esp-idf/components/esp_driver_rmt/src/rmt_common.c

269 wiersze
9.9 KiB
C

/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <sys/lock.h>
#include "sdkconfig.h"
#if CONFIG_RMT_ENABLE_DEBUG_LOG
// The local log level must be defined before including esp_log.h
// Set the maximum log level for this source file
#define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
#endif
#include "esp_log.h"
#include "esp_check.h"
#include "rmt_private.h"
#include "clk_ctrl_os.h"
#include "soc/rtc.h"
#include "soc/rmt_periph.h"
#include "hal/rmt_ll.h"
#include "driver/gpio.h"
#include "esp_clk_tree.h"
#include "esp_private/periph_ctrl.h"
static const char *TAG = "rmt";
#if SOC_PERIPH_CLK_CTRL_SHARED
#define RMT_CLOCK_SRC_ATOMIC() PERIPH_RCC_ATOMIC()
#else
#define RMT_CLOCK_SRC_ATOMIC()
#endif
#if !SOC_RCC_IS_INDEPENDENT
#define RMT_RCC_ATOMIC() PERIPH_RCC_ATOMIC()
#else
#define RMT_RCC_ATOMIC()
#endif
typedef struct rmt_platform_t {
_lock_t mutex; // platform level mutex lock
rmt_group_t *groups[SOC_RMT_GROUPS]; // array of RMT group instances
int group_ref_counts[SOC_RMT_GROUPS]; // reference count used to protect group install/uninstall
} rmt_platform_t;
static rmt_platform_t s_platform; // singleton platform
rmt_group_t *rmt_acquire_group_handle(int group_id)
{
bool new_group = false;
rmt_group_t *group = NULL;
// prevent install rmt group concurrently
_lock_acquire(&s_platform.mutex);
if (!s_platform.groups[group_id]) {
group = heap_caps_calloc(1, sizeof(rmt_group_t), RMT_MEM_ALLOC_CAPS);
if (group) {
new_group = true;
s_platform.groups[group_id] = group;
group->group_id = group_id;
group->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
// initial occupy_mask: 1111...100...0
group->occupy_mask = UINT32_MAX & ~((1 << SOC_RMT_CHANNELS_PER_GROUP) - 1);
// group clock won't be configured at this stage, it will be set when allocate the first channel
group->clk_src = 0;
// group interrupt priority is shared between all channels, it will be set when allocate the first channel
group->intr_priority = RMT_GROUP_INTR_PRIORITY_UNINITIALIZED;
// enable the bus clock for the RMT peripheral
RMT_RCC_ATOMIC() {
rmt_ll_enable_bus_clock(group_id, true);
rmt_ll_reset_register(group_id);
}
// hal layer initialize
rmt_hal_init(&group->hal);
}
} else { // group already install
group = s_platform.groups[group_id];
}
if (group) {
// someone acquired the group handle means we have a new object that refer to this group
s_platform.group_ref_counts[group_id]++;
}
_lock_release(&s_platform.mutex);
if (new_group) {
ESP_LOGD(TAG, "new group(%d) at %p, occupy=%"PRIx32, group_id, group, group->occupy_mask);
}
return group;
}
void rmt_release_group_handle(rmt_group_t *group)
{
int group_id = group->group_id;
rmt_clock_source_t clk_src = group->clk_src;
bool do_deinitialize = false;
rmt_hal_context_t *hal = &group->hal;
_lock_acquire(&s_platform.mutex);
s_platform.group_ref_counts[group_id]--;
if (s_platform.group_ref_counts[group_id] == 0) {
do_deinitialize = true;
s_platform.groups[group_id] = NULL;
// disable core clock
RMT_CLOCK_SRC_ATOMIC() {
rmt_ll_enable_group_clock(hal->regs, false);
}
// hal layer deinitialize
rmt_hal_deinit(hal);
// disable bus clock
RMT_RCC_ATOMIC() {
rmt_ll_enable_bus_clock(group_id, false);
}
free(group);
}
_lock_release(&s_platform.mutex);
switch (clk_src) {
#if SOC_RMT_SUPPORT_RC_FAST
case RMT_CLK_SRC_RC_FAST:
periph_rtc_dig_clk8m_disable();
break;
#endif // SOC_RMT_SUPPORT_RC_FAST
default:
break;
}
if (do_deinitialize) {
ESP_LOGD(TAG, "del group(%d)", group_id);
}
}
esp_err_t rmt_select_periph_clock(rmt_channel_handle_t chan, rmt_clock_source_t clk_src)
{
esp_err_t ret = ESP_OK;
rmt_group_t *group = chan->group;
int channel_id = chan->channel_id;
uint32_t periph_src_clk_hz = 0;
bool clock_selection_conflict = false;
// check if we need to update the group clock source, group clock source is shared by all channels
portENTER_CRITICAL(&group->spinlock);
if (group->clk_src == 0) {
group->clk_src = clk_src;
} else {
clock_selection_conflict = (group->clk_src != clk_src);
}
portEXIT_CRITICAL(&group->spinlock);
ESP_RETURN_ON_FALSE(!clock_selection_conflict, ESP_ERR_INVALID_STATE, TAG,
"group clock conflict, already is %d but attempt to %d", group->clk_src, clk_src);
// TODO: [clk_tree] to use a generic clock enable/disable or acquire/release function for all clock source
#if SOC_RMT_SUPPORT_RC_FAST
if (clk_src == RMT_CLK_SRC_RC_FAST) {
// RC_FAST clock is not enabled automatically on start up, we enable it here manually.
// Note there's a ref count in the enable/disable function, we must call them in pair in the driver.
periph_rtc_dig_clk8m_enable();
}
#endif // SOC_RMT_SUPPORT_RC_FAST
// get clock source frequency
ESP_RETURN_ON_ERROR(esp_clk_tree_src_get_freq_hz((soc_module_clk_t)clk_src, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &periph_src_clk_hz),
TAG, "get clock source frequency failed");
#if CONFIG_PM_ENABLE
// if DMA is not used, we're using CPU to push the data to the RMT FIFO
// if the CPU frequency goes down, the transfer+encoding scheme could be unstable because CPU can't fill the data in time
// so, choose ESP_PM_CPU_FREQ_MAX lock for non-dma mode
// otherwise, chose lock type based on the clock source
esp_pm_lock_type_t pm_lock_type = chan->dma_chan ? ESP_PM_NO_LIGHT_SLEEP : ESP_PM_CPU_FREQ_MAX;
#if SOC_RMT_SUPPORT_APB
if (clk_src == RMT_CLK_SRC_APB) {
// APB clock frequency can be changed during DFS
pm_lock_type = ESP_PM_APB_FREQ_MAX;
}
#endif // SOC_RMT_SUPPORT_APB
sprintf(chan->pm_lock_name, "rmt_%d_%d", group->group_id, channel_id); // e.g. rmt_0_0
ret = esp_pm_lock_create(pm_lock_type, 0, chan->pm_lock_name, &chan->pm_lock);
ESP_RETURN_ON_ERROR(ret, TAG, "create pm lock failed");
#endif // CONFIG_PM_ENABLE
// no division for group clock source, to achieve highest resolution
RMT_CLOCK_SRC_ATOMIC() {
rmt_ll_set_group_clock_src(group->hal.regs, channel_id, clk_src, 1, 1, 0);
rmt_ll_enable_group_clock(group->hal.regs, true);
}
group->resolution_hz = periph_src_clk_hz;
ESP_LOGD(TAG, "group clock resolution:%"PRIu32, group->resolution_hz);
return ret;
}
esp_err_t rmt_get_channel_id(rmt_channel_handle_t channel, int *ret_id)
{
ESP_RETURN_ON_FALSE(channel && ret_id, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
*ret_id = channel->channel_id;
return ESP_OK;
}
esp_err_t rmt_apply_carrier(rmt_channel_handle_t channel, const rmt_carrier_config_t *config)
{
// specially, we allow config to be NULL, means to disable the carrier submodule
ESP_RETURN_ON_FALSE(channel, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
return channel->set_carrier_action(channel, config);
}
esp_err_t rmt_del_channel(rmt_channel_handle_t channel)
{
ESP_RETURN_ON_FALSE(channel, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
gpio_reset_pin(channel->gpio_num);
return channel->del(channel);
}
esp_err_t rmt_enable(rmt_channel_handle_t channel)
{
ESP_RETURN_ON_FALSE(channel, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
return channel->enable(channel);
}
esp_err_t rmt_disable(rmt_channel_handle_t channel)
{
ESP_RETURN_ON_FALSE(channel, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
return channel->disable(channel);
}
bool rmt_set_intr_priority_to_group(rmt_group_t *group, int intr_priority)
{
bool priority_conflict = false;
portENTER_CRITICAL(&group->spinlock);
if (group->intr_priority == RMT_GROUP_INTR_PRIORITY_UNINITIALIZED) {
// intr_priority never allocated, accept user's value unconditionally
// intr_priority could only be set once here
group->intr_priority = intr_priority;
} else {
// group intr_priority already specified
// If interrupt priority specified before, it CANNOT BE CHANGED until `rmt_release_group_handle()` called
// So we have to check if the new priority specified conflicts with the old one
if (intr_priority) {
// User specified intr_priority, check if conflict or not
// Even though the `group->intr_priority` is 0, an intr_priority must have been specified automatically too,
// although we do not know it exactly now, so specifying the intr_priority again might also cause conflict.
// So no matter if `group->intr_priority` is 0 or not, we have to check.
// Value `0` of `group->intr_priority` means "unknown", NOT "unspecified"!
if (intr_priority != (group->intr_priority)) {
// intr_priority conflicts!
priority_conflict = true;
}
}
// else do nothing
// user did not specify intr_priority, then keep the old priority
// We'll use the `RMT_INTR_ALLOC_FLAG | RMT_ALLOW_INTR_PRIORITY_MASK`, which should always success
}
// The `group->intr_priority` will not change any longer, even though another task tries to modify it.
// So we could exit critical here safely.
portEXIT_CRITICAL(&group->spinlock);
return priority_conflict;
}
int rmt_get_isr_flags(rmt_group_t *group)
{
int isr_flags = RMT_INTR_ALLOC_FLAG;
if (group->intr_priority) {
// Use user-specified priority bit
isr_flags |= (1 << (group->intr_priority));
} else {
// Allow all LOWMED priority bits
isr_flags |= RMT_ALLOW_INTR_PRIORITY_MASK;
}
return isr_flags;
}