Porównaj commity

...

27 Commity
v0.3 ... master

Autor SHA1 Wiadomość Data
Shawn Shan aedaa82d22
Update README.md
fix type
2021-09-27 01:03:09 -05:00
Shawn-Shan 600fb82568 minor fix 2021-05-22 10:14:36 -05:00
Shawn-Shan 386292bafc fix dependency issue with tensorflow 2021-05-19 10:19:36 -05:00
Shawn-Shan 65743ef509 minor fix 2021-05-10 21:56:41 -05:00
Shawn-Shan 5d1c2ad2d7 bug fix 2021-05-03 16:45:10 -05:00
Shawn-Shan b9d3ca46da fix minor issue in cropping faces 2021-04-30 10:09:22 -05:00
Shawn-Shan 0b663ac422 Merge branch 'master' of https://github.com/Shawn-Shan/fawkes 2021-04-21 10:55:23 -05:00
Shawn-Shan 8ff3175cea small fixes 2021-04-21 10:55:15 -05:00
Shawn Shan d98c89bfb1
Update README.md 2021-03-07 00:43:37 -06:00
Shawn Shan 9ac50bf82a
Update README.md 2021-03-07 00:43:15 -06:00
Shawn-Shan b35f7eb0ab 1.0 2021-03-07 00:42:26 -06:00
Shawn-Shan c0e8ae2764 1.0 2021-03-07 00:41:19 -06:00
Shawn-Shan cfb34e1d39 1.0 beta update 2021-03-07 00:39:19 -06:00
Shawn Shan 63ba2f9b73
Update README.md 2021-01-31 02:28:02 -06:00
Shawn Shan ee77c42265
Update README.md 2021-01-31 02:27:30 -06:00
Shawn Shan 3590ab3cb1
Update README.md 2021-01-26 17:11:33 -06:00
Shawn Shan e676463aa0
Update README.md 2021-01-26 17:11:14 -06:00
Shawn Shan 7abf1dbc28
Update README.md 2020-09-29 22:01:54 -05:00
Shawn Shan e3b2181949
Update README.md 2020-08-10 10:49:06 -05:00
Shawn-Shan 2b08b3ec8e update param; 2020-08-02 15:43:25 -05:00
Shawn Shan 3c91395e97
Update README.md 2020-08-01 12:17:10 -05:00
Shawn Shan 21f341c9d0
Update README.md 2020-08-01 12:14:27 -05:00
Shawn-Shan 358b01ecdf Merge branch 'master' of https://github.com/Shawn-Shan/fawkes 2020-08-01 00:30:46 -05:00
Shawn-Shan 8ceeaf54b0 add option to bypass face detection step 2020-08-01 00:30:40 -05:00
Shawn Shan 16c2d98b9b
Update README.md 2020-07-31 21:44:42 -05:00
Shawn Shan 656d25108e
Update README.md 2020-07-31 21:44:22 -05:00
Shawn-Shan 641e020e09 add GUI app 2020-07-31 12:07:05 -05:00
11 zmienionych plików z 682 dodań i 1494 usunięć

Wyświetl plik

@ -1,19 +1,19 @@
Fawkes
------
:warning: Check out our MacOS/Windows Software on our official [webpage](https://sandlab.cs.uchicago.edu/fawkes/#code).
Fawkes is a privacy protection system developed by researchers at [SANDLab](https://sandlab.cs.uchicago.edu/), University of Chicago. For more information about the project, please refer to our project [webpage](https://sandlab.cs.uchicago.edu/fawkes/). Contact us at fawkes-team@googlegroups.com.
We published an academic paper to summarize our work "[Fawkes: Protecting Personal Privacy against Unauthorized Deep Learning Models](https://www.shawnshan.com/files/publication/fawkes.pdf)" at *USENIX Security 2020*.
NEW! If you would like to use Fawkes to protect your identity, please check out our software and binary implementation on the [website](https://sandlab.cs.uchicago.edu/fawkes/#code).
Fawkes is a privacy protection system developed by researchers at [SANDLab](https://sandlab.cs.uchicago.edu/),
University of Chicago. For more information about the project, please refer to our
project [webpage](https://sandlab.cs.uchicago.edu/fawkes/). Contact us at fawkes-team@googlegroups.com.
We published an academic paper to summarize our
work "[Fawkes: Protecting Personal Privacy against Unauthorized Deep Learning Models](https://www.shawnshan.com/files/publication/fawkes.pdf)"
at *USENIX Security 2020*.
Copyright
---------
This code is intended only for personal privacy protection or academic research.
We are currently exploring the filing of a provisional patent on the Fawkes algorithm.
This code is intended only for personal privacy protection or academic research.
Usage
-----
@ -22,30 +22,34 @@ Usage
Options:
* `-m`, `--mode` : the tradeoff between privacy and perturbation size. Select from `min`, `low`, `mid`, `high`. The higher the mode is, the more perturbation will add to the image and provide stronger protection.
* `-m`, `--mode` : the tradeoff between privacy and perturbation size. Select from `low`, `mid`, `high`. The
higher the mode is, the more perturbation will add to the image and provide stronger protection.
* `-d`, `--directory` : the directory with images to run protection.
* `-g`, `--gpu` : the GPU id when using GPU for optimization.
* `--batch-size` : number of images to run optimization together. Change to >1 only if you have extremely powerful compute power.
* `--format` : format of the output image (png or jpg).
when --mode is `custom`:
* `--th` : perturbation threshold
* `--max-step` : number of optimization steps to run
* `--lr` : learning rate for the optimization
* `--feature-extractor` : name of the feature extractor to use
* `--separate_target` : whether select separate targets for each faces in the diectory.
* `--batch-size` : number of images to run optimization together. Change to >1 only if you have extremely powerful
compute power.
* `--format` : format of the output image (png or jpg).
### Example
`fawkes -d ./imgs --mode min`
`fawkes -d ./imgs --mode low`
or `python3 protection.py -d ./imgs --mode low`
### Tips
- The perturbation generation takes ~60 seconds per image on a CPU machine, and it would be much faster on a GPU machine. Use `batch-size=1` on CPU and `batch-size>1` on GPUs.
- Turn on separate target if the images in the directory belong to different people, otherwise, turn it off.
- Run on GPU. The current Fawkes package and binary does not support GPU. To use GPU, you need to clone this, install the required packages in `setup.py`, and replace tensorflow with tensorflow-gpu. Then you can run Fawkes by `python3 fawkes/protection.py [args]`.
### How do I know my images are secure?
We are actively working on this. Python scripts that can test the protection effectiveness will be ready shortly.
- The perturbation generation takes ~60 seconds per image on a CPU machine, and it would be much faster on a GPU
machine. Use `batch-size=1` on CPU and `batch-size>1` on GPUs.
- Run on GPU. The current Fawkes package and binary does not support GPU. To use GPU, you need to clone this repo, install
the required packages in `setup.py`, and replace tensorflow with tensorflow-gpu. Then you can run Fawkes
by `python3 fawkes/protection.py [args]`.
![](http://sandlab.cs.uchicago.edu/fawkes/files/obama.png)
### How do I know my images are secure?
We are actively working on this. Python scripts that can test the protection effectiveness will be ready shortly.
Quick Installation
------------------
@ -59,13 +63,22 @@ pip install fawkes
If you don't have root privilege, please try to install on user namespace: `pip install --user fawkes`.
Academic Research Usage
-----------------------
For academic researchers, whether seeking to improve fawkes or to explore potential vunerability, please refer to the
following guide to test Fawkes.
To protect a class in a dataset, first move the label's image to a separate location and run Fawkes. Please
use `--debug` option and set `batch-size` to a reasonable number (i.e 16, 32). If the images are already cropped and
aligned, then also use the `no-align` option.
### Citation
```
@inproceedings{shan2020fawkes,
title={Fawkes: Protecting Personal Privacy against Unauthorized Deep Learning Models},
author={Shan, Shawn and Wenger, Emily and Zhang, Jiayun and Li, Huiying and Zheng, Haitao and Zhao, Ben Y},
booktitle="Proc. of USENIX Security",
booktitle={Proc. of {USENIX} Security},
year={2020}
}
```

106
app/app.py 100644
Wyświetl plik

@ -0,0 +1,106 @@
# -*- coding: utf-8 -*-
from PyQt5 import QtCore, QtWidgets
from PyQt5.QtCore import QThread, pyqtSignal
from PyQt5.QtWidgets import QFileDialog
from fawkes.protection import Fawkes
import os
os.environ['QT_MAC_WANTS_LAYER'] = '1'
class Worker(QThread):
signal = pyqtSignal('PyQt_PyObject')
def __init__(self):
QThread.__init__(self)
self.image_paths = None
self.my_fawkes = None
def run(self):
if self.my_fawkes is None:
self.my_fawkes = Fawkes("extractor_2", '0', 1)
status = self.my_fawkes.run_protection(self.image_paths, debug=True)
self.signal.emit(status)
class FawkesAPP(object):
def __init__(self, Form):
Form.setObjectName("Form")
Form.resize(220, 150)
self.running = False
self.pushButton = QtWidgets.QPushButton(Form)
self.pushButton.setGeometry(QtCore.QRect(0, 20, 220, 36))
self.cloakButton = QtWidgets.QPushButton(Form)
self.cloakButton.setGeometry(QtCore.QRect(0, 70, 220, 36))
self.img_paths = None
self.labelA = QtWidgets.QLabel(Form)
self.labelA.setText('Please select images to protect. ')
self.labelA.move(10, 115)
self.pushButton.setObjectName("pushButton")
self.retranslateUi(Form)
QtCore.QMetaObject.connectSlotsByName(Form)
self.thread = Worker()
self.thread.signal.connect(self.finished)
def retranslateUi(self, Form):
self.tr = QtCore.QCoreApplication.translate
Form.setWindowTitle(self.tr("Form", "Fawkes"))
self.pushButton.setText(self.tr("Form", "Select Images"))
self.cloakButton.setText(self.tr("Form", "Protect Selected Images"))
self.pushButton.clicked.connect(self.pushButton_handler)
self.cloakButton.clicked.connect(lambda: self.protect_images())
def pushButton_handler(self):
print("Button pressed")
self.open_dialog_box()
def open_dialog_box(self):
qfd = QFileDialog()
path = "."
filter = "Images (*.png *.xpm *.jpg *jpeg *.gif)"
filename = QFileDialog.getOpenFileNames(qfd, "Select Image(s)", path, filter)
self.img_paths = filename[0]
print("Selected paths", self.img_paths)
self.labelA.setText('Selected {} images'.format(len(self.img_paths)))
def finished(self, result):
if result == 1:
self.labelA.setText("Finished! Saved to original folder. ")
elif result == 2:
self.labelA.setText("Error: No face detected. ")
elif result == 3:
self.labelA.setText("Error: No image selected. ")
self.cloakButton.setEnabled(True)
self.pushButton.setEnabled(True)
self.img_paths = None
def protect_images(self):
if self.img_paths is None:
self.labelA.setText("Please select images first.")
return
self.labelA.setText("Running Fawkes... ~{} minute(s)".format(int(len(self.img_paths) * 2)))
self.labelA.repaint()
self.thread.image_paths = self.img_paths
self.cloakButton.setEnabled(False)
self.pushButton.setEnabled(False)
self.thread.start()
if __name__ == "__main__":
import sys
app = QtWidgets.QApplication(sys.argv)
Form = QtWidgets.QWidget()
ui = FawkesAPP(Form)
Form.show()
sys.exit(app.exec_())

Wyświetl plik

@ -1,35 +0,0 @@
# Fawkes Binary
This application is built for individuals to cloak their images before uploading to the Internet. For more information about the project, please refer to our project [webpage](http://sandlab.cs.uchicago.edu/fawkes/).
If you are a developer or researcher planning to customize and modify on our existing code. Please refer to [fawkes](https://github.com/Shawn-Shan/fawkes/tree/master/).
### How to Setup
#### MAC:
* Download the binary following this [link](http://sandlab.cs.uchicago.edu/fawkes/files/fawkes_binary.zip) and unzip the download file.
* Create a directory and move all the images you wish to protect into that directory. Note the path to that directory (e.g. ~/Desktop/images).
* Open [terminal](https://support.apple.com/guide/terminal/open-or-quit-terminal-apd5265185d-f365-44cb-8b09-71a064a42125/mac) and change directory to fawkes (the unzipped folder).
* (If your MacOS is Catalina) Run `sudo spctl --master-disable` to enable running apps from unidentified developer. We are working on a solution to bypass this step.
* Run `./protection-v0.3 -d IMAGE_DIR_PATH` to generate cloak for images in `IMAGE_DIR_PATH`.
* When the cloaked image is generated, it will output a `*_min_cloaked.png` image in `IMAGE_DIR_PATH`. The generation takes ~40 seconds per image depending on the hardware.
#### PC:
* Download the binary following this [link](http://sandlab.cs.uchicago.edu/fawkes/files/fawkes_binary_windows.zip) and unzip the download file.
* Create a directory and move all the images you wish to protect into that directory. Note the path to that directory (e.g. ~/Desktop/images).
* Open terminal(powershell or cmd) and change directory to protection (the unzipped folder).
* Run `protection-v0.3.exe -d IMAGE_DIR_PATH` to generate cloak for images in `IMAGE_DIR_PATH`.
* When the cloaked image is generated, it will output a `*_min_cloaked.png` image in `IMAGE_DIR_PATH`. The generation takes ~40 seconds per image depending on the hardware.
#### Linux:
* Download the binary following this [link](http://sandlab.cs.uchicago.edu/fawkes/files/fawkes_binary_linux.zip) and unzip the download file.
* Create a directory and move all the images you wish to protect into that directory. Note the path to that directory (e.g. ~/Desktop/images).
* Open terminal and change directory to protection (the unzipped folder).
* Run `./protection-v0.3 -d IMAGE_DIR_PATH` to generate cloak for images in `IMAGE_DIR_PATH`.
* When the cloaked image is generated, it will output a `*_min_cloaked.png` image in `IMAGE_DIR_PATH`. The generation takes ~40 seconds per image depending on the hardware.
More details on the optional parameters check out the [github repo](https://github.com/Shawn-Shan/fawkes/tree/master/).

Wyświetl plik

@ -4,16 +4,15 @@
# @Link : https://www.shawnshan.com/
__version__ = '0.3.1'
__version__ = '1.0.2'
from .detect_faces import create_mtcnn, run_detect_face
from .differentiator import FawkesMaskGeneration
from .protection import main, Fawkes
from .utils import load_extractor, init_gpu, select_target_label, dump_image, reverse_process_cloaked, Faces, get_file, \
filter_image_paths
__all__ = (
'__version__', 'create_mtcnn', 'run_detect_face',
'__version__',
'FawkesMaskGeneration', 'load_extractor',
'init_gpu',
'select_target_label', 'dump_image', 'reverse_process_cloaked',

Wyświetl plik

@ -1,36 +1,5 @@
"""Performs face alignment and stores face thumbnails in the output directory."""
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
""" Tensorflow implementation of the face detection / alignment algorithm found at
https://github.com/kpzhang93/MTCNN_face_detection_alignment
"""
import numpy as np
from fawkes import create_mtcnn, run_detect_face
np_load_old = np.load
np.load = lambda *a, **k: np_load_old(*a, allow_pickle=True, **k)
from mtcnn import MTCNN
def to_rgb(img):
@ -40,16 +9,12 @@ def to_rgb(img):
return ret
def aligner(sess):
pnet, rnet, onet = create_mtcnn(sess, None)
return [pnet, rnet, onet]
def aligner():
return MTCNN(min_face_size=30)
def align(orig_img, aligner, margin=0.8, detect_multiple_faces=True):
pnet, rnet, onet = aligner
minsize = 25 # minimum size of face
threshold = [0.85, 0.85, 0.85] # three steps's threshold
factor = 0.709 # scale factor
def align(orig_img, aligner):
""" run MTCNN face detector """
if orig_img.ndim < 2:
return None
@ -57,42 +22,59 @@ def align(orig_img, aligner, margin=0.8, detect_multiple_faces=True):
orig_img = to_rgb(orig_img)
orig_img = orig_img[:, :, 0:3]
bounding_boxes, _ = run_detect_face(orig_img, minsize, pnet, rnet, onet, threshold, factor)
nrof_faces = bounding_boxes.shape[0]
if nrof_faces > 0:
det = bounding_boxes[:, 0:4]
det_arr = []
img_size = np.asarray(orig_img.shape)[0:2]
if nrof_faces > 1:
margin = margin / 1.5
if detect_multiple_faces:
for i in range(nrof_faces):
det_arr.append(np.squeeze(det[i]))
else:
bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1])
img_center = img_size / 2
offsets = np.vstack([(det[:, 0] + det[:, 2]) / 2 - img_center[1],
(det[:, 1] + det[:, 3]) / 2 - img_center[0]])
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
index = np.argmax(bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering
det_arr.append(det[index, :])
else:
det_arr.append(np.squeeze(det))
cropped_arr = []
bounding_boxes_arr = []
for i, det in enumerate(det_arr):
det = np.squeeze(det)
bb = np.zeros(4, dtype=np.int32)
side_1 = int((det[2] - det[0]) * margin)
side_2 = int((det[3] - det[1]) * margin)
detect_results = aligner.detect_faces(orig_img)
cropped_arr = []
bounding_boxes_arr = []
for dic in detect_results:
if dic['confidence'] < 0.9:
continue
x, y, width, height = dic['box']
bb[0] = np.maximum(det[0] - side_1 / 2, 0)
bb[1] = np.maximum(det[1] - side_1 / 2, 0)
bb[2] = np.minimum(det[2] + side_2 / 2, img_size[1])
bb[3] = np.minimum(det[3] + side_2 / 2, img_size[0])
cropped = orig_img[bb[1]:bb[3], bb[0]:bb[2], :]
cropped_arr.append(cropped)
bounding_boxes_arr.append([bb[0], bb[1], bb[2], bb[3]])
return cropped_arr, bounding_boxes_arr
else:
return None
if width < 30 or height < 30:
continue
bb = [y, x, y + height, x + width]
cropped = orig_img[bb[0]:bb[2], bb[1]:bb[3], :]
cropped_arr.append(np.copy(cropped))
bounding_boxes_arr.append(bb)
return cropped_arr, bounding_boxes_arr
# if nrof_faces > 0:
# det = bounding_boxes[0]['box']
# det_arr = []
# img_size = np.asarray(orig_img.shape)[0:2]
# if nrof_faces > 1:
# margin = margin / 1.5
# if detect_multiple_faces:
# for i in range(nrof_faces):
# det_arr.append(np.squeeze(bounding_boxes[i]['box']))
# else:
# bounding_box_size = (det[1] + det[3])
# img_center = img_size / 2
# offsets = np.vstack([(det[0] + det[2]) / 2 - img_center[1],
# (det[1] + det[3]) / 2 - img_center[0]])
# offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
# index = np.argmax(bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering
# det_arr.append(det[index, :])
# else:
# det_arr.append(np.squeeze(det))
#
# cropped_arr = []
# bounding_boxes_arr = []
# for i, det in enumerate(det_arr):
# det = np.squeeze(det)
# bb = np.zeros(4, dtype=np.int32)
# # add in margin
# marg1 = int((det[2] - det[0]) * margin)
# marg2 = int((det[3] - det[1]) * margin)
#
# bb[0] = max(det[0] - marg1 / 2, 0)
# bb[1] = max(det[1] - marg2 / 2, 0)
# bb[2] = min(det[0] + det[2] + marg1 / 2, img_size[0])
# bb[3] = min(det[1] + det[3] + marg2 / 2, img_size[1])
# cropped = orig_img[bb[0]:bb[2], bb[1]: bb[3], :]
# cropped_arr.append(cropped)
# bounding_boxes_arr.append([bb[0], bb[1], bb[2], bb[3]])
# return cropped_arr, bounding_boxes_arr
# else:
# return None

Wyświetl plik

@ -1,803 +0,0 @@
"""Performs face alignment and stores face thumbnails in the output directory."""
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
""" Tensorflow implementation of the face detection / alignment algorithm found at
https://github.com/kpzhang93/MTCNN_face_detection_alignment
"""
import gzip
import os
import pickle
import numpy as np
import tensorflow as tf
from six import string_types, iteritems
def layer(op):
"""Decorator for composable network layers."""
def layer_decorated(self, *args, **kwargs):
# Automatically set a name if not provided.
name = kwargs.setdefault('name', self.get_unique_name(op.__name__))
# Figure out the layer inputs.
if len(self.terminals) == 0:
raise RuntimeError('No input variables found for layer %s.' % name)
elif len(self.terminals) == 1:
layer_input = self.terminals[0]
else:
layer_input = list(self.terminals)
# Perform the operation and get the output.
layer_output = op(self, layer_input, *args, **kwargs)
# Add to layer LUT.
self.layers[name] = layer_output
# This output is now the input for the next layer.
self.feed(layer_output)
# Return self for chained calls.
return self
return layer_decorated
class Network(object):
def __init__(self, inputs, trainable=True):
# The input nodes for this network
self.inputs = inputs
# The current list of terminal nodes
self.terminals = []
# Mapping from layer names to layers
self.layers = dict(inputs)
# If true, the resulting variables are set as trainable
self.trainable = trainable
self.setup()
def setup(self):
"""Construct the network. """
raise NotImplementedError('Must be implemented by the subclass.')
def load(self, data_dict, session, ignore_missing=False):
"""Load network weights.
data_path: The path to the numpy-serialized network weights
session: The current TensorFlow session
ignore_missing: If true, serialized weights for missing layers are ignored.
"""
for op_name in data_dict:
with tf.variable_scope(op_name, reuse=True):
for param_name, data in iteritems(data_dict[op_name]):
try:
var = tf.get_variable(param_name)
session.run(var.assign(data))
except ValueError:
if not ignore_missing:
raise
def feed(self, *args):
"""Set the input(s) for the next operation by replacing the terminal nodes.
The arguments can be either layer names or the actual layers.
"""
assert len(args) != 0
self.terminals = []
for fed_layer in args:
if isinstance(fed_layer, string_types):
try:
fed_layer = self.layers[fed_layer]
except KeyError:
raise KeyError('Unknown layer name fed: %s' % fed_layer)
self.terminals.append(fed_layer)
return self
def get_output(self):
"""Returns the current network output."""
return self.terminals[-1]
def get_unique_name(self, prefix):
"""Returns an index-suffixed unique name for the given prefix.
This is used for auto-generating layer names based on the type-prefix.
"""
ident = sum(t.startswith(prefix) for t, _ in self.layers.items()) + 1
return '%s_%d' % (prefix, ident)
def make_var(self, name, shape):
"""Creates a new TensorFlow variable."""
return tf.get_variable(name, shape, trainable=self.trainable)
def validate_padding(self, padding):
"""Verifies that the padding is one of the supported ones."""
assert padding in ('SAME', 'VALID')
@layer
def conv(self,
inp,
k_h,
k_w,
c_o,
s_h,
s_w,
name,
relu=True,
padding='SAME',
group=1,
biased=True):
# Verify that the padding is acceptable
self.validate_padding(padding)
# Get the number of channels in the input
c_i = int(inp.get_shape()[-1])
# Verify that the grouping parameter is valid
assert c_i % group == 0
assert c_o % group == 0
# Convolution for a given input and kernel
convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding)
with tf.variable_scope(name) as scope:
kernel = self.make_var('weights', shape=[k_h, k_w, c_i // group, c_o])
# This is the common-case. Convolve the input without any further complications.
output = convolve(inp, kernel)
# Add the biases
if biased:
biases = self.make_var('biases', [c_o])
output = tf.nn.bias_add(output, biases)
if relu:
# ReLU non-linearity
output = tf.nn.relu(output, name=scope.name)
return output
@layer
def prelu(self, inp, name):
with tf.variable_scope(name):
i = int(inp.get_shape()[-1])
alpha = self.make_var('alpha', shape=(i,))
output = tf.nn.relu(inp) + tf.multiply(alpha, -tf.nn.relu(-inp))
return output
@layer
def max_pool(self, inp, k_h, k_w, s_h, s_w, name, padding='SAME'):
self.validate_padding(padding)
return tf.nn.max_pool(inp,
ksize=[1, k_h, k_w, 1],
strides=[1, s_h, s_w, 1],
padding=padding,
name=name)
@layer
def fc(self, inp, num_out, name, relu=True):
with tf.variable_scope(name):
input_shape = inp.get_shape()
if input_shape.ndims == 4:
# The input is spatial. Vectorize it first.
dim = 1
for d in input_shape[1:].as_list():
dim *= int(d)
feed_in = tf.reshape(inp, [-1, dim])
else:
feed_in, dim = (inp, input_shape[-1].value)
weights = self.make_var('weights', shape=[dim, num_out])
biases = self.make_var('biases', [num_out])
op = tf.nn.relu_layer if relu else tf.nn.xw_plus_b
fc = op(feed_in, weights, biases, name=name)
return fc
"""
Multi dimensional softmax,
refer to https://github.com/tensorflow/tensorflow/issues/210
compute softmax along the dimension of target
the native softmax only supports batch_size x dimension
"""
@layer
def softmax(self, target, axis, name=None):
max_axis = tf.reduce_max(target, axis, keepdims=True)
target_exp = tf.exp(target - max_axis)
normalize = tf.reduce_sum(target_exp, axis, keepdims=True)
softmax = tf.div(target_exp, normalize, name)
return softmax
class PNet(Network):
def setup(self):
(self.feed('data') # pylint: disable=no-value-for-parameter, no-member
.conv(3, 3, 10, 1, 1, padding='VALID', relu=False, name='conv1')
.prelu(name='PReLU1')
.max_pool(2, 2, 2, 2, name='pool1')
.conv(3, 3, 16, 1, 1, padding='VALID', relu=False, name='conv2')
.prelu(name='PReLU2')
.conv(3, 3, 32, 1, 1, padding='VALID', relu=False, name='conv3')
.prelu(name='PReLU3')
.conv(1, 1, 2, 1, 1, relu=False, name='conv4-1')
.softmax(3, name='prob1'))
(self.feed('PReLU3') # pylint: disable=no-value-for-parameter
.conv(1, 1, 4, 1, 1, relu=False, name='conv4-2'))
class RNet(Network):
def setup(self):
(self.feed('data') # pylint: disable=no-value-for-parameter, no-member
.conv(3, 3, 28, 1, 1, padding='VALID', relu=False, name='conv1')
.prelu(name='prelu1')
.max_pool(3, 3, 2, 2, name='pool1')
.conv(3, 3, 48, 1, 1, padding='VALID', relu=False, name='conv2')
.prelu(name='prelu2')
.max_pool(3, 3, 2, 2, padding='VALID', name='pool2')
.conv(2, 2, 64, 1, 1, padding='VALID', relu=False, name='conv3')
.prelu(name='prelu3')
.fc(128, relu=False, name='conv4')
.prelu(name='prelu4')
.fc(2, relu=False, name='conv5-1')
.softmax(1, name='prob1'))
(self.feed('prelu4') # pylint: disable=no-value-for-parameter
.fc(4, relu=False, name='conv5-2'))
class ONet(Network):
def setup(self):
(self.feed('data') # pylint: disable=no-value-for-parameter, no-member
.conv(3, 3, 32, 1, 1, padding='VALID', relu=False, name='conv1')
.prelu(name='prelu1')
.max_pool(3, 3, 2, 2, name='pool1')
.conv(3, 3, 64, 1, 1, padding='VALID', relu=False, name='conv2')
.prelu(name='prelu2')
.max_pool(3, 3, 2, 2, padding='VALID', name='pool2')
.conv(3, 3, 64, 1, 1, padding='VALID', relu=False, name='conv3')
.prelu(name='prelu3')
.max_pool(2, 2, 2, 2, name='pool3')
.conv(2, 2, 128, 1, 1, padding='VALID', relu=False, name='conv4')
.prelu(name='prelu4')
.fc(256, relu=False, name='conv5')
.prelu(name='prelu5')
.fc(2, relu=False, name='conv6-1')
.softmax(1, name='prob1'))
(self.feed('prelu5') # pylint: disable=no-value-for-parameter
.fc(4, relu=False, name='conv6-2'))
(self.feed('prelu5') # pylint: disable=no-value-for-parameter
.fc(10, relu=False, name='conv6-3'))
def create_mtcnn(sess, model_path):
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
os.makedirs(model_dir, exist_ok=True)
fp = gzip.open(os.path.join(model_dir, "mtcnn.p.gz"), 'rb')
dnet_weights = pickle.load(fp)
fp.close()
with tf.variable_scope('pnet'):
data = tf.placeholder(tf.float32, (None, None, None, 3), 'input')
pnet = PNet({'data': data})
# data_dict = np.load(data_path, encoding='latin1').item() # pylint: disable=no-member
pnet.load(dnet_weights[0], sess)
with tf.variable_scope('rnet'):
data = tf.placeholder(tf.float32, (None, 24, 24, 3), 'input')
rnet = RNet({'data': data})
rnet.load(dnet_weights[1], sess)
with tf.variable_scope('onet'):
data = tf.placeholder(tf.float32, (None, 48, 48, 3), 'input')
onet = ONet({'data': data})
onet.load(dnet_weights[2], sess)
pnet_fun = lambda img: sess.run(('pnet/conv4-2/BiasAdd:0', 'pnet/prob1:0'), feed_dict={'pnet/input:0': img})
rnet_fun = lambda img: sess.run(('rnet/conv5-2/conv5-2:0', 'rnet/prob1:0'), feed_dict={'rnet/input:0': img})
onet_fun = lambda img: sess.run(('onet/conv6-2/conv6-2:0', 'onet/conv6-3/conv6-3:0', 'onet/prob1:0'),
feed_dict={'onet/input:0': img})
return pnet_fun, rnet_fun, onet_fun
def run_detect_face(img, minsize, pnet, rnet, onet, threshold, factor):
"""Detects faces in an image, and returns bounding boxes and points for them.
img: input image
minsize: minimum faces' size
pnet, rnet, onet: caffemodel
threshold: threshold=[th1, th2, th3], th1-3 are three steps's threshold
factor: the factor used to create a scaling pyramid of face sizes to detect in the image.
"""
factor_count = 0
total_boxes = np.empty((0, 9))
points = np.empty(0)
h = img.shape[0]
w = img.shape[1]
minl = np.amin([h, w])
m = 12.0 / minsize
minl = minl * m
# create scale pyramid
scales = []
while minl >= 12:
scales += [m * np.power(factor, factor_count)]
minl = minl * factor
factor_count += 1
# first stage
for scale in scales:
hs = int(np.ceil(h * scale))
ws = int(np.ceil(w * scale))
im_data = imresample(img, (hs, ws))
im_data = (im_data - 127.5) * 0.0078125
img_x = np.expand_dims(im_data, 0)
img_y = np.transpose(img_x, (0, 2, 1, 3))
out = pnet(img_y)
out0 = np.transpose(out[0], (0, 2, 1, 3))
out1 = np.transpose(out[1], (0, 2, 1, 3))
boxes, _ = generateBoundingBox(out1[0, :, :, 1].copy(), out0[0, :, :, :].copy(), scale, threshold[0])
# inter-scale nms
pick = nms(boxes.copy(), 0.5, 'Union')
if boxes.size > 0 and pick.size > 0:
boxes = boxes[pick, :]
total_boxes = np.append(total_boxes, boxes, axis=0)
numbox = total_boxes.shape[0]
if numbox > 0:
pick = nms(total_boxes.copy(), 0.7, 'Union')
total_boxes = total_boxes[pick, :]
regw = total_boxes[:, 2] - total_boxes[:, 0]
regh = total_boxes[:, 3] - total_boxes[:, 1]
qq1 = total_boxes[:, 0] + total_boxes[:, 5] * regw
qq2 = total_boxes[:, 1] + total_boxes[:, 6] * regh
qq3 = total_boxes[:, 2] + total_boxes[:, 7] * regw
qq4 = total_boxes[:, 3] + total_boxes[:, 8] * regh
total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:, 4]]))
total_boxes = rerec(total_boxes.copy())
total_boxes[:, 0:4] = np.fix(total_boxes[:, 0:4]).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h)
numbox = total_boxes.shape[0]
if numbox > 0:
# second stage
tempimg = np.zeros((24, 24, 3, numbox))
for k in range(0, numbox):
tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3))
# try:
tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = img[y[k] - 1:ey[k], x[k] - 1:ex[k], :]
# except ValueError:
# continue
if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0:
tempimg[:, :, :, k] = imresample(tmp, (24, 24))
else:
return np.empty()
tempimg = (tempimg - 127.5) * 0.0078125
tempimg1 = np.transpose(tempimg, (3, 1, 0, 2))
out = rnet(tempimg1)
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
score = out1[1, :]
ipass = np.where(score > threshold[1])
total_boxes = np.hstack([total_boxes[ipass[0], 0:4].copy(), np.expand_dims(score[ipass].copy(), 1)])
mv = out0[:, ipass[0]]
if total_boxes.shape[0] > 0:
pick = nms(total_boxes, 0.7, 'Union')
total_boxes = total_boxes[pick, :]
total_boxes = bbreg(total_boxes.copy(), np.transpose(mv[:, pick]))
total_boxes = rerec(total_boxes.copy())
numbox = total_boxes.shape[0]
if numbox > 0:
# third stage
total_boxes = np.fix(total_boxes).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h)
tempimg = np.zeros((48, 48, 3, numbox))
for k in range(0, numbox):
tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3))
tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = img[y[k] - 1:ey[k], x[k] - 1:ex[k], :]
if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0:
tempimg[:, :, :, k] = imresample(tmp, (48, 48))
else:
return np.empty()
tempimg = (tempimg - 127.5) * 0.0078125
tempimg1 = np.transpose(tempimg, (3, 1, 0, 2))
out = onet(tempimg1)
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
out2 = np.transpose(out[2])
score = out2[1, :]
points = out1
ipass = np.where(score > threshold[2])
points = points[:, ipass[0]]
total_boxes = np.hstack([total_boxes[ipass[0], 0:4].copy(), np.expand_dims(score[ipass].copy(), 1)])
mv = out0[:, ipass[0]]
w = total_boxes[:, 2] - total_boxes[:, 0] + 1
h = total_boxes[:, 3] - total_boxes[:, 1] + 1
points[0:5, :] = np.tile(w, (5, 1)) * points[0:5, :] + np.tile(total_boxes[:, 0], (5, 1)) - 1
points[5:10, :] = np.tile(h, (5, 1)) * points[5:10, :] + np.tile(total_boxes[:, 1], (5, 1)) - 1
if total_boxes.shape[0] > 0:
total_boxes = bbreg(total_boxes.copy(), np.transpose(mv))
pick = nms(total_boxes.copy(), 0.7, 'Min')
total_boxes = total_boxes[pick, :]
points = points[:, pick]
return total_boxes, points
def bulk_detect_face(images, detection_window_size_ratio, pnet, rnet, onet, threshold, factor):
"""Detects faces in a list of images
images: list containing input images
detection_window_size_ratio: ratio of minimum face size to smallest image dimension
pnet, rnet, onet: caffemodel
threshold: threshold=[th1 th2 th3], th1-3 are three steps's threshold [0-1]
factor: the factor used to create a scaling pyramid of face sizes to detect in the image.
"""
all_scales = [None] * len(images)
images_with_boxes = [None] * len(images)
for i in range(len(images)):
images_with_boxes[i] = {'total_boxes': np.empty((0, 9))}
# create scale pyramid
for index, img in enumerate(images):
all_scales[index] = []
h = img.shape[0]
w = img.shape[1]
minsize = int(detection_window_size_ratio * np.minimum(w, h))
factor_count = 0
minl = np.amin([h, w])
if minsize <= 12:
minsize = 12
m = 12.0 / minsize
minl = minl * m
while minl >= 12:
all_scales[index].append(m * np.power(factor, factor_count))
minl = minl * factor
factor_count += 1
# # # # # # # # # # # # #
# first stage - fast proposal network (pnet) to obtain face candidates
# # # # # # # # # # # # #
images_obj_per_resolution = {}
# TODO: use some type of rounding to number module 8 to increase probability that pyramid images will have the same resolution across input images
for index, scales in enumerate(all_scales):
h = images[index].shape[0]
w = images[index].shape[1]
for scale in scales:
hs = int(np.ceil(h * scale))
ws = int(np.ceil(w * scale))
if (ws, hs) not in images_obj_per_resolution:
images_obj_per_resolution[(ws, hs)] = []
im_data = imresample(images[index], (hs, ws))
im_data = (im_data - 127.5) * 0.0078125
img_y = np.transpose(im_data, (1, 0, 2)) # caffe uses different dimensions ordering
images_obj_per_resolution[(ws, hs)].append({'scale': scale, 'image': img_y, 'index': index})
for resolution in images_obj_per_resolution:
images_per_resolution = [i['image'] for i in images_obj_per_resolution[resolution]]
outs = pnet(images_per_resolution)
for index in range(len(outs[0])):
scale = images_obj_per_resolution[resolution][index]['scale']
image_index = images_obj_per_resolution[resolution][index]['index']
out0 = np.transpose(outs[0][index], (1, 0, 2))
out1 = np.transpose(outs[1][index], (1, 0, 2))
boxes, _ = generateBoundingBox(out1[:, :, 1].copy(), out0[:, :, :].copy(), scale, threshold[0])
# inter-scale nms
pick = nms(boxes.copy(), 0.5, 'Union')
if boxes.size > 0 and pick.size > 0:
boxes = boxes[pick, :]
images_with_boxes[image_index]['total_boxes'] = np.append(images_with_boxes[image_index]['total_boxes'],
boxes,
axis=0)
for index, image_obj in enumerate(images_with_boxes):
numbox = image_obj['total_boxes'].shape[0]
if numbox > 0:
h = images[index].shape[0]
w = images[index].shape[1]
pick = nms(image_obj['total_boxes'].copy(), 0.7, 'Union')
image_obj['total_boxes'] = image_obj['total_boxes'][pick, :]
regw = image_obj['total_boxes'][:, 2] - image_obj['total_boxes'][:, 0]
regh = image_obj['total_boxes'][:, 3] - image_obj['total_boxes'][:, 1]
qq1 = image_obj['total_boxes'][:, 0] + image_obj['total_boxes'][:, 5] * regw
qq2 = image_obj['total_boxes'][:, 1] + image_obj['total_boxes'][:, 6] * regh
qq3 = image_obj['total_boxes'][:, 2] + image_obj['total_boxes'][:, 7] * regw
qq4 = image_obj['total_boxes'][:, 3] + image_obj['total_boxes'][:, 8] * regh
image_obj['total_boxes'] = np.transpose(np.vstack([qq1, qq2, qq3, qq4, image_obj['total_boxes'][:, 4]]))
image_obj['total_boxes'] = rerec(image_obj['total_boxes'].copy())
image_obj['total_boxes'][:, 0:4] = np.fix(image_obj['total_boxes'][:, 0:4]).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(image_obj['total_boxes'].copy(), w, h)
numbox = image_obj['total_boxes'].shape[0]
tempimg = np.zeros((24, 24, 3, numbox))
if numbox > 0:
for k in range(0, numbox):
tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3))
tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = images[index][y[k] - 1:ey[k], x[k] - 1:ex[k], :]
if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0:
tempimg[:, :, :, k] = imresample(tmp, (24, 24))
else:
return np.empty()
tempimg = (tempimg - 127.5) * 0.0078125
image_obj['rnet_input'] = np.transpose(tempimg, (3, 1, 0, 2))
# # # # # # # # # # # # #
# second stage - refinement of face candidates with rnet
# # # # # # # # # # # # #
bulk_rnet_input = np.empty((0, 24, 24, 3))
for index, image_obj in enumerate(images_with_boxes):
if 'rnet_input' in image_obj:
bulk_rnet_input = np.append(bulk_rnet_input, image_obj['rnet_input'], axis=0)
out = rnet(bulk_rnet_input)
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
score = out1[1, :]
i = 0
for index, image_obj in enumerate(images_with_boxes):
if 'rnet_input' not in image_obj:
continue
rnet_input_count = image_obj['rnet_input'].shape[0]
score_per_image = score[i:i + rnet_input_count]
out0_per_image = out0[:, i:i + rnet_input_count]
ipass = np.where(score_per_image > threshold[1])
image_obj['total_boxes'] = np.hstack([image_obj['total_boxes'][ipass[0], 0:4].copy(),
np.expand_dims(score_per_image[ipass].copy(), 1)])
mv = out0_per_image[:, ipass[0]]
if image_obj['total_boxes'].shape[0] > 0:
h = images[index].shape[0]
w = images[index].shape[1]
pick = nms(image_obj['total_boxes'], 0.7, 'Union')
image_obj['total_boxes'] = image_obj['total_boxes'][pick, :]
image_obj['total_boxes'] = bbreg(image_obj['total_boxes'].copy(), np.transpose(mv[:, pick]))
image_obj['total_boxes'] = rerec(image_obj['total_boxes'].copy())
numbox = image_obj['total_boxes'].shape[0]
if numbox > 0:
tempimg = np.zeros((48, 48, 3, numbox))
image_obj['total_boxes'] = np.fix(image_obj['total_boxes']).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(image_obj['total_boxes'].copy(), w, h)
for k in range(0, numbox):
tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3))
tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = images[index][y[k] - 1:ey[k], x[k] - 1:ex[k], :]
if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0:
tempimg[:, :, :, k] = imresample(tmp, (48, 48))
else:
return np.empty()
tempimg = (tempimg - 127.5) * 0.0078125
image_obj['onet_input'] = np.transpose(tempimg, (3, 1, 0, 2))
i += rnet_input_count
# # # # # # # # # # # # #
# third stage - further refinement and facial landmarks positions with onet
# # # # # # # # # # # # #
bulk_onet_input = np.empty((0, 48, 48, 3))
for index, image_obj in enumerate(images_with_boxes):
if 'onet_input' in image_obj:
bulk_onet_input = np.append(bulk_onet_input, image_obj['onet_input'], axis=0)
out = onet(bulk_onet_input)
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
out2 = np.transpose(out[2])
score = out2[1, :]
points = out1
i = 0
ret = []
for index, image_obj in enumerate(images_with_boxes):
if 'onet_input' not in image_obj:
ret.append(None)
continue
onet_input_count = image_obj['onet_input'].shape[0]
out0_per_image = out0[:, i:i + onet_input_count]
score_per_image = score[i:i + onet_input_count]
points_per_image = points[:, i:i + onet_input_count]
ipass = np.where(score_per_image > threshold[2])
points_per_image = points_per_image[:, ipass[0]]
image_obj['total_boxes'] = np.hstack([image_obj['total_boxes'][ipass[0], 0:4].copy(),
np.expand_dims(score_per_image[ipass].copy(), 1)])
mv = out0_per_image[:, ipass[0]]
w = image_obj['total_boxes'][:, 2] - image_obj['total_boxes'][:, 0] + 1
h = image_obj['total_boxes'][:, 3] - image_obj['total_boxes'][:, 1] + 1
points_per_image[0:5, :] = np.tile(w, (5, 1)) * points_per_image[0:5, :] + np.tile(
image_obj['total_boxes'][:, 0], (5, 1)) - 1
points_per_image[5:10, :] = np.tile(h, (5, 1)) * points_per_image[5:10, :] + np.tile(
image_obj['total_boxes'][:, 1], (5, 1)) - 1
if image_obj['total_boxes'].shape[0] > 0:
image_obj['total_boxes'] = bbreg(image_obj['total_boxes'].copy(), np.transpose(mv))
pick = nms(image_obj['total_boxes'].copy(), 0.7, 'Min')
image_obj['total_boxes'] = image_obj['total_boxes'][pick, :]
points_per_image = points_per_image[:, pick]
ret.append((image_obj['total_boxes'], points_per_image))
else:
ret.append(None)
i += onet_input_count
return ret
# function [boundingbox] = bbreg(boundingbox,reg)
def bbreg(boundingbox, reg):
"""Calibrate bounding boxes"""
if reg.shape[1] == 1:
reg = np.reshape(reg, (reg.shape[2], reg.shape[3]))
w = boundingbox[:, 2] - boundingbox[:, 0] + 1
h = boundingbox[:, 3] - boundingbox[:, 1] + 1
b1 = boundingbox[:, 0] + reg[:, 0] * w
b2 = boundingbox[:, 1] + reg[:, 1] * h
b3 = boundingbox[:, 2] + reg[:, 2] * w
b4 = boundingbox[:, 3] + reg[:, 3] * h
boundingbox[:, 0:4] = np.transpose(np.vstack([b1, b2, b3, b4]))
return boundingbox
def generateBoundingBox(imap, reg, scale, t):
"""Use heatmap to generate bounding boxes"""
stride = 2
cellsize = 12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:, :, 0])
dy1 = np.transpose(reg[:, :, 1])
dx2 = np.transpose(reg[:, :, 2])
dy2 = np.transpose(reg[:, :, 3])
y, x = np.where(imap >= t)
if y.shape[0] == 1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y, x)]
reg = np.transpose(np.vstack([dx1[(y, x)], dy1[(y, x)], dx2[(y, x)], dy2[(y, x)]]))
if reg.size == 0:
reg = np.empty((0, 3))
bb = np.transpose(np.vstack([y, x]))
q1 = np.fix((stride * bb + 1) / scale)
q2 = np.fix((stride * bb + cellsize - 1 + 1) / scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score, 1), reg])
return boundingbox, reg
# function pick = nms(boxes,threshold,type)
def nms(boxes, threshold, method):
if boxes.size == 0:
return np.empty((0, 3))
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
s = boxes[:, 4]
area = (x2 - x1 + 1) * (y2 - y1 + 1)
I = np.argsort(s)
pick = np.zeros_like(s, dtype=np.int16)
counter = 0
while I.size > 0:
i = I[-1]
pick[counter] = i
counter += 1
idx = I[0:-1]
xx1 = np.maximum(x1[i], x1[idx])
yy1 = np.maximum(y1[i], y1[idx])
xx2 = np.minimum(x2[i], x2[idx])
yy2 = np.minimum(y2[i], y2[idx])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
if method is 'Min':
o = inter / np.minimum(area[i], area[idx])
else:
o = inter / (area[i] + area[idx] - inter)
I = I[np.where(o <= threshold)]
pick = pick[0:counter]
return pick
# function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h)
def pad(total_boxes, w, h):
"""Compute the padding coordinates (pad the bounding boxes to square)"""
tmpw = (total_boxes[:, 2] - total_boxes[:, 0] + 1).astype(np.int32)
tmph = (total_boxes[:, 3] - total_boxes[:, 1] + 1).astype(np.int32)
numbox = total_boxes.shape[0]
dx = np.ones((numbox), dtype=np.int32)
dy = np.ones((numbox), dtype=np.int32)
edx = tmpw.copy().astype(np.int32)
edy = tmph.copy().astype(np.int32)
x = total_boxes[:, 0].copy().astype(np.int32)
y = total_boxes[:, 1].copy().astype(np.int32)
ex = total_boxes[:, 2].copy().astype(np.int32)
ey = total_boxes[:, 3].copy().astype(np.int32)
tmp = np.where(ex > w)
edx.flat[tmp] = np.expand_dims(-ex[tmp] + w + tmpw[tmp], 1)
ex[tmp] = w
tmp = np.where(ey > h)
edy.flat[tmp] = np.expand_dims(-ey[tmp] + h + tmph[tmp], 1)
ey[tmp] = h
tmp = np.where(x < 1)
dx.flat[tmp] = np.expand_dims(2 - x[tmp], 1)
x[tmp] = 1
tmp = np.where(y < 1)
dy.flat[tmp] = np.expand_dims(2 - y[tmp], 1)
y[tmp] = 1
return dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph
# function [bboxA] = rerec(bboxA)
def rerec(bboxA):
"""Convert bboxA to square."""
h = bboxA[:, 3] - bboxA[:, 1]
w = bboxA[:, 2] - bboxA[:, 0]
l = np.maximum(w, h)
bboxA[:, 0] = bboxA[:, 0] + w * 0.5 - l * 0.5
bboxA[:, 1] = bboxA[:, 1] + h * 0.5 - l * 0.5
bboxA[:, 2:4] = bboxA[:, 0:2] + np.transpose(np.tile(l, (2, 1)))
return bboxA
def imresample(img, sz):
from keras.preprocessing import image
# im_data = resize(img, (sz[0], sz[1]))
im_data = image.array_to_img(img).resize((sz[1], sz[0]))
im_data = image.img_to_array(im_data)
return im_data
# def imresample(img, sz):
# import cv2
# im_data = cv2.resize(img, (sz[1], sz[0]), interpolation=cv2.INTER_AREA) # @UndefinedVariable
# return im_data
def to_rgb(img):
w, h = img.shape
ret = np.empty((w, h, 3), dtype=np.uint8)
ret[:, :, 0] = ret[:, :, 1] = ret[:, :, 2] = img
return ret

Wyświetl plik

@ -1,12 +1,10 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Date : 2020-05-17
# @Author : Shawn Shan (shansixiong@cs.uchicago.edu)
# @Link : https://www.shawnshan.com/
# @Date : 2020-10-21
# @Author : Emily Wenger (ewenger@uchicago.edu)
import datetime
import time
from decimal import Decimal
import numpy as np
import tensorflow as tf
@ -31,30 +29,27 @@ class FawkesMaskGeneration:
KEEP_FINAL = False
# max_val of image
MAX_VAL = 255
# The following variables are used by DSSIM, should keep as default
# filter size in SSIM
FILTER_SIZE = 11
# filter sigma in SSIM
FILTER_SIGMA = 1.5
# weights used in MS-SSIM
SCALE_WEIGHTS = None
MAXIMIZE = False
IMAGE_SHAPE = (224, 224, 3)
IMAGE_SHAPE = (112, 112, 3)
RATIO = 1.0
LIMIT_DIST = False
LOSS_TYPE = 'features' # use features (original Fawkes) or gradients (Witches Brew) to run Fawkes?
def __init__(self, sess, bottleneck_model_ls, mimic_img=MIMIC_IMG,
def __init__(self, bottleneck_model_ls, mimic_img=MIMIC_IMG,
batch_size=1, learning_rate=LEARNING_RATE,
max_iterations=MAX_ITERATIONS, initial_const=INITIAL_CONST,
intensity_range=INTENSITY_RANGE, l_threshold=L_THRESHOLD,
max_val=MAX_VAL, keep_final=KEEP_FINAL, maximize=MAXIMIZE, image_shape=IMAGE_SHAPE,
verbose=0, ratio=RATIO, limit_dist=LIMIT_DIST):
max_val=MAX_VAL, keep_final=KEEP_FINAL, maximize=MAXIMIZE, image_shape=IMAGE_SHAPE, verbose=1,
ratio=RATIO, limit_dist=LIMIT_DIST, loss_method=LOSS_TYPE, tanh_process=True,
save_last_on_failed=True):
assert intensity_range in {'raw', 'imagenet', 'inception', 'mnist'}
# constant used for tanh transformation to avoid corner cases
self.it = 0
self.tanh_constant = 2 - 1e-6
self.sess = sess
self.save_last_on_failed = save_last_on_failed
self.MIMIC_IMG = mimic_img
self.LEARNING_RATE = learning_rate
self.MAX_ITERATIONS = max_iterations
@ -70,350 +65,235 @@ class FawkesMaskGeneration:
self.ratio = ratio
self.limit_dist = limit_dist
self.single_shape = list(image_shape)
self.bottleneck_models = bottleneck_model_ls
self.loss_method = loss_method
self.tanh_process = tanh_process
self.input_shape = tuple([self.batch_size] + self.single_shape)
self.bottleneck_shape = tuple([self.batch_size] + self.single_shape)
# self.bottleneck_shape = tuple([self.batch_size, bottleneck_model_ls[0].output_shape[-1]])
# the variable we're going to optimize over
self.modifier = tf.Variable(np.zeros(self.input_shape, dtype=np.float32))
# target image in tanh space
if self.MIMIC_IMG:
self.timg_tanh = tf.Variable(np.zeros(self.input_shape), dtype=np.float32)
else:
self.bottleneck_t_raw = tf.Variable(np.zeros(self.bottleneck_shape), dtype=np.float32)
# source image in tanh space
self.simg_tanh = tf.Variable(np.zeros(self.input_shape), dtype=np.float32)
self.const = tf.Variable(np.ones(batch_size), dtype=np.float32)
self.mask = tf.Variable(np.ones((batch_size), dtype=np.bool))
self.weights = tf.Variable(np.ones(self.bottleneck_shape,
dtype=np.float32))
# and here's what we use to assign them
self.assign_modifier = tf.placeholder(tf.float32, self.input_shape)
if self.MIMIC_IMG:
self.assign_timg_tanh = tf.placeholder(
tf.float32, self.input_shape)
else:
self.assign_bottleneck_t_raw = tf.placeholder(
tf.float32, self.bottleneck_shape)
self.assign_simg_tanh = tf.placeholder(tf.float32, self.input_shape)
self.assign_const = tf.placeholder(tf.float32, (batch_size))
self.assign_mask = tf.placeholder(tf.bool, (batch_size))
self.assign_weights = tf.placeholder(tf.float32, self.bottleneck_shape)
# the resulting image, tanh'd to keep bounded from -0.5 to 0.5
# adversarial image in raw space
self.aimg_raw = (tf.tanh(self.modifier + self.simg_tanh) /
self.tanh_constant +
0.5) * 255.0
# source image in raw space
self.simg_raw = (tf.tanh(self.simg_tanh) /
self.tanh_constant +
0.5) * 255.0
if self.MIMIC_IMG:
# target image in raw space
self.timg_raw = (tf.tanh(self.timg_tanh) /
self.tanh_constant +
0.5) * 255.0
# convert source and adversarial image into input space
if self.intensity_range == 'imagenet':
mean = tf.constant(np.repeat([[[[103.939, 116.779, 123.68]]]], self.batch_size, axis=0), dtype=tf.float32,
name='img_mean')
self.aimg_input = (self.aimg_raw[..., ::-1] - mean)
self.simg_input = (self.simg_raw[..., ::-1] - mean)
if self.MIMIC_IMG:
self.timg_input = (self.timg_raw[..., ::-1] - mean)
elif self.intensity_range == 'raw':
self.aimg_input = self.aimg_raw
self.simg_input = self.simg_raw
if self.MIMIC_IMG:
self.timg_input = self.timg_raw
def batch_gen_DSSIM(aimg_raw_split, simg_raw_split):
msssim_split = tf.image.ssim(aimg_raw_split, simg_raw_split, max_val=255.0)
dist = (1.0 - tf.stack(msssim_split)) / 2.0
# dist = tf.square(aimg_raw_split - simg_raw_split)
return dist
# raw value of DSSIM distance
self.dist_raw = batch_gen_DSSIM(self.aimg_raw, self.simg_raw)
# distance value after applying threshold
self.dist = tf.maximum(self.dist_raw - self.l_threshold, 0.0)
# self.dist = self.dist_raw
self.dist_raw_sum = tf.reduce_sum(
tf.where(self.mask,
self.dist_raw,
tf.zeros_like(self.dist_raw)))
self.dist_sum = tf.reduce_sum(tf.where(self.mask, self.dist, tf.zeros_like(self.dist)))
def resize_tensor(input_tensor, model_input_shape):
if input_tensor.shape[1:] == model_input_shape or model_input_shape[1] is None:
return input_tensor
resized_tensor = tf.image.resize(input_tensor, model_input_shape[:2])
return resized_tensor
def calculate_direction(bottleneck_model, cur_timg_input, cur_simg_input):
target_features = bottleneck_model(cur_timg_input)
# return target_features
target_center = tf.reduce_mean(target_features, axis=0)
original = bottleneck_model(cur_simg_input)
original_center = tf.reduce_mean(original, axis=0)
direction = target_center - original_center
final_target = original + 2.0 * direction
return final_target
self.bottlesim = 0.0
self.bottlesim_sum = 0.0
self.bottlesim_push = 0.0
for bottleneck_model in bottleneck_model_ls:
model_input_shape = (224, 224, 3)
cur_aimg_input = resize_tensor(self.aimg_input, model_input_shape)
self.bottleneck_a = bottleneck_model(cur_aimg_input)
if self.MIMIC_IMG:
cur_timg_input = self.timg_input
cur_simg_input = self.simg_input
self.bottleneck_t = calculate_direction(bottleneck_model, cur_timg_input, cur_simg_input)
else:
self.bottleneck_t = self.bottleneck_t_raw
bottleneck_diff = self.bottleneck_t - self.bottleneck_a
scale_factor = tf.sqrt(tf.reduce_sum(tf.square(self.bottleneck_t), axis=1))
cur_bottlesim = tf.sqrt(tf.reduce_sum(tf.square(bottleneck_diff), axis=1))
cur_bottlesim = cur_bottlesim / scale_factor
cur_bottlesim_sum = tf.reduce_sum(cur_bottlesim)
self.bottlesim += cur_bottlesim
self.bottlesim_sum += cur_bottlesim_sum
# sum up the losses
if self.maximize:
self.loss = self.const * tf.square(self.dist) - self.bottlesim
else:
self.loss = self.const * tf.square(self.dist) + self.bottlesim
self.loss_sum = tf.reduce_sum(tf.where(self.mask,
self.loss,
tf.zeros_like(self.loss)))
start_vars = set(x.name for x in tf.global_variables())
self.learning_rate_holder = tf.placeholder(tf.float32, shape=[])
optimizer = tf.train.AdadeltaOptimizer(self.learning_rate_holder)
# optimizer = tf.train.AdamOptimizer(self.learning_rate_holder)
self.train = optimizer.minimize(self.loss_sum, var_list=[self.modifier])
end_vars = tf.global_variables()
new_vars = [x for x in end_vars if x.name not in start_vars]
# these are the variables to initialize when we run
self.setup = []
self.setup.append(self.modifier.assign(self.assign_modifier))
if self.MIMIC_IMG:
self.setup.append(self.timg_tanh.assign(self.assign_timg_tanh))
else:
self.setup.append(self.bottleneck_t_raw.assign(
self.assign_bottleneck_t_raw))
self.setup.append(self.simg_tanh.assign(self.assign_simg_tanh))
self.setup.append(self.const.assign(self.assign_const))
self.setup.append(self.mask.assign(self.assign_mask))
self.setup.append(self.weights.assign(self.assign_weights))
self.init = tf.variables_initializer(var_list=[self.modifier] + new_vars)
@staticmethod
def resize_tensor(input_tensor, model_input_shape):
if input_tensor.shape[1:] == model_input_shape or model_input_shape[1] is None:
return input_tensor
resized_tensor = tf.image.resize(input_tensor, model_input_shape[:2])
return resized_tensor
def preprocess_arctanh(self, imgs):
""" Do tan preprocess """
imgs = reverse_preprocess(imgs, self.intensity_range)
imgs /= 255.0
imgs -= 0.5
imgs *= self.tanh_constant
imgs = imgs / 255.0
imgs = imgs - 0.5
imgs = imgs * self.tanh_constant
tanh_imgs = np.arctanh(imgs)
return tanh_imgs
def clipping(self, imgs):
def reverse_arctanh(self, imgs):
raw_img = (tf.tanh(imgs) / self.tanh_constant + 0.5) * 255
return raw_img
def input_space_process(self, img):
if self.intensity_range == 'imagenet':
mean = np.repeat([[[[103.939, 116.779, 123.68]]]], len(img), axis=0)
raw_img = (img[..., ::-1] - mean)
else:
raw_img = img
return raw_img
def clipping(self, imgs):
imgs = reverse_preprocess(imgs, self.intensity_range)
imgs = np.clip(imgs, 0, self.max_val)
imgs = preprocess(imgs, self.intensity_range)
return imgs
def attack(self, source_imgs, target_imgs, weights=None):
def calc_dissim(self, source_raw, source_mod_raw):
msssim_split = tf.image.ssim(source_raw, source_mod_raw, max_val=255.0)
dist_raw = (1.0 - tf.stack(msssim_split)) / 2.0
dist = tf.maximum(dist_raw - self.l_threshold, 0.0)
dist_raw_avg = tf.reduce_mean(dist_raw)
dist_sum = tf.reduce_sum(dist)
if weights is None:
weights = np.ones([source_imgs.shape[0]] +
list(self.bottleneck_shape[1:]))
return dist, dist_raw, dist_sum, dist_raw_avg
assert weights.shape[1:] == self.bottleneck_shape[1:]
assert source_imgs.shape[1:] == self.input_shape[1:]
assert source_imgs.shape[0] == weights.shape[0]
if self.MIMIC_IMG:
assert target_imgs.shape[1:] == self.input_shape[1:]
assert source_imgs.shape[0] == target_imgs.shape[0]
def calc_bottlesim(self, tape, source_raw, target_raw, original_raw):
""" original Fawkes loss function. """
bottlesim = 0.0
bottlesim_sum = 0.0
# make sure everything is the right size.
model_input_shape = self.single_shape
cur_aimg_input = self.resize_tensor(source_raw, model_input_shape)
if target_raw is not None:
cur_timg_input = self.resize_tensor(target_raw, model_input_shape)
for bottleneck_model in self.bottleneck_models:
if tape is not None:
try:
tape.watch(bottleneck_model.model.variables)
except AttributeError:
tape.watch(bottleneck_model.variables)
# get the respective feature space reprs.
bottleneck_a = bottleneck_model(cur_aimg_input)
if self.maximize:
bottleneck_s = bottleneck_model(original_raw)
bottleneck_diff = bottleneck_a - bottleneck_s
scale_factor = tf.sqrt(tf.reduce_sum(tf.square(bottleneck_s), axis=1))
else:
bottleneck_t = bottleneck_model(cur_timg_input)
bottleneck_diff = bottleneck_t - bottleneck_a
scale_factor = tf.sqrt(tf.reduce_sum(tf.square(bottleneck_t), axis=1))
cur_bottlesim = tf.reduce_sum(tf.square(bottleneck_diff), axis=1)
cur_bottlesim = cur_bottlesim / scale_factor
bottlesim += cur_bottlesim
bottlesim_sum += tf.reduce_sum(cur_bottlesim)
return bottlesim, bottlesim_sum
def compute_feature_loss(self, tape, aimg_raw, simg_raw, aimg_input, timg_input, simg_input):
""" Compute input space + feature space loss.
"""
input_space_loss, dist_raw, input_space_loss_sum, input_space_loss_raw_avg = self.calc_dissim(aimg_raw,
simg_raw)
feature_space_loss, feature_space_loss_sum = self.calc_bottlesim(tape, aimg_input, timg_input, simg_input)
if self.maximize:
loss = self.const * tf.square(input_space_loss) - feature_space_loss * self.const_diff
else:
assert target_imgs.shape[1:] == self.bottleneck_shape[1:]
assert source_imgs.shape[0] == target_imgs.shape[0]
if self.it < self.MAX_ITERATIONS:
loss = self.const * tf.square(input_space_loss) + 1000 * feature_space_loss
loss_sum = tf.reduce_sum(loss)
return loss_sum, feature_space_loss, input_space_loss_raw_avg, dist_raw
def compute(self, source_imgs, target_imgs=None):
""" Main function that runs cloak generation. """
start_time = time.time()
adv_imgs = []
print('%d batches in total'
% int(np.ceil(len(source_imgs) / self.batch_size)))
for idx in range(0, len(source_imgs), self.batch_size):
print('processing image %d at %s' % (idx+1, datetime.datetime.now()))
adv_img = self.attack_batch(source_imgs[idx:idx + self.batch_size],
target_imgs[idx:idx + self.batch_size],
weights[idx:idx + self.batch_size])
print('processing image %d at %s' % (idx + 1, datetime.datetime.now()))
adv_img = self.compute_batch(source_imgs[idx:idx + self.batch_size],
target_imgs[idx:idx + self.batch_size] if target_imgs is not None else None)
adv_imgs.extend(adv_img)
elapsed_time = time.time() - start_time
print('protection cost %f s' % (elapsed_time))
print('protection cost %f s' % elapsed_time)
return np.array(adv_imgs)
def attack_batch(self, source_imgs, target_imgs, weights):
LR = self.learning_rate
def compute_batch(self, source_imgs, target_imgs=None, retry=True):
""" TF2 method to generate the cloak. """
# preprocess images.
global progressbar
nb_imgs = source_imgs.shape[0]
mask = [True] * nb_imgs + [False] * (self.batch_size - nb_imgs)
mask = np.array(mask, dtype=np.bool)
source_imgs = np.array(source_imgs)
target_imgs = np.array(target_imgs)
# make sure source/target images are an array
source_imgs = np.array(source_imgs, dtype=np.float32)
if target_imgs is not None:
target_imgs = np.array(target_imgs, dtype=np.float32)
# metrics to test
best_bottlesim = [0] * nb_imgs if self.maximize else [np.inf] * nb_imgs
best_adv = np.zeros(source_imgs.shape)
# convert to tanh-space
simg_tanh = self.preprocess_arctanh(source_imgs)
if self.MIMIC_IMG:
if target_imgs is not None:
timg_tanh = self.preprocess_arctanh(target_imgs)
else:
timg_tanh = target_imgs
self.modifier = tf.Variable(np.random.uniform(-1, 1, tuple([len(source_imgs)] + self.single_shape)) * 1e-4,
dtype=tf.float32)
CONST = np.ones(self.batch_size) * self.initial_const
# make the optimizer
optimizer = tf.keras.optimizers.Adadelta(float(self.learning_rate))
const_numpy = np.ones(len(source_imgs)) * self.initial_const
self.const = tf.Variable(const_numpy, dtype=np.float32)
self.sess.run(self.init)
simg_tanh_batch = np.zeros(self.input_shape)
if self.MIMIC_IMG:
timg_tanh_batch = np.zeros(self.input_shape)
else:
timg_tanh_batch = np.zeros(self.bottleneck_shape)
weights_batch = np.zeros(self.bottleneck_shape)
simg_tanh_batch[:nb_imgs] = simg_tanh[:nb_imgs]
timg_tanh_batch[:nb_imgs] = timg_tanh[:nb_imgs]
weights_batch[:nb_imgs] = weights[:nb_imgs]
modifier_batch = np.ones(self.input_shape) * 1e-6
# set the variables so that we don't have to send them over again
if self.MIMIC_IMG:
self.sess.run(self.setup,
{self.assign_timg_tanh: timg_tanh_batch,
self.assign_simg_tanh: simg_tanh_batch,
self.assign_const: CONST,
self.assign_mask: mask,
self.assign_weights: weights_batch,
self.assign_modifier: modifier_batch})
best_bottlesim = [0] * nb_imgs if self.maximize else [np.inf] * nb_imgs
best_adv = np.zeros_like(source_imgs)
if self.verbose == 1:
loss_sum = float(self.sess.run(self.loss_sum))
dist_sum = float(self.sess.run(self.dist_sum))
thresh_over = (dist_sum / self.batch_size / self.l_threshold * 100)
dist_raw_sum = float(self.sess.run(self.dist_raw_sum))
bottlesim_sum = self.sess.run(self.bottlesim_sum)
print('START: Total loss: %.4E; perturb: %.6f (%.2f%% over, raw: %.6f); sim: %f'
% (Decimal(loss_sum),
dist_sum,
thresh_over,
dist_raw_sum,
bottlesim_sum / nb_imgs))
finished_idx = set()
total_distance = [0] * nb_imgs
if self.limit_dist:
dist_raw_list, bottlesim_list, aimg_input_list = self.sess.run(
[self.dist_raw,
self.bottlesim,
self.aimg_input])
for e, (dist_raw, bottlesim, aimg_input) in enumerate(
zip(dist_raw_list, bottlesim_list, aimg_input_list)):
if e >= nb_imgs:
break
total_distance[e] = bottlesim
const_diff_numpy = np.ones(len(source_imgs)) * 1.0
self.const_diff = tf.Variable(const_diff_numpy, dtype=np.float32)
# get the modifier
if self.verbose == 0:
progressbar = Progbar(
self.MAX_ITERATIONS, width=30, verbose=1
)
# watch relevant variables.
simg_tanh = tf.Variable(simg_tanh, dtype=np.float32)
simg_raw = tf.Variable(source_imgs, dtype=np.float32)
if target_imgs is not None:
timg_raw = tf.Variable(timg_tanh, dtype=np.float32)
# run the attack
outside_list = np.ones(len(source_imgs))
self.it = 0
for iteration in range(self.MAX_ITERATIONS):
while self.it < self.MAX_ITERATIONS:
self.sess.run([self.train], feed_dict={self.learning_rate_holder: LR})
self.it += 1
with tf.GradientTape(persistent=True) as tape:
tape.watch(self.modifier)
tape.watch(simg_tanh)
dist_raw_list, bottlesim_list, aimg_input_list = self.sess.run(
[self.dist_raw,
self.bottlesim,
self.aimg_input])
# Convert from tanh for DISSIM
aimg_raw = self.reverse_arctanh(simg_tanh + self.modifier)
all_clear = True
for e, (dist_raw, bottlesim, aimg_input) in enumerate(
zip(dist_raw_list, bottlesim_list, aimg_input_list)):
actual_modifier = aimg_raw - simg_raw
actual_modifier = tf.clip_by_value(actual_modifier, -15.0, 15.0)
aimg_raw = simg_raw + actual_modifier
if e in finished_idx:
continue
simg_raw = self.reverse_arctanh(simg_tanh)
# Convert further preprocess for bottleneck
aimg_input = self.input_space_process(aimg_raw)
if target_imgs is not None:
timg_input = self.input_space_process(timg_raw)
else:
timg_input = None
simg_input = self.input_space_process(simg_raw)
# get the feature space loss.
loss, internal_dist, input_dist_avg, dist_raw = self.compute_feature_loss(
tape, aimg_raw, simg_raw, aimg_input, timg_input, simg_input)
# compute gradients
grad = tape.gradient(loss, [self.modifier])
optimizer.apply_gradients(zip(grad, [self.modifier]))
if self.it == 1:
self.modifier = tf.Variable(self.modifier - tf.sign(grad[0]) * 0.01, dtype=tf.float32)
for e, (input_dist, feature_d, mod_img) in enumerate(zip(dist_raw, internal_dist, aimg_input)):
if e >= nb_imgs:
break
if (bottlesim < best_bottlesim[e] and bottlesim > total_distance[e] * 0.1 and (
not self.maximize)) or (
bottlesim > best_bottlesim[e] and self.maximize):
best_bottlesim[e] = bottlesim
best_adv[e] = aimg_input
input_dist = input_dist.numpy()
feature_d = feature_d.numpy()
all_clear = False
if input_dist <= self.l_threshold * 0.9 and const_diff_numpy[e] <= 129:
const_diff_numpy[e] *= 2
if outside_list[e] == -1:
const_diff_numpy[e] = 1
outside_list[e] = 1
elif input_dist >= self.l_threshold * 1.1 and const_diff_numpy[e] >= 1 / 129:
const_diff_numpy[e] /= 2
if all_clear:
break
if outside_list[e] == 1:
const_diff_numpy[e] = 1
outside_list[e] = -1
else:
const_diff_numpy[e] = 1.0
outside_list[e] = 0
if iteration != 0 and iteration % (self.MAX_ITERATIONS // 3) == 0:
LR = LR * 0.8
if self.verbose:
print("Learning rate: ", LR)
if input_dist <= self.l_threshold * 1.1 and (
(feature_d < best_bottlesim[e] and (not self.maximize)) or (
feature_d > best_bottlesim[e] and self.maximize)):
best_bottlesim[e] = feature_d
best_adv[e] = mod_img
self.const_diff = tf.Variable(const_diff_numpy, dtype=np.float32)
if self.verbose == 1:
print("ITER {:0.2f} Total Loss: {:.2f} {:0.4f} raw; diff: {:.4f}".format(self.it, loss, input_dist_avg,
np.mean(internal_dist)))
if iteration % (self.MAX_ITERATIONS // 5) == 0:
if self.verbose == 1:
dist_raw_sum = float(self.sess.run(self.dist_raw_sum))
bottlesim_sum = self.sess.run(self.bottlesim_sum)
print('ITER %4d perturb: %.5f; sim: %f'
% (iteration, dist_raw_sum / nb_imgs, bottlesim_sum / nb_imgs))
if self.verbose == 0:
progressbar.update(iteration)
progressbar.update(self.it)
if self.verbose == 1:
loss_sum = float(self.sess.run(self.loss_sum))
dist_sum = float(self.sess.run(self.dist_sum))
dist_raw_sum = float(self.sess.run(self.dist_raw_sum))
bottlesim_sum = float(self.sess.run(self.bottlesim_sum))
print('END: Total loss: %.4E; perturb: %.6f (raw: %.6f); sim: %f'
% (Decimal(loss_sum),
dist_sum,
dist_raw_sum,
bottlesim_sum / nb_imgs))
print("Final diff: {:.4f}".format(np.mean(best_bottlesim)))
print("\n")
if self.save_last_on_failed:
for e, diff in enumerate(best_bottlesim):
if diff < 0.3 and dist_raw[e] < 0.015 and internal_dist[e] > diff:
best_adv[e] = aimg_input[e]
best_adv = self.clipping(best_adv[:nb_imgs])
return best_adv

Wyświetl plik

@ -10,87 +10,79 @@ import logging
import os
import sys
logging.getLogger('tensorflow').setLevel(logging.ERROR)
os.environ["KMP_AFFINITY"] = "noverbose"
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
logging.getLogger('tensorflow').disabled = True
tf.get_logger().setLevel('ERROR')
tf.autograph.set_verbosity(3)
import numpy as np
from fawkes.differentiator import FawkesMaskGeneration
from fawkes.utils import load_extractor, init_gpu, select_target_label, dump_image, reverse_process_cloaked, \
Faces, filter_image_paths
from fawkes.utils import init_gpu, dump_image, reverse_process_cloaked, \
Faces, filter_image_paths, load_extractor
from fawkes.align_face import aligner
from fawkes.utils import get_file
def generate_cloak_images(protector, image_X, target_emb=None):
cloaked_image_X = protector.attack(image_X, target_emb)
cloaked_image_X = protector.compute(image_X, target_emb)
return cloaked_image_X
IMG_SIZE = 112
PREPROCESS = 'raw'
class Fawkes(object):
def __init__(self, feature_extractor, gpu, batch_size):
def __init__(self, feature_extractor, gpu, batch_size, mode="low"):
self.feature_extractor = feature_extractor
self.gpu = gpu
self.batch_size = batch_size
global sess
sess = init_gpu(gpu)
global graph
graph = tf.get_default_graph()
self.mode = mode
th, max_step, lr, extractors = self.mode2param(self.mode)
self.th = th
self.lr = lr
self.max_step = max_step
if gpu is not None:
init_gpu(gpu)
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
if not os.path.exists(os.path.join(model_dir, "mtcnn.p.gz")):
os.makedirs(model_dir, exist_ok=True)
get_file("mtcnn.p.gz", "http://mirror.cs.uchicago.edu/fawkes/files/mtcnn.p.gz", cache_dir=model_dir,
cache_subdir='')
self.fs_names = [feature_extractor]
if isinstance(feature_extractor, list):
self.fs_names = feature_extractor
self.aligner = aligner(sess)
self.feature_extractors_ls = [load_extractor(name) for name in self.fs_names]
self.aligner = aligner()
self.protector = None
self.protector_param = None
self.feature_extractors_ls = [load_extractor(name) for name in extractors]
def mode2param(self, mode):
if mode == 'min':
th = 0.002
max_step = 20
lr = 40
elif mode == 'low':
th = 0.003
max_step = 50
lr = 35
if mode == 'low':
th = 0.004
max_step = 40
lr = 25
extractors = ["extractor_2"]
elif mode == 'mid':
th = 0.005
max_step = 200
th = 0.012
max_step = 75
lr = 20
extractors = ["extractor_0", "extractor_2"]
elif mode == 'high':
th = 0.008
max_step = 500
lr = 10
elif mode == 'ultra':
if not tf.test.is_gpu_available():
print("Please enable GPU for ultra setting...")
sys.exit(1)
th = 0.01
max_step = 1000
lr = 8
else:
raise Exception("mode must be one of 'min', 'low', 'mid', 'high', 'ultra', 'custom'")
return th, max_step, lr
th = 0.017
max_step = 150
lr = 15
extractors = ["extractor_0", "extractor_2"]
def run_protection(self, image_paths, mode='min', th=0.04, sd=1e9, lr=10, max_step=500, batch_size=1, format='png',
separate_target=True, debug=False):
if mode == 'custom':
pass
else:
th, max_step, lr = self.mode2param(mode)
raise Exception("mode must be one of 'min', 'low', 'mid', 'high'")
return th, max_step, lr, extractors
current_param = "-".join([str(x) for x in [mode, th, sd, lr, max_step, batch_size, format,
def run_protection(self, image_paths, th=0.04, sd=1e7, lr=10, max_step=500, batch_size=1, format='png',
separate_target=True, debug=False, no_align=False, exp="", maximize=True,
save_last_on_failed=True):
current_param = "-".join([str(x) for x in [self.th, sd, self.lr, self.max_step, batch_size, format,
separate_target, debug]])
image_paths, loaded_images = filter_image_paths(image_paths)
@ -99,55 +91,49 @@ class Fawkes(object):
print("No images in the directory")
return 3
with graph.as_default():
faces = Faces(image_paths, loaded_images, self.aligner, verbose=1)
faces = Faces(image_paths, loaded_images, self.aligner, verbose=1, no_align=no_align)
original_images = faces.cropped_faces
original_images = faces.cropped_faces
if len(original_images) == 0:
print("No face detected. ")
return 2
original_images = np.array(original_images)
if len(original_images) == 0:
print("No face detected. ")
return 2
original_images = np.array(original_images)
with sess.as_default():
if separate_target:
target_embedding = []
for org_img in original_images:
org_img = org_img.reshape([1] + list(org_img.shape))
tar_emb = select_target_label(org_img, self.feature_extractors_ls, self.fs_names)
target_embedding.append(tar_emb)
target_embedding = np.concatenate(target_embedding)
else:
target_embedding = select_target_label(original_images, self.feature_extractors_ls, self.fs_names)
if current_param != self.protector_param:
self.protector_param = current_param
if self.protector is not None:
del self.protector
if batch_size == -1:
batch_size = len(original_images)
self.protector = FawkesMaskGeneration(self.feature_extractors_ls,
batch_size=batch_size,
mimic_img=True,
intensity_range=PREPROCESS,
initial_const=sd,
learning_rate=self.lr,
max_iterations=self.max_step,
l_threshold=self.th,
verbose=debug,
maximize=maximize,
keep_final=False,
image_shape=(IMG_SIZE, IMG_SIZE, 3),
loss_method='features',
tanh_process=True,
save_last_on_failed=save_last_on_failed,
)
protected_images = generate_cloak_images(self.protector, original_images)
faces.cloaked_cropped_faces = protected_images
if current_param != self.protector_param:
self.protector_param = current_param
final_images, images_without_face = faces.merge_faces(
reverse_process_cloaked(protected_images, preprocess=PREPROCESS),
reverse_process_cloaked(original_images, preprocess=PREPROCESS))
if self.protector is not None:
del self.protector
self.protector = FawkesMaskGeneration(sess, self.feature_extractors_ls,
batch_size=batch_size,
mimic_img=True,
intensity_range='imagenet',
initial_const=sd,
learning_rate=lr,
max_iterations=max_step,
l_threshold=th,
verbose=1 if debug else 0,
maximize=False,
keep_final=False,
image_shape=(224, 224, 3))
protected_images = generate_cloak_images(self.protector, original_images,
target_emb=target_embedding)
faces.cloaked_cropped_faces = protected_images
final_images = faces.merge_faces(reverse_process_cloaked(protected_images),
reverse_process_cloaked(original_images))
for p_img, path in zip(final_images, image_paths):
file_name = "{}_{}_cloaked.{}".format(".".join(path.split(".")[:-1]), mode, format)
for i in range(len(final_images)):
if i in images_without_face:
continue
p_img = final_images[i]
path = image_paths[i]
file_name = "{}_cloaked.{}".format(".".join(path.split(".")[:-1]), format)
dump_image(p_img, file_name, format=format)
print("Done!")
@ -167,18 +153,15 @@ def main(*argv):
parser = argparse.ArgumentParser()
parser.add_argument('--directory', '-d', type=str,
help='the directory that contains images to run protection', default='imgs/')
parser.add_argument('--gpu', '-g', type=str,
help='the GPU id when using GPU for optimization', default='0')
parser.add_argument('--mode', '-m', type=str,
help='cloak generation mode, select from min, low, mid, high. The higher the mode is, the more perturbation added and stronger protection',
default='min')
help='cloak generation mode, select from min, low, mid, high. The higher the mode is, '
'the more perturbation added and stronger protection',
default='low')
parser.add_argument('--feature-extractor', type=str,
help="name of the feature extractor used for optimization, currently only support high_extract",
default="high_extract")
help="name of the feature extractor used for optimization",
default="arcface_extractor_0")
parser.add_argument('--th', help='only relevant with mode=custom, DSSIM threshold for perturbation', type=float,
default=0.01)
parser.add_argument('--max-step', help='only relevant with mode=custom, number of steps for optimization', type=int,
@ -186,10 +169,11 @@ def main(*argv):
parser.add_argument('--sd', type=int, help='only relevant with mode=custom, penalty number, read more in the paper',
default=1e6)
parser.add_argument('--lr', type=float, help='only relevant with mode=custom, learning rate', default=2)
parser.add_argument('--batch-size', help="number of images to run optimization together", type=int, default=1)
parser.add_argument('--separate_target', help="whether select separate targets for each faces in the directory",
action='store_true')
parser.add_argument('--no-align', help="whether to detect and crop faces",
action='store_true')
parser.add_argument('--debug', help="turn on debug and copy/paste the stdout when reporting an issue on github",
action='store_true')
parser.add_argument('--format', type=str,
@ -205,11 +189,12 @@ def main(*argv):
image_paths = glob.glob(os.path.join(args.directory, "*"))
image_paths = [path for path in image_paths if "_cloaked" not in path.split("/")[-1]]
protector = Fawkes(args.feature_extractor, args.gpu, args.batch_size)
protector.run_protection(image_paths, mode=args.mode, th=args.th, sd=args.sd, lr=args.lr,
protector = Fawkes(args.feature_extractor, args.gpu, args.batch_size, mode=args.mode)
protector.run_protection(image_paths, th=args.th, sd=args.sd, lr=args.lr,
max_step=args.max_step,
batch_size=args.batch_size, format=args.format,
separate_target=args.separate_target, debug=args.debug)
separate_target=args.separate_target, debug=args.debug, no_align=args.no_align)
if __name__ == '__main__':

Wyświetl plik

@ -8,6 +8,7 @@
import errno
import glob
import gzip
import hashlib
import json
import os
import pickle
@ -18,7 +19,9 @@ import tarfile
import zipfile
import PIL
import pkg_resources
import six
from keras.utils import Progbar
from six.moves.urllib.error import HTTPError, URLError
stderr = sys.stderr
@ -70,6 +73,10 @@ def clip_img(X, preprocessing='raw'):
return X
IMG_SIZE = 112
PREPROCESS = 'raw'
def load_image(path):
try:
img = Image.open(path)
@ -120,56 +127,69 @@ def filter_image_paths(image_paths):
class Faces(object):
def __init__(self, image_paths, loaded_images, aligner, verbose=1, eval_local=False, preprocessing=True):
def __init__(self, image_paths, loaded_images, aligner, verbose=1, eval_local=False, preprocessing=True,
no_align=False):
self.image_paths = image_paths
self.verbose = verbose
self.no_align = no_align
self.aligner = aligner
self.margin = 30
self.org_faces = []
self.cropped_faces = []
self.cropped_faces_shape = []
self.cropped_index = []
self.start_end_ls = []
self.callback_idx = []
self.images_without_face = []
for i in range(0, len(loaded_images)):
cur_img = loaded_images[i]
p = image_paths[i]
self.org_faces.append(cur_img)
if eval_local:
margin = 0
if not no_align:
align_img = align(cur_img, self.aligner)
if align_img is None:
print("Find 0 face(s) in {}".format(p.split("/")[-1]))
self.images_without_face.append(i)
continue
cur_faces = align_img[0]
else:
margin = 0.7
align_img = align(cur_img, self.aligner, margin=margin)
if align_img is None:
print("Find 0 face(s)".format(p.split("/")[-1]))
continue
cur_faces = align_img[0]
cur_faces = [cur_img]
cur_faces = [face for face in cur_faces if face.shape[0] != 0 and face.shape[1] != 0]
cur_shapes = [f.shape[:-1] for f in cur_faces]
cur_faces_square = []
if verbose:
if verbose and not no_align:
print("Find {} face(s) in {}".format(len(cur_faces), p.split("/")[-1]))
if eval_local:
cur_faces = cur_faces[:1]
for img in cur_faces:
if eval_local:
base = resize(img, (224, 224))
base = resize(img, (IMG_SIZE, IMG_SIZE))
else:
long_size = max([img.shape[1], img.shape[0]])
base = np.zeros((long_size, long_size, 3))
base[0:img.shape[0], 0:img.shape[1], :] = img
cur_faces_square.append(base)
cur_index = align_img[1]
cur_faces_square = [resize(f, (224, 224)) for f in cur_faces_square]
long_size = max([img.shape[1], img.shape[0]]) + self.margin
self.cropped_faces_shape.extend(cur_shapes)
base = np.ones((long_size, long_size, 3)) * np.mean(img, axis=(0, 1))
start1, end1 = get_ends(long_size, img.shape[0])
start2, end2 = get_ends(long_size, img.shape[1])
base[start1:end1, start2:end2, :] = img
cur_start_end = (start1, end1, start2, end2)
self.start_end_ls.append(cur_start_end)
cur_faces_square.append(base)
cur_faces_square = [resize(f, (IMG_SIZE, IMG_SIZE)) for f in cur_faces_square]
self.cropped_faces.extend(cur_faces_square)
self.cropped_index.extend(cur_index)
self.callback_idx.extend([i] * len(cur_faces_square))
if not self.no_align:
cur_index = align_img[1]
self.cropped_faces_shape.extend(cur_shapes)
self.cropped_index.extend(cur_index[:len(cur_faces_square)])
self.callback_idx.extend([i] * len(cur_faces_square))
if len(self.cropped_faces) == 0:
return
@ -177,7 +197,7 @@ class Faces(object):
self.cropped_faces = np.array(self.cropped_faces)
if preprocessing:
self.cropped_faces = preprocess(self.cropped_faces, 'imagenet')
self.cropped_faces = preprocess(self.cropped_faces, PREPROCESS)
self.cloaked_cropped_faces = None
self.cloaked_faces = np.copy(self.org_faces)
@ -186,6 +206,8 @@ class Faces(object):
return self.cropped_faces
def merge_faces(self, protected_images, original_images):
if self.no_align:
return np.clip(protected_images, 0.0, 255.0), self.images_without_face
self.cloaked_faces = np.copy(self.org_faces)
@ -194,22 +216,30 @@ class Faces(object):
cur_original = original_images[i]
org_shape = self.cropped_faces_shape[i]
old_square_shape = max([org_shape[0], org_shape[1]])
old_square_shape = max([org_shape[0], org_shape[1]]) + self.margin
cur_protected = resize(cur_protected, (old_square_shape, old_square_shape))
cur_original = resize(cur_original, (old_square_shape, old_square_shape))
reshape_cloak = cur_protected - cur_original
start1, end1, start2, end2 = self.start_end_ls[i]
reshape_cloak = reshape_cloak[0:org_shape[0], 0:org_shape[1], :]
reshape_cloak = cur_protected - cur_original
reshape_cloak = reshape_cloak[start1:end1, start2:end2, :]
callback_id = self.callback_idx[i]
bb = self.cropped_index[i]
self.cloaked_faces[callback_id][bb[1]:bb[3], bb[0]:bb[2], :] += reshape_cloak
self.cloaked_faces[callback_id][bb[0]:bb[2], bb[1]:bb[3], :] += reshape_cloak
for i in range(0, len(self.cloaked_faces)):
self.cloaked_faces[i] = np.clip(self.cloaked_faces[i], 0.0, 255.0)
return self.cloaked_faces
return self.cloaked_faces, self.images_without_face
def get_ends(longsize, window):
start = (longsize - window) // 2
end = start + window
return start, end
def dump_dictionary_as_json(dict, outfile):
@ -239,17 +269,25 @@ def resize(img, sz):
return im_data
def init_gpu(gpu_index, force=False):
if isinstance(gpu_index, list):
gpu_num = ','.join([str(i) for i in gpu_index])
def init_gpu(gpu):
''' code to initialize gpu in tf2'''
if isinstance(gpu, list):
gpu_num = ','.join([str(i) for i in gpu])
else:
gpu_num = str(gpu_index)
if "CUDA_VISIBLE_DEVICES" in os.environ and os.environ["CUDA_VISIBLE_DEVICES"] and not force:
gpu_num = str(gpu)
if "CUDA_VISIBLE_DEVICES" in os.environ:
print('GPU already initiated')
return
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_num
sess = fix_gpu_memory()
return sess
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
tf.config.experimental.set_visible_devices(gpus[0], 'GPU')
tf.config.experimental.set_memory_growth(gpus[0], True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPU")
except RuntimeError as e:
print(e)
def fix_gpu_memory(mem_fraction=1):
@ -386,28 +424,34 @@ def build_bottleneck_model(model, cut_off):
def load_extractor(name):
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
hash_map = {"extractor_2": "ce703d481db2b83513bbdafa27434703",
"extractor_0": "94854151fd9077997d69ceda107f9c6b"}
assert name in ["extractor_2", 'extractor_0']
model_file = pkg_resources.resource_filename("fawkes", "model/{}.h5".format(name))
cur_hash = hash_map[name]
model_dir = pkg_resources.resource_filename("fawkes", "model/")
os.makedirs(model_dir, exist_ok=True)
model_file = os.path.join(model_dir, "{}.h5".format(name))
emb_file = os.path.join(model_dir, "{}_emb.p.gz".format(name))
if os.path.exists(model_file):
model = keras.models.load_model(model_file)
else:
print("Download models...")
get_file("{}.h5".format(name), "http://mirror.cs.uchicago.edu/fawkes/files/{}.h5".format(name),
cache_dir=model_dir, cache_subdir='')
model = keras.models.load_model(model_file)
get_file("{}.h5".format(name), "http://mirror.cs.uchicago.edu/fawkes/files/{}.h5".format(name),
cache_dir=model_dir, cache_subdir='', md5_hash=cur_hash)
if not os.path.exists(emb_file):
get_file("{}_emb.p.gz".format(name), "http://mirror.cs.uchicago.edu/fawkes/files/{}_emb.p.gz".format(name),
cache_dir=model_dir, cache_subdir='')
if hasattr(model.layers[-1], "activation") and model.layers[-1].activation == "softmax":
raise Exception(
"Given extractor's last layer is softmax, need to remove the top layers to make it into a feature extractor")
model = keras.models.load_model(model_file)
model = Extractor(model)
return model
class Extractor(object):
def __init__(self, model):
self.model = model
def predict(self, imgs):
imgs = imgs / 255.0
embeds = l2_norm(self.model(imgs))
return embeds
def __call__(self, x):
return self.predict(x)
def get_dataset_path(dataset):
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
if not os.path.exists(os.path.join(model_dir, "config.json")):
@ -505,8 +549,8 @@ def select_target_label(imgs, feature_extractors_ls, feature_extractors_names, m
target_images = [image.img_to_array(image.load_img(cur_path)) for cur_path in
image_paths]
target_images = np.array([resize(x, (224, 224)) for x in target_images])
target_images = preprocess(target_images, 'imagenet')
target_images = np.array([resize(x, (IMG_SIZE, IMG_SIZE)) for x in target_images])
target_images = preprocess(target_images, PREPROCESS)
target_images = list(target_images)
while len(target_images) < len(imgs):
@ -516,10 +560,18 @@ def select_target_label(imgs, feature_extractors_ls, feature_extractors_names, m
return np.array(target_images)
def l2_norm(x, axis=1):
"""l2 norm"""
norm = tf.norm(x, axis=axis, keepdims=True)
output = x / norm
return output
""" TensorFlow implementation get_file
https://github.com/tensorflow/tensorflow/blob/v2.3.0/tensorflow/python/keras/utils/data_utils.py#L168-L297
"""
def get_file(fname,
origin,
untar=False,
@ -531,16 +583,18 @@ def get_file(fname,
archive_format='auto',
cache_dir=None):
if cache_dir is None:
cache_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
cache_dir = os.path.join(os.path.expanduser('~'), '.keras')
if md5_hash is not None and file_hash is None:
file_hash = md5_hash
hash_algorithm = 'md5'
datadir_base = os.path.expanduser(cache_dir)
if not os.access(datadir_base, os.W_OK):
datadir_base = os.path.join('/tmp', '.fawkes')
datadir_base = os.path.join('/tmp', '.keras')
datadir = os.path.join(datadir_base, cache_subdir)
_makedirs_exist_ok(datadir)
# fname = path_to_string(fname)
if untar:
untar_fpath = os.path.join(datadir, fname)
fpath = untar_fpath + '.tar.gz'
@ -548,12 +602,35 @@ def get_file(fname,
fpath = os.path.join(datadir, fname)
download = False
if not os.path.exists(fpath):
if os.path.exists(fpath):
# File found; verify integrity if a hash was provided.
if file_hash is not None:
if not validate_file(fpath, file_hash, algorithm=hash_algorithm):
print('A local file was found, but it seems to be '
'incomplete or outdated because the ' + hash_algorithm +
' file hash does not match the original value of ' + file_hash +
' so we will re-download the data.')
download = True
else:
download = True
if download:
print('Downloading data from', origin)
class ProgressTracker(object):
# Maintain progbar for the lifetime of download.
# This design was chosen for Python 2.7 compatibility.
progbar = None
def dl_progress(count, block_size, total_size):
if ProgressTracker.progbar is None:
if total_size == -1:
total_size = None
ProgressTracker.progbar = Progbar(total_size)
else:
ProgressTracker.progbar.update(count * block_size)
error_msg = 'URL fetch failure on {}: {} -- {}'
dl_progress = None
try:
try:
urlretrieve(origin, fpath, dl_progress)
@ -565,7 +642,7 @@ def get_file(fname,
if os.path.exists(fpath):
os.remove(fpath)
raise
# ProgressTracker.progbar = None
ProgressTracker.progbar = None
if untar:
if not os.path.exists(untar_fpath):
@ -619,3 +696,53 @@ def _makedirs_exist_ok(datadir):
raise
else:
os.makedirs(datadir, exist_ok=True) # pylint: disable=unexpected-keyword-arg
def validate_file(fpath, file_hash, algorithm='auto', chunk_size=65535):
"""Validates a file against a sha256 or md5 hash.
Arguments:
fpath: path to the file being validated
file_hash: The expected hash string of the file.
The sha256 and md5 hash algorithms are both supported.
algorithm: Hash algorithm, one of 'auto', 'sha256', or 'md5'.
The default 'auto' detects the hash algorithm in use.
chunk_size: Bytes to read at a time, important for large files.
Returns:
Whether the file is valid
"""
if (algorithm == 'sha256') or (algorithm == 'auto' and len(file_hash) == 64):
hasher = 'sha256'
else:
hasher = 'md5'
if str(_hash_file(fpath, hasher, chunk_size)) == str(file_hash):
return True
else:
return False
def _hash_file(fpath, algorithm='sha256', chunk_size=65535):
"""Calculates a file sha256 or md5 hash.
Example:
```python
_hash_file('/path/to/file.zip')
'e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855'
```
Arguments:
fpath: path to the file being validated
algorithm: hash algorithm, one of `'auto'`, `'sha256'`, or `'md5'`.
The default `'auto'` detects the hash algorithm in use.
chunk_size: Bytes to read at a time, important for large files.
Returns:
The file hash
"""
if (algorithm == 'sha256') or (algorithm == 'auto' and len(hash) == 64):
hasher = hashlib.sha256()
else:
hasher = hashlib.md5()
with open(fpath, 'rb') as fpath_file:
for chunk in iter(lambda: fpath_file.read(chunk_size), b''):
hasher.update(chunk)
return hasher.hexdigest()

Wyświetl plik

@ -1,66 +0,0 @@
import socket
import subprocess
import sys
import time
print(socket.gethostname())
def assign_gpu(args, gpu_idx):
for i, arg in enumerate(args):
if arg == "GPUID":
args[i] = str(gpu_idx)
return args
def produce_present():
process_ls = []
gpu_ls = list(sys.argv[1])
max_num = int(sys.argv[2])
available_gpus = []
i = 0
while len(available_gpus) < max_num:
if i > len(gpu_ls) - 1:
i = 0
available_gpus.append(gpu_ls[i])
i += 1
process_dict = {}
all_queries_to_run = []
for m in ['mid', 'low', 'min']:
for directory in ['KimKardashian', 'Liuyifei', 'Obama', 'TaylorSwift', 'TomHolland']:
args = ['python3', 'protection.py', '--gpu', 'GPUID', '-d',
'/home/shansixioing/fawkes/data/test/{}/'.format(directory),
'--batch-size', '30', '-m', m,
'--debug']
args = [str(x) for x in args]
all_queries_to_run.append(args)
for args in all_queries_to_run:
cur_gpu = available_gpus.pop(0)
args = assign_gpu(args, cur_gpu)
print(" ".join(args))
p = subprocess.Popen(args)
process_ls.append(p)
process_dict[p] = cur_gpu
gpu_ls.append(cur_gpu)
time.sleep(5)
while not available_gpus:
for p in process_ls:
poll = p.poll()
if poll is not None:
process_ls.remove(p)
available_gpus.append(process_dict[p])
time.sleep(20)
def main():
produce_present()
if __name__ == '__main__':
main()

Wyświetl plik

@ -75,10 +75,10 @@ class DeployCommand(Command):
setup_requires = []
install_requires = [
'numpy==1.16.4',
# 'tensorflow-gpu>=1.13.1, <=1.14.0',
'tensorflow>=1.12.0, <=1.15.0', # change this is tensorflow-gpu if using GPU machine.
'keras>=2.2.5, <=2.3.1',
'numpy>=1.19.5',
'tensorflow==2.4.1',
'keras==2.4.3',
'mtcnn',
'pillow>=7.0.0',
'bleach>=2.1.0'
]
@ -92,8 +92,8 @@ setup(
long_description_content_type='text/markdown',
url="https://github.com/Shawn-Shan/fawkes",
author='Shawn Shan',
author_email='shansixiong@cs.uchicago.edu',
keywords='fawkes privacy clearview',
author_email='shawnshan@cs.uchicago.edu',
keywords='fawkes privacy ML',
classifiers=[
'Development Status :: 3 - Alpha',
'License :: OSI Approved :: MIT License',
@ -112,5 +112,5 @@ setup(
},
include_package_data=True,
zip_safe=False,
python_requires='>=3.5,<3.8',
python_requires='>=3.5',
)