, mode='eval').body
except SyntaxError as e:
raise SyntaxError('Invalid aperture macro expression') from e
return _map_expression(parsed)
class ApertureMacro:
def __init__(self, name=None, primitives=None, variables=None):
self._name = name
self.comments = []
self.variables = variables or {}
self.primitives = primitives or []
@classmethod
def parse_macro(cls, name, body, unit):
macro = cls(name)
blocks = body.split('*')
for block in blocks:
if not (block := block.strip()): # empty block
continue
if block.startswith('0 '): # comment
macro.comments.append(block[2:])
continue
block = re.sub(r'\s', '', block)
if block[0] == '$': # variable definition
name, expr = block.partition('=')
number = int(name[1:])
if number in macro.variables:
raise SyntaxError(f'Re-definition of aperture macro variable {number} inside macro')
macro.variables[number] = _parse_expression(expr)
else: # primitive
primitive, *args = block.split(',')
args = [ _parse_expression(arg) for arg in args ]
primitive = ap.PRIMITIVE_CLASSES[int(primitive)](unit=unit, args=args)
macro.primitives.append(primitive)
return macro
@property
def name(self):
if self._name is not None:
return self._name
else:
return f'gn_{hash(self)}'
@name.setter
def name(self, name):
self._name = name
def __str__(self):
return f'<Aperture macro {self.name}, variables {str(self.variables)}, primitives {self.primitives}>'
def __repr__(self):
return str(self)
def __eq__(self, other):
return hasattr(other, 'to_gerber') and self.to_gerber() == other.to_gerber()
def __hash__(self):
return hash(self.to_gerber())
def dilated(self, offset, unit=MM):
dup = copy.deepcopy(self)
new_primitives = []
for primitive in dup.primitives:
try:
if primitive.exposure.calculate():
primitive.dilate(offset, unit)
new_primitives.append(primitive)
except IndexError:
warnings.warn('Cannot dilate aperture macro primitive with exposure value computed from macro variable.')
pass
dup.primitives = new_primitives
return dup
def to_gerber(self, unit=None):
comments = [ c.to_gerber() for c in self.comments ]
variable_defs = [ f'${var.to_gerber(unit)}={expr}' for var, expr in self.variables.items() ]
primitive_defs = [ prim.to_gerber(unit) for prim in self.primitives ]
return '*\n'.join(comments + variable_defs + primitive_defs)
def to_graphic_primitives(self, offset, rotation, parameters : [float], unit=None, polarity_dark=True):
variables = dict(self.variables)
for number, value in enumerate(parameters, start=1):
if number in variables:
raise SyntaxError(f'Re-definition of aperture macro variable {i} through parameter {value}')
variables[number] = value
for primitive in self.primitives:
yield from primitive.to_graphic_primitives(offset, rotation, variables, unit, polarity_dark)
def rotated(self, angle):
dup = copy.deepcopy(self)
for primitive in dup.primitives:
# aperture macro primitives use degree counter-clockwise, our API uses radians clockwise
primitive.rotation -= rad_to_deg(angle)
return dup
def scaled(self, scale):
dup = copy.deepcopy(self)
for primitive in dup.primitives:
primitive.scale(scale)
return dup
var = VariableExpression
deg_per_rad = 180 / math.pi
class GenericMacros:
_generic_hole = lambda n: [
ap.Circle('mm', [0, var(n), 0, 0]),
ap.CenterLine('mm', [0, var(n), var(n+1), 0, 0, var(n+2) * -deg_per_rad])]
# NOTE: All generic macros have rotation values specified in **clockwise radians** like the rest of the user-facing
# API.
circle = ApertureMacro('GNC', [
ap.Circle('mm', [1, var(1), 0, 0, var(4) * -deg_per_rad]),
*_generic_hole(2)])
rect = ApertureMacro('GNR', [
ap.CenterLine('mm', [1, var(1), var(2), 0, 0, var(5) * -deg_per_rad]),
*_generic_hole(3) ])
# w must be larger than h
obround = ApertureMacro('GNO', [
ap.CenterLine('mm', [1, var(1), var(2), 0, 0, var(5) * -deg_per_rad]),
ap.Circle('mm', [1, var(2), +var(1)/2, 0, var(5) * -deg_per_rad]),
ap.Circle('mm', [1, var(2), -var(1)/2, 0, var(5) * -deg_per_rad]),
*_generic_hole(3) ])
polygon = ApertureMacro('GNP', [
ap.Polygon('mm', [1, var(2), 0, 0, var(1), var(3) * -deg_per_rad]),
ap.Circle('mm', [0, var(4), 0, 0])])
if __name__ == '__main__':
import sys
#for line in sys.stdin:
#expr = _parse_expression(line.strip())
#print(expr, '->', expr.optimized())
for primitive in parse_macro(sys.stdin.read(), 'mm'):
print(primitive)