gerbolyze/gerbolyze/protoboard.py

599 wiersze
21 KiB
Python

#!/usr/bin/env python3
import re
import textwrap
import ast
import uuid
svg_str = lambda content: content if isinstance(content, str) else '\n'.join(str(c) for c in content)
class Pattern:
def __init__(self, w, h, content):
self.w = w
self.h = h
self.content = content
def svg_def(self, svg_id, off_x, off_y):
return textwrap.dedent(f'''
<pattern id="{svg_id}" x="{off_x}" y="{off_y}" viewBox="0,0,{self.w},{self.h}" width="{self.w}" height="{self.h}" patternUnits="userSpaceOnUse">
{svg_str(self.content)}
</pattern>''')
def make_rect(svg_id, x, y, w, h, clip=''):
#import random
#c = random.randint(0, 2**24)
#return f'<rect x="{x}" y="{y}" width="{w}" height="{h}" fill="#{c:06x}"/>'
return f'<rect x="{x}" y="{y}" width="{w}" height="{h}" {clip} fill="url(#{svg_id})"/>'
class CirclePattern(Pattern):
def __init__(self, d, w, h=None):
self.d = d
self.w = w
self.h = h or w
@property
def content(self):
return f'<circle cx="{self.w/2}" cy="{self.h/2}" r="{self.d/2}"/>'
class RectPattern(Pattern):
def __init__(self, rw, rh, w, h):
self.rw, self.rh = rw, rh
self.w, self.h = w, h
@property
def content(self):
x = (self.w - self.rw) / 2
y = (self.h - self.rh) / 2
return f'<rect x="{x}" y="{y}" width="{self.rw}" height="{self.rh}"/>'
make_layer = lambda layer_name, content: \
f'<g id="g-{layer_name.replace(" ", "-")}" inkscape:label="{layer_name}" inkscape:groupmode="layer">{svg_str(content)}</g>'
svg_template = textwrap.dedent('''
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg version="1.1" width="{w}mm" height="{h}mm" viewBox="0 0 {w} {h}" id="svg18" sodipodi:docname="proto.svg"
inkscape:version="1.2 (dc2aedaf03, 2022-05-15)"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns="http://www.w3.org/2000/svg"
xmlns:svg="http://www.w3.org/2000/svg">
<defs id="defs2">
{defs}
</defs>
<sodipodi:namedview inkscape:current-layer="g-top-copper" id="namedview4" pagecolor="#ffffff" bordercolor="#666666"
borderopacity="1.0" inkscape:showpageshadow="2" inkscape:pageopacity="0.0" inkscape:pagecheckerboard="0"
inkscape:deskcolor="#d1d1d1" inkscape:document-units="mm" showgrid="false" inkscape:zoom="2.8291492"
inkscape:cx="157.29111" inkscape:cy="80.943063" inkscape:window-width="1920" inkscape:window-height="1011"
inkscape:window-x="0" inkscape:window-y="0" inkscape:window-maximized="1" />
{layers}
</svg>
''').strip()
class PatternProtoArea:
def __init__(self, pitch_x, pitch_y=None, border=None):
self.pitch_x = pitch_x
self.pitch_y = pitch_y or pitch_x
if border is None:
self.border = (0, 0, 0, 0)
elif hasattr(border, '__iter__'):
if len(border == 4):
self.border = border
else:
raise TypeError('border must be None, int, or a 4-tuple of floats (top, right, bottom, left)')
else:
self.border = (border, border, border, border)
@property
def pitch(self):
if self.pitch_x != self.pitch_y:
raise ValueError('Pattern has different X and Y pitches')
return self.pitch_x
def fit_size(self, w, h):
x, y, w, h = self.fit_rect(0, 0, w, h, False)
t, r, b, l = self.border
return (w+l+r), (h+t+b)
def fit_rect(self, x, y, w, h, center=True):
t, r, b, l = self.border
x, y, w, h = (x+l), (y+t), (w-l-r), (h-t-b)
w_mod, h_mod = round((w + 5e-7) % self.pitch_x, 6), round((h + 5e-7) % self.pitch_y, 6)
w_fit, h_fit = round(w - w_mod, 6), round(h - h_mod, 6)
if center:
x = x + (w-w_fit)/2
y = y + (h-h_fit)/2
return x, y, w_fit, h_fit
else:
return x, y, w_fit, h_fit
def generate(self, x, y, w, h, center=True, clip='', tight_layout=False):
yield {}
def symmetric_sides(self):
return False
def used_patterns(self):
yield self
class EmptyProtoArea:
def __init__(self, copper=False, border=None):
self.copper = copper
if border is None:
self.border = (0, 0, 0, 0)
elif hasattr(border, '__iter__'):
if len(border == 4):
self.border = border
else:
raise TypeError('border must be None, int, or a 4-tuple of floats (top, right, bottom, left)')
else:
self.border = (border, border, border, border)
def fit_size(self, w, h):
return w, h
def generate(self, x, y, w, h, center=True, clip='', tight_layout=False):
if self.copper:
t, r, b, l = self.border
x, y, w, h = x+l, y+t, w-l-r, h-t-b
yield { 'top copper': f'<rect x="{x}" y="{y}" width="{w}" height="{h}" {clip} fill="black"/>' }
else:
yield {}
def used_patterns(self):
yield self
class THTProtoAreaCircles(PatternProtoArea):
def __init__(self, pad_dia=2.0, drill=1.0, pitch=2.54, sides='both', plated=True, border=None):
super().__init__(pitch, border=border)
self.pad_dia = pad_dia
self.drill = drill
self.drill_pattern = CirclePattern(self.drill, self.pitch)
self.pad_pattern = CirclePattern(self.pad_dia, self.pitch)
self.patterns = [self.drill_pattern, self.pad_pattern]
self.plated = plated
self.sides = sides
def generate(self, x, y, w, h, center=True, clip='', tight_layout=False):
x, y, w, h = self.fit_rect(x, y, w, h, center)
drill = 'plated drill' if self.plated else 'nonplated drill'
pad_id = str(uuid.uuid4())
drill_id = str(uuid.uuid4())
d = { drill: make_rect(drill_id, x, y, w, h, clip),
'defs': [
self.pad_pattern.svg_def(pad_id, x, y),
self.drill_pattern.svg_def(drill_id, x, y)]}
if self.sides in ('top', 'both'):
d['top copper'] = make_rect(pad_id, x, y, w, h, clip)
d['top mask'] = make_rect(pad_id, x, y, w, h, clip)
if self.sides in ('bottom', 'both'):
d['bottom copper'] = make_rect(pad_id, x, y, w, h, clip)
d['bottom mask'] = make_rect(pad_id, x, y, w, h, clip)
yield d
def __repr__(self):
return f'THTCircles(d={self.pad_dia}, h={self.drill}, p={self.pitch}, sides={self.sides}, plated={self.plated})'
def symmetric_sides(self):
return True
class SMDProtoAreaRectangles(PatternProtoArea):
def __init__(self, pitch_x, pitch_y, w=None, h=None, border=None):
super().__init__(pitch_x, pitch_y, border=border)
w = w or pitch_x - 0.15
h = h or pitch_y - 0.15
self.w, self.h = w, h
self.pad_pattern = RectPattern(w, h, pitch_x, pitch_y)
self.patterns = [self.pad_pattern]
def generate(self, x, y, w, h, center=True, clip='', tight_layout=False):
x, y, w, h = self.fit_rect(x, y, w, h, center)
pad_id = str(uuid.uuid4())
yield {'defs': [self.pad_pattern.svg_def(pad_id, x, y)],
'top copper': make_rect(pad_id, x, y, w, h, clip),
'top mask': make_rect(pad_id, x, y, w, h, clip)}
def symmetric_sides(self):
return False
LAYERS = [
'top paste',
'top silk',
'top mask',
'top copper',
'bottom copper',
'bottom mask',
'bottom silk',
'bottom paste',
'outline',
'nonplated drill',
'plated drill'
]
class ProtoBoard:
def __init__(self, defs, expr, mounting_holes=None, border=None, center=True, tight_layout=False):
self.defs = eval_defs(defs)
self.layout = parse_layout(expr, self.defs)
self.mounting_holes = mounting_holes
self.center = center
self.tight_layout = tight_layout
if border is None:
self.border = (0, 0, 0, 0)
elif hasattr(border, '__iter__'):
if len(border == 4):
self.border = border
else:
raise TypeError('border must be None, int, or a 4-tuple of floats (top, right, bottom, left)')
else:
self.border = (border, border, border, border)
@property
def symmetric_sides(self):
return self.layout.symmetric_sides()
@property
def used_patterns(self):
return set(self.layout.used_patterns())
def generate(self, w, h):
out = {l: [] for l in LAYERS}
svg_defs = []
clip = ''
if self.mounting_holes:
d, o, *k = self.mounting_holes # diameter, offset from edge, keepout to proto area
k = k[0] if k else o
q = o + k
if 2*q < w:
if 2*q < h:
clip_d = f'M 0 {q} L {q} {q} L {q} 0 L {w-q} 0 L {w-q} {q} L {w} {q} L {w} {h-q} L {w-q} {h-q} L {w-q} {h} L {q} {h} L {q} {h-q} L 0 {h-q} Z'
else:
clip_d = f'M {q} 0 L {w-q} 0 L {w-q} {h} L 0 {h} Z'
else:
if 2*q < h:
clip_d = f'M 0 {q} L 0 {h-q} L {w} {h-q} L {w} {q} Z'
else:
raise ValueError(f'Hole keepout areas are so large that no board area is left. Available size is {w}x{h} mm, keepout areas are {q}x{q} mm in all four corners.')
svg_defs.append(f'<clipPath id="hole-clip"><path d="{clip_d}"/></clipPath>')
clip = 'clip-path="url(#hole-clip)"'
out['nonplated drill'].append([
f'<circle cx="{o}" cy="{o}" r="{d/2}"/>',
f'<circle cx="{w-o}" cy="{o}" r="{d/2}"/>',
f'<circle cx="{w-o}" cy="{h-o}" r="{d/2}"/>',
f'<circle cx="{o}" cy="{h-o}" r="{d/2}"/>' ])
t, r, b, l = self.border
for layer_dict in self.layout.generate(l, t, w-l-r, h-t-b, self.center, clip, self.tight_layout):
for l in LAYERS:
if l in layer_dict:
out[l].append(layer_dict[l])
svg_defs += layer_dict.get('defs', [])
out['outline'] = f'<rect x="0" y="0" width="{w}" height="{h}" fill="none" stroke="black" stroke-width="0.1mm"/>'
layers = [ make_layer(l, out[l]) for l in LAYERS ]
return svg_template.format(w=w, h=h, defs='\n'.join(svg_defs), layers='\n'.join(layers))
def convert_to_mm(value, unit):
unitl = unit.lower()
if unitl == 'mm':
return value
elif unitl == 'cm':
return value*10
elif unitl == 'in':
return value*25.4
elif unitl == 'mil':
return value/1000*25.4
else:
raise ValueError(f'Invalid unit {unit}, allowed units are mm, cm, in, and mil.')
value_re = re.compile('([0-9]*\.?[0-9]+)(cm|mm|in|mil|%)')
def eval_value(value, total_length=None):
if not isinstance(value, str):
return None
m = value_re.match(value.lower())
number, unit = m.groups()
if unit == '%':
if total_length is None:
raise ValueError('Percentages are not allowed for this value')
return total_length * float(number) / 100
return convert_to_mm(float(number), unit)
class PropLayout:
def __init__(self, content, direction, proportions):
self.content = content
self.direction = direction
self.proportions = proportions
if len(content) != len(proportions):
raise ValueError('proportions and content must have same length')
def generate(self, x, y, w, h, center=True, clip='', tight_layout=False):
for (c_x, c_y, c_w, c_h), child in self.layout_2d(x, y, w, h, tight_layout):
yield from child.generate(c_x, c_y, c_w, c_h, center, clip, tight_layout)
def fit_size(self, w, h):
widths = []
heights = []
for (_x, _y, w, h), child in self.layout_2d(0, 0, w, h, True):
if not isinstance(child, EmptyProtoArea):
widths.append(w)
heights.append(h)
if self.direction == 'h':
return sum(widths), max(heights)
else:
return max(widths), sum(heights)
def layout_2d(self, x, y, w, h, tight_layout=False):
actual_l = 0
target_l = 0
for l, child in zip(self.layout(w if self.direction == 'h' else h), self.content):
this_x, this_y = x, y
this_w, this_h = w, h
target_l += l
if self.direction == 'h':
this_w = target_l - actual_l
else:
this_h = target_l - actual_l
if tight_layout:
this_w, this_h = child.fit_size(this_w, this_h)
if self.direction == 'h':
x += this_w
actual_l += this_w
this_h = h
else:
y += this_h
actual_l += this_h
this_w = w
yield (this_x, this_y, this_w, this_h), child
def layout(self, length):
out = [ eval_value(value, length) for value in self.proportions ]
total_length = sum(value for value in out if value is not None)
if length - total_length < -1e-6:
raise ValueError(f'Proportions sum to {total_length} mm, which is greater than the available space of {length} mm.')
leftover = length - total_length
sum_props = sum( (value or 1.0) for value in self.proportions if not isinstance(value, str) )
return [ (leftover * (value or 1.0) / sum_props if not isinstance(value, str) else calculated)
for value, calculated in zip(self.proportions, out) ]
def __str__(self):
children = ', '.join( f'{elem}:{width}' for elem, width in zip(self.content, self.proportions))
return f'PropLayout[{self.direction.upper()}]({children})'
def symmetric_sides(self):
return all(child.symmetric_sides() for child in self.content)
def used_patterns(self):
for child in self.content:
yield from child.used_patterns()
class TwoSideLayout:
def __init__(self, top, bottom):
self.top, self.bottom = top, bottom
def flip(self, defs):
out = dict(defs)
for layer in ('copper', 'mask', 'silk', 'paste'):
top, bottom = f'top {layer}', f'bottom {layer}'
tval, bval = defs.get(top), defs.get(bottom)
if tval:
defs[bottom] = tval
elif bottom in defs:
del defs[bottom]
if bval:
defs[top] = bval
elif top in defs:
del defs[top]
return defs
def fit_size(self, w, h):
top, bottom = self.top, self.bottom
w1, h1 = top.fit_size(w, h)
w2, h2 = bottom.fit_size(w, h)
if isinstance(top, EmptyProtoArea):
if isinstance(bottom, EmptyProtoArea):
return w1, h1
return w2, h2
if isinstance(bottom, EmptyProtoArea):
return w1, h1
return max(w1, w2), max(h1, h2)
def generate(self, x, y, w, h, center=True, clip='', tight_layout=False):
yield from self.top.generate(x, y, w, h, center, clip, tight_layout)
yield from map(self.flip, self.bottom.generate(x, y, w, h, center, clip, tight_layout))
def symmetric_sides(self):
return self.top == self.bottom
def used_patterns(self):
yield from self.top.used_patterns()
yield from self.bottom.used_patterns()
def _map_expression(node, defs):
if isinstance(node, ast.Name):
return defs[node.id]
elif isinstance(node, ast.Constant):
return node.value
elif isinstance(node, ast.BinOp) and isinstance(node.op, (ast.BitOr, ast.BitAnd, ast.Add)):
left_prop = right_prop = None
left, right = node.left, node.right
if isinstance(left, ast.BinOp) and isinstance(left.op, ast.MatMult):
left_prop = _map_expression(left.right, defs)
left = left.left
if isinstance(right, ast.BinOp) and isinstance(right.op, ast.MatMult):
right_prop = _map_expression(right.right, defs)
right = right.left
left, right = _map_expression(left, defs), _map_expression(right, defs)
direction = 'h' if isinstance(node.op, ast.BitOr) else 'v'
if isinstance(left, PropLayout) and left.direction == direction and left_prop is None:
left.content.append(right)
left.proportions.append(right_prop)
return left
elif isinstance(right, PropLayout) and right.direction == direction and right_prop is None:
right.content.insert(0, left)
right.proportions.insert(0, left_prop)
return right
elif isinstance(node.op, ast.Add):
if left_prop or right_prop:
raise SyntaxError(f'Proportions ("@") not supported for two-side layout ("+")')
return TwoSideLayout(left, right)
else:
return PropLayout([left, right], direction, [left_prop, right_prop])
elif isinstance(node, ast.BinOp) and isinstance(node.op, ast.MatMult):
raise SyntaxError(f'Unexpected width specification "{ast.unparse(node.right)}"')
else:
raise SyntaxError(f'Invalid layout expression "{ast.unparse(node)}"')
def parse_layout(expr, defs):
''' Example layout:
( tht @ 2in | smd ) @ 50% / tht
'''
expr = re.sub(r'\s', '', expr)
expr = re.sub(r'([0-9]*\.?[0-9]+)([Mm][Mm]|[Cc][Mm]|[Ii][Nn]|[Mm][Ii][Ll]|%)', r'"\1\2"', expr)
expr = expr.replace('/', '&')
try:
expr = ast.parse(expr, mode='eval').body
match expr:
case ast.Name():
return PropLayout([defs[expr.id]], 'h', [None])
case ast.BinOp(op=ast.MatMult()):
assert isinstance(expr.right, ast.Constant)
return PropLayout([_map_expression(expr.left, defs)], 'h', [expr.right.value])
case _:
return _map_expression(expr, defs)
except SyntaxError as e:
raise SyntaxError('Invalid layout expression') from e
PROTO_AREA_TYPES = {
'THTCircles': THTProtoAreaCircles,
'SMDPads': SMDProtoAreaRectangles,
'Empty': EmptyProtoArea,
}
def eval_defs(defs):
defs = defs.replace('\n', ';')
defs = re.sub(r'\s', '', defs)
out = {}
for elem in defs.split(';'):
if not elem:
continue
if not (m := re.match('([a-zA-Z_][a-zA-Z0-9_]*)=([a-zA-Z_][a-zA-Z0-9_]*)\((.*)\)', elem)):
raise SyntaxError(f'Invalid pattern definition "{elem}"')
key, pattern, params = m.groups()
args, kws = [], {}
for elem in params.split(','):
if not elem:
continue
if (m := re.match('([a-zA-Z_][a-zA-Z0-9_]*)=(.*)', elem)):
param_name, param_value = m.groups()
kws[param_name] = ast.literal_eval(param_value)
else:
args.append(ast.literal_eval(elem))
out[key] = PROTO_AREA_TYPES[pattern](*args, **kws)
return out
COMMON_DEFS = '''
empty = Empty(copper=False);
ground = Empty(copper=True);
tht = THTCircles();
tht50 = THTCircles(pad_dia=1.0, drill=0.6, pitch=1.27);
smd100 = SMDPads(1.27, 2.54);
smd100r = SMDPads(2.54, 1.27);
smd950 = SMDPads(0.95, 2.5);
smd950r = SMDPads(2.5, 0.95);
smd800 = SMDPads(0.80, 2.0);
smd800r = SMDPads(2.0, 0.80);
smd650 = SMDPads(0.65, 2.0);
smd650r = SMDPads(2.0, 0.65);
smd500 = SMDPads(0.5, 2.0);
smd500r = SMDPads(2.0, 0.5);
'''
if __name__ == '__main__':
# import sys
# print('===== Layout expressions =====')
# for line in [
# 'tht',
# 'tht@1mm',
# 'tht|tht',
# 'tht@1mm|tht',
# 'tht|tht|tht',
# 'tht@1mm|tht@2mm|tht@3mm',
# '(tht@1mm|tht@2mm)|tht@3mm',
# 'tht@1mm|(tht@2mm|tht@3mm)',
# 'tht@2|tht|tht',
# '(tht@1mm|tht|tht@3mm) / tht',
# ]:
# layout = parse_layout(line)
# print(line, '->', layout)
# print(' ', layout.layout(100))
# print()
# print('===== Pattern definitions =====')
# for line in [
# 'tht = THTCircles()',
# 'tht = THTCircles(10)',
# 'tht = THTCircles(10, 20)',
# 'tht = THTCircles(plated=False)',
# 'tht = THTCircles(10, plated=False)',
# ]:
# print(line, '->', eval_defs(line))
# print()
# print('===== Proto board =====')
#b = ProtoBoard('tht = THTCircles(); tht_small = THTCircles(pad_dia=1.0, drill=0.6, pitch=1.27)',
# 'tht@1in|(tht_small@2/tht@1)', mounting_holes=(3.2, 5.0, 5.0), border=2, center=False)
#b = ProtoBoard('tht = THTCircles(); smd1 = SMDPads(2.0, 2.0); smd2 = SMDPads(0.95, 1.895); plane=Empty(copper=True)', 'tht@25mm | (smd1 + plane)', mounting_holes=(3.2, 5.0, 5.0), border=2, tight_layout=True)
b = ProtoBoard(COMMON_DEFS, f'((smd100 + smd100) | (smd950 + smd950) | tht50@20mm)@20mm / tht', mounting_holes=(3.2,5,5), border=1, tight_layout=True, center=True)
print(b.generate(80, 60))