gerbonara/gerbonara/aperture_macros/parse.py

251 wiersze
11 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2021 Jan Sebastian Götte <gerbonara@jaseg.de>
from dataclasses import dataclass, field, replace
import operator
import re
import ast
import copy
import math
from . import primitive as ap
from .expression import *
from ..utils import MM
# we make our own here instead of using math.degrees to make sure this works with expressions, too.
def rad_to_deg(x):
return (x / math.pi) * 180
def _map_expression(node, variables={}, parameters=set()):
if isinstance(node, ast.Num):
return ConstantExpression(node.n)
elif isinstance(node, ast.BinOp):
op_map = {ast.Add: operator.add, ast.Sub: operator.sub, ast.Mult: operator.mul, ast.Div: operator.truediv}
return OperatorExpression(op_map[type(node.op)],
_map_expression(node.left, variables, parameters),
_map_expression(node.right, variables, parameters))
elif isinstance(node, ast.UnaryOp):
if type(node.op) == ast.UAdd:
return _map_expression(node.operand, variables, parameters)
else:
return NegatedExpression(_map_expression(node.operand, variables, parameters))
elif isinstance(node, ast.Name):
num = int(node.id[3:]) # node.id has format var[0-9]+
if num in variables:
return VariableExpression(variables[num])
else:
parameters.add(num)
return ParameterExpression(num)
else:
raise SyntaxError('Invalid aperture macro expression')
def _parse_expression(expr, variables, parameters):
expr = expr.lower().replace('x', '*')
expr = re.sub(r'\$([0-9]+)', r'var\1', expr)
try:
parsed = ast.parse(expr, mode='eval').body
except SyntaxError as e:
raise SyntaxError('Invalid aperture macro expression') from e
return _map_expression(parsed, variables, parameters)
@dataclass(frozen=True, slots=True)
class ApertureMacro:
name: str = field(default=None, hash=False, compare=False)
num_parameters: int = 0
primitives: tuple = ()
comments: tuple = field(default=(), hash=False, compare=False)
def __post_init__(self):
if self.name is None or re.match(r'GNX[0-9A-F]{16}', self.name):
# We can't use field(default_factory=...) here because that factory doesn't get a reference to the instance.
self._reset_name()
def _reset_name(self):
object.__setattr__(self, 'name', f'GNX{hash(self)&0xffffffffffffffff:016X}')
@classmethod
def parse_macro(kls, macro_name, body, unit):
comments = []
variables = {}
parameters = set()
primitives = []
blocks = body.split('*')
for block in blocks:
if not (block := block.strip()): # empty block
continue
if block.startswith('0 '): # comment
comments.append(block[2:])
continue
block = re.sub(r'\s', '', block)
if block[0] == '$': # variable definition
name, expr = block.partition('=')
number = int(name[1:])
if number in variables:
raise SyntaxError(f'Re-definition of aperture macro variable ${number} inside macro. Previous definition of ${number} was ${variables[number]}.')
variables[number] = _parse_expression(expr, variables, parameters)
else: # primitive
primitive, *args = block.split(',')
args = [ _parse_expression(arg, variables, parameters) for arg in args ]
primitives.append(ap.PRIMITIVE_CLASSES[int(primitive)].from_arglist(unit, args))
return kls(macro_name, max(parameters, default=0), tuple(primitives), tuple(comments))
def __str__(self):
return f'<Aperture macro {self.name}, primitives {self.primitives}>'
def __repr__(self):
return str(self)
def dilated(self, offset, unit=MM):
new_primitives = []
for primitive in self.primitives:
try:
if primitive.exposure.calculate():
new_primitives += primitive.dilated(offset, unit)
except IndexError:
warnings.warn('Cannot dilate aperture macro primitive with exposure value computed from macro variable.')
pass
return replace(self, primitives=tuple(new_primitives))
def substitute_params(self, params, unit=None, macro_name=None):
params = dict(enumerate(params, start=1))
return replace(self,
num_parameters=0,
name=macro_name,
primitives=tuple(p.substitute_params(params, unit) for p in self.primitives),
comments=(f'Fully substituted instance of {self.name} macro',
f'Original parameters {"X".join(map(str, params.values()))}'))
def to_gerber(self, settings):
""" Serialize this macro's content (without the name) into Gerber using the given file unit """
comments = [ f'0 {c.replace("*", "_").replace("%", "_")}' for c in self.comments ]
subexpression_variables = {}
def register_variable(expr):
expr_str = expr.to_gerber(register_variable, settings.unit)
if expr_str not in subexpression_variables:
subexpression_variables[expr_str] = self.num_parameters + 1 + len(subexpression_variables)
return subexpression_variables[expr_str]
primitive_defs = [prim.to_gerber(register_variable, settings) for prim in self.primitives]
variable_defs = [f'${num}={expr_str}' for expr_str, num in subexpression_variables.items()]
return '*\n'.join(comments + variable_defs + primitive_defs)
def to_graphic_primitives(self, offset, rotation, parameters : [float], unit=None, polarity_dark=True):
parameters = dict(enumerate(parameters, start=1))
for primitive in self.primitives:
yield from primitive.to_graphic_primitives(offset, rotation, variables, unit, polarity_dark)
def rotated(self, angle):
# aperture macro primitives use degree counter-clockwise, our API uses radians clockwise
return replace(self, primitives=tuple(
replace(primitive, rotation=primitive.rotation - rad_to_deg(angle)) for primitive in self.primitives))
def scaled(self, scale):
return replace(self, primitives=tuple(
primitive.scaled(scale) for primitive in self.primitives))
var = ParameterExpression
deg_per_rad = 180 / math.pi
class GenericMacros:
_generic_hole = lambda n: (ap.Circle('mm', 0, var(n), 0, 0),)
# NOTE: All generic macros have rotation values specified in **clockwise radians** like the rest of the user-facing
# API.
circle = ApertureMacro('GNC', 4, (
ap.Circle('mm', 1, var(1), 0, 0, var(4) * -deg_per_rad),
*_generic_hole(2)))
rect = ApertureMacro('GNR', 5, (
ap.CenterLine('mm', 1, var(1), var(2), 0, 0, var(5) * -deg_per_rad),
*_generic_hole(3)))
# params: width, height, corner radius, *hole, rotation
rounded_rect = ApertureMacro('GRR', 6, (
ap.CenterLine('mm', 1, var(1)-2*var(3), var(2), 0, 0, var(6) * -deg_per_rad),
ap.CenterLine('mm', 1, var(1), var(2)-2*var(3), 0, 0, var(6) * -deg_per_rad),
ap.Circle('mm', 1, var(3)*2, +(var(1)/2-var(3)), +(var(2)/2-var(3)), var(6) * -deg_per_rad),
ap.Circle('mm', 1, var(3)*2, +(var(1)/2-var(3)), -(var(2)/2-var(3)), var(6) * -deg_per_rad),
ap.Circle('mm', 1, var(3)*2, -(var(1)/2-var(3)), +(var(2)/2-var(3)), var(6) * -deg_per_rad),
ap.Circle('mm', 1, var(3)*2, -(var(1)/2-var(3)), -(var(2)/2-var(3)), var(6) * -deg_per_rad),
*_generic_hole(4)))
# params: width, height, length difference between narrow side (top) and wide side (bottom), *hole, rotation
isosceles_trapezoid = ApertureMacro('GTR', 6, (
ap.Outline('mm', 1, 4,
(var(1)/-2, var(2)/-2,
var(1)/-2+var(3)/2, var(2)/2,
var(1)/2-var(3)/2, var(2)/2,
var(1)/2, var(2)/-2,
var(1)/-2, var(2)/-2,),
var(6) * -deg_per_rad),
*_generic_hole(4)))
# params: width, height, length difference between narrow side (top) and wide side (bottom), margin, *hole, rotation
rounded_isosceles_trapezoid = ApertureMacro('GRTR', 7, (
ap.Outline('mm', 1, 4,
(var(1)/-2, var(2)/-2,
var(1)/-2+var(3)/2, var(2)/2,
var(1)/2-var(3)/2, var(2)/2,
var(1)/2, var(2)/-2,
var(1)/-2, var(2)/-2,),
var(7) * -deg_per_rad),
ap.VectorLine('mm', 1, var(4)*2,
var(1)/-2, var(2)/-2,
var(1)/-2+var(3)/2, var(2)/2,),
ap.VectorLine('mm', 1, var(4)*2,
var(1)/-2+var(3)/2, var(2)/2,
var(1)/2-var(3)/2, var(2)/2,),
ap.VectorLine('mm', 1, var(4)*2,
var(1)/2-var(3)/2, var(2)/2,
var(1)/2, var(2)/-2,),
ap.VectorLine('mm', 1, var(4)*2,
var(1)/2, var(2)/-2,
var(1)/-2, var(2)/-2,),
ap.Circle('mm', 1, var(4)*2,
var(1)/-2, var(2)/-2,),
ap.Circle('mm', 1, var(4)*2,
var(1)/-2+var(3)/2, var(2)/2,),
ap.Circle('mm', 1, var(4)*2,
var(1)/2-var(3)/2, var(2)/2,),
ap.Circle('mm', 1, var(4)*2,
var(1)/2, var(2)/-2,),
*_generic_hole(5)))
# w must be larger than h
# params: width, height, *hole, rotation
obround = ApertureMacro('GNO', 5, (
ap.CenterLine('mm', 1, var(1)-var(2), var(2), 0, 0, var(5) * -deg_per_rad),
ap.Circle('mm', 1, var(2), +(var(1)-var(2))/2, 0, var(5) * -deg_per_rad),
ap.Circle('mm', 1, var(2), -(var(1)-var(2))/2, 0, var(5) * -deg_per_rad),
*_generic_hole(3) ))
polygon = ApertureMacro('GNP', 4, (
ap.Polygon('mm', 1, var(2), 0, 0, var(1), var(3) * -deg_per_rad),
ap.Circle('mm', 0, var(4), 0, 0)))
if __name__ == '__main__':
import sys
#for line in sys.stdin:
#expr = _parse_expression(line.strip())
#print(expr, '->', expr.optimized())
for primitive in parse_macro(sys.stdin.read(), 'mm'):
print(primitive)