svg-flatten: Add cubic bezier support for newer usvg versions

main
jaseg 2023-10-26 00:03:27 +02:00
rodzic 8ab0c9fa01
commit 00eb9594d6
5 zmienionych plików z 144 dodań i 4 usunięć

Wyświetl plik

@ -79,7 +79,7 @@ def paste(input_gerbers, input_svg, output_gerbers, is_zip,
(('drill', 'plated'), stack.drill_pth),
(('drill', 'nonplated'), stack.drill_npth)]:
logging.info(f'Layer {side} {use}')
if (soup_layer := soup.find(id=f'g-{side}-{use}')):
if (soup_layer := soup.find('g', id=f'g-{side}-{use}')):
if not soup_layer.contents:
logging.info(f' Corresponding overlay layer is empty. Skipping.')
else:

Wyświetl plik

@ -2,6 +2,28 @@
#include "gerbolyze.hpp"
namespace gerbolyze {
class curve3_div {
public:
curve3_div(double distance_tolerance=0.1, double angle_tolerance=0.0, double cusp_limit=0.0)
: m_cusp_limit(cusp_limit),
m_distance_tolerance_square(0.25*distance_tolerance*distance_tolerance),
m_angle_tolerance(angle_tolerance)
{
}
void run(double x1, double y1, double x2, double y2, double x3, double y3);
const std::vector<d2p> &points() { return m_points; }
private:
void recursive_bezier(double x1, double y1, double x2, double y2,
double x3, double y3,
unsigned level);
double m_cusp_limit;
double m_distance_tolerance_square;
double m_angle_tolerance;
std::vector<d2p> m_points;
};
class curve4_div {
public:
curve4_div(double distance_tolerance=0.1, double angle_tolerance=0.0, double cusp_limit=0.0)

Wyświetl plik

@ -22,6 +22,7 @@
#include <iostream>
#include <string>
#include <array>
#include <cstdint>
#include <pugixml.hpp>

Wyświetl plik

@ -19,7 +19,107 @@ static inline double calc_sq_distance(double x1, double y1, double x2, double y2
return dx * dx + dy * dy;
}
void curve4_div::run(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4) {
/* Quadratic beziers */
void curve3_div::run(double x1, double y1, double x2, double y2, double x3, double y3)
{
m_points.clear();
m_points.emplace_back(d2p{x1, y1});
recursive_bezier(x1, y1, x2, y2, x3, y3, 0);
m_points.emplace_back(d2p{x3, y3});
}
void curve3_div::recursive_bezier(double x1, double y1, double x2, double y2, double x3, double y3, unsigned level)
{
if(level > curve_recursion_limit)
{
return;
}
// Calculate all the mid-points of the line segments
//----------------------
double x12 = (x1 + x2) / 2;
double y12 = (y1 + y2) / 2;
double x23 = (x2 + x3) / 2;
double y23 = (y2 + y3) / 2;
double x123 = (x12 + x23) / 2;
double y123 = (y12 + y23) / 2;
double dx = x3-x1;
double dy = y3-y1;
double d = fabs(((x2 - x3) * dy - (y2 - y3) * dx));
double da;
double pi = M_PI;
if(d > curve_collinearity_epsilon)
{
// Regular case
//-----------------
if(d * d <= m_distance_tolerance_square * (dx*dx + dy*dy))
{
// If the curvature doesn't exceed the distance_tolerance value
// we tend to finish subdivisions.
//----------------------
if(m_angle_tolerance < curve_angle_tolerance_epsilon)
{
m_points.emplace_back(d2p{x123, y123});
return;
}
// Angle & Cusp Condition
//----------------------
da = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1));
if(da >= pi) da = 2*pi - da;
if(da < m_angle_tolerance)
{
// Finally we can stop the recursion
//----------------------
m_points.emplace_back(d2p{x123, y123});
return;
}
}
}
else
{
// Collinear case
//------------------
da = dx*dx + dy*dy;
if(da == 0)
{
d = calc_sq_distance(x1, y1, x2, y2);
}
else
{
d = ((x2 - x1)*dx + (y2 - y1)*dy) / da;
if(d > 0 && d < 1)
{
// Simple collinear case, 1---2---3
// We can leave just two endpoints
return;
}
if(d <= 0) d = calc_sq_distance(x2, y2, x1, y1);
else if(d >= 1) d = calc_sq_distance(x2, y2, x3, y3);
else d = calc_sq_distance(x2, y2, x1 + d*dx, y1 + d*dy);
}
if(d < m_distance_tolerance_square)
{
m_points.emplace_back(d2p{x2, y2});
return;
}
}
// Continue subdivision
//----------------------
recursive_bezier(x1, y1, x12, y12, x123, y123, level + 1);
recursive_bezier(x123, y123, x23, y23, x3, y3, level + 1);
}
/* Cubic beziers */
void curve4_div::run(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4)
{
m_points.clear();
m_points.emplace_back(d2p{x1, y1});
recursive_bezier(x1, y1, x2, y2, x3, y3, x4, y4, 0);

Wyświetl plik

@ -77,8 +77,7 @@ static pair<bool, bool> flatten_path(ClipperLib::Paths &stroke_open, ClipperLib:
(ClipperLib::cInt)round(a[1]*clipper_scale)
});
} else { /* Curve to */
assert(cmd == "C"); /* guaranteed by usvg */
} else if (cmd == "C") { /* Curve to */
in >> b[0] >> b[1]; /* first control point */
in >> c[0] >> c[1]; /* second control point */
in >> d[0] >> d[1]; /* end point */
@ -95,6 +94,24 @@ static pair<bool, bool> flatten_path(ClipperLib::Paths &stroke_open, ClipperLib:
}
a = d; /* set last point to curve end point */
} else { /* Curve to */
assert(cmd == "Q"); /* guaranteed by usvg */
in >> b[0] >> b[1]; /* control point */
in >> c[0] >> c[1]; /* end point */
assert (!in.fail()); /* guaranteed by usvg */
gerbolyze::curve3_div c3div(distance_tolerance_px);
c3div.run(a[0], a[1], b[0], b[1], c[0], c[1]);
for (auto &pt : c3div.points()) {
in_poly.emplace_back(ClipperLib::IntPoint{
(ClipperLib::cInt)round(pt[0]*clipper_scale),
(ClipperLib::cInt)round(pt[1]*clipper_scale)
});
}
a = c; /* set last point to curve end point */
}
first = false;