esp-idf/components/esp_system/port/arch/riscv/panic_arch.c

435 wiersze
14 KiB
C

/*
* SPDX-FileCopyrightText: 2020-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdio.h>
#include "spi_flash_mmap.h"
#if CONFIG_IDF_TARGET_ESP32P4
#include "soc/cache_reg.h"
#else
#include "soc/extmem_reg.h"
#endif
#include "soc/soc_caps.h"
#include "esp_private/panic_internal.h"
#include "esp_private/panic_reason.h"
#include "riscv/rvruntime-frames.h"
#include "riscv/rv_utils.h"
#include "esp_private/cache_err_int.h"
#include "soc/timer_periph.h"
#if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
#include "esp_private/esp_memprot_internal.h"
#include "esp_memprot.h"
#endif
#if CONFIG_ESP_SYSTEM_USE_EH_FRAME
#include "esp_private/eh_frame_parser.h"
#include "esp_private/cache_utils.h"
#endif
#if CONFIG_ESP_SYSTEM_HW_STACK_GUARD
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_cpu.h"
#include "esp_private/hw_stack_guard.h"
#endif
#define DIM(array) (sizeof(array)/sizeof(*array))
/**
* Structure used to define a flag/bit to test in case of cache error.
* The message describes the cause of the error when the bit is set in
* a given status register.
*/
typedef struct {
const uint32_t bit;
const char *msg;
} register_bit_t;
/**
* Function to check each bits defined in the array reg_bits in the given
* status register. The first bit from the array to be set in the status
* register will have its associated message printed. This function returns
* true. If not bit was set in the register, it returns false.
* The order of the bits in the array is important as only the first bit to
* be set in the register will have its associated message printed.
*/
static inline bool test_and_print_register_bits(const uint32_t status,
const register_bit_t *reg_bits,
const uint32_t size)
{
/* Browse the flag/bit array and test each one with the given status
* register. */
for (int i = 0; i < size; i++) {
const uint32_t bit = reg_bits[i].bit;
if ((status & bit) == bit) {
/* Reason of the panic found, print the reason. */
panic_print_str(reg_bits[i].msg);
panic_print_str("\r\n");
return true;
}
}
/* Panic cause not found, no message was printed. */
return false;
}
/**
* Function called when a cache error occurs. It prints details such as the
* explanation of why the panic occured.
*/
static inline void print_cache_err_details(const void *frame)
{
#if !CONFIG_IDF_TARGET_ESP32C6 && !CONFIG_IDF_TARGET_ESP32H2 && !CONFIG_IDF_TARGET_ESP32P4 // ESP32P4-TODO, ESP32C6-TODO, ESP32H2-TODO: IDF-5657
/* Define the array that contains the status (bits) to test on the register
* EXTMEM_CORE0_ACS_CACHE_INT_ST_REG. each bit is accompanied by a small
* message.
* The messages have been pulled from the header file where the status bit
* are defined. */
const register_bit_t core0_acs_bits[] = {
{
.bit = EXTMEM_CORE0_DBUS_WR_ICACHE_ST,
.msg = "dbus tried to write cache"
},
{
.bit = EXTMEM_CORE0_DBUS_REJECT_ST,
.msg = "dbus authentication failed"
},
{
.bit = EXTMEM_CORE0_DBUS_ACS_MSK_ICACHE_ST,
.msg = "access to cache while dbus or cache is disabled"
},
{
.bit = EXTMEM_CORE0_IBUS_REJECT_ST,
.msg = "ibus authentication failed"
},
{
.bit = EXTMEM_CORE0_IBUS_WR_ICACHE_ST,
.msg = "ibus tried to write cache"
},
{
.bit = EXTMEM_CORE0_IBUS_ACS_MSK_ICACHE_ST,
.msg = "access to cache while ibus or cache is disabled"
},
};
/* Same goes for the register EXTMEM_CACHE_ILG_INT_ST_REG and its bits. */
const register_bit_t cache_ilg_bits[] = {
{
.bit = EXTMEM_MMU_ENTRY_FAULT_ST,
.msg = "MMU entry fault"
},
{
.bit = EXTMEM_ICACHE_PRELOAD_OP_FAULT_ST,
.msg = "preload configurations fault"
},
{
.bit = EXTMEM_ICACHE_SYNC_OP_FAULT_ST,
.msg = "sync configurations fault"
},
};
/* Read the status register EXTMEM_CORE0_ACS_CACHE_INT_ST_REG. This status
* register is not equal to 0 when a cache access error occured. */
const uint32_t core0_status = REG_READ(EXTMEM_CORE0_ACS_CACHE_INT_ST_REG);
/* If the panic is due to a cache access error, one of the bit of the
* register is set. Thus, this function will return true. */
bool handled = test_and_print_register_bits(core0_status, core0_acs_bits, DIM(core0_acs_bits));
/* If the panic was due to a cache illegal error, the previous call returned false and this
* EXTMEM_CACHE_ILG_INT_ST_REG register should not me equal to 0.
* Check each bit of it and print the message associated if found. */
if (!handled) {
const uint32_t cache_ilg_status = REG_READ(EXTMEM_CACHE_ILG_INT_ST_REG);
handled = test_and_print_register_bits(cache_ilg_status, cache_ilg_bits, DIM(cache_ilg_bits));
/* If the error was not found, print the both registers value */
if (!handled) {
panic_print_str("EXTMEM_CORE0_ACS_CACHE_INT_ST_REG = 0x");
panic_print_hex(core0_status);
panic_print_str("\r\nEXTMEM_CACHE_ILG_INT_ST_REG = 0x");
panic_print_hex(cache_ilg_status);
panic_print_str("\r\n");
}
}
#endif
}
#if CONFIG_ESP_SYSTEM_HW_STACK_GUARD
static inline void print_assist_debug_details(const void *frame)
{
uint32_t core_id = esp_cpu_get_core_id();
uint32_t sp_min, sp_max;
const char *task_name = pcTaskGetName(xTaskGetCurrentTaskHandleForCore(core_id));
esp_hw_stack_guard_get_bounds(&sp_min, &sp_max);
panic_print_str("\r\n");
if (!esp_hw_stack_guard_is_fired()) {
panic_print_str("ASSIST_DEBUG is not triggered BUT interrupt occured!\r\n\r\n");
}
panic_print_str("Detected in task \"");
panic_print_str(task_name);
panic_print_str("\" at 0x");
panic_print_hex((int) esp_hw_stack_guard_get_pc());
panic_print_str("\r\n");
panic_print_str("Stack pointer: 0x");
panic_print_hex((int) ((RvExcFrame *)frame)->sp);
panic_print_str("\r\n");
panic_print_str("Stack bounds: 0x");
panic_print_hex((int) sp_min);
panic_print_str(" - 0x");
panic_print_hex((int) sp_max);
panic_print_str("\r\n\r\n");
}
#endif // CONFIG_ESP_SYSTEM_HW_STACK_GUARD
/**
* Function called when a memory protection error occurs (PMS). It prints details such as the
* explanation of why the panic occured.
*/
#if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
static esp_memp_intr_source_t s_memp_intr = {MEMPROT_TYPE_INVALID, -1};
#define PRINT_MEMPROT_ERROR(err) \
do { \
panic_print_str("N/A (error "); \
panic_print_str(esp_err_to_name(err)); \
panic_print_str(")"); \
} while(0)
static inline void print_memprot_err_details(const void *frame __attribute__((unused)))
{
if (s_memp_intr.mem_type == MEMPROT_TYPE_INVALID && s_memp_intr.core == -1) {
panic_print_str(" - no details available -\r\n");
return;
}
//common memprot fault info
panic_print_str(" memory type: ");
panic_print_str(esp_mprot_mem_type_to_str(s_memp_intr.mem_type));
panic_print_str("\r\n faulting address: ");
void *faulting_addr;
esp_err_t res = esp_mprot_get_violate_addr(s_memp_intr.mem_type, &faulting_addr, s_memp_intr.core);
if (res == ESP_OK) {
panic_print_str("0x");
panic_print_hex((int)faulting_addr);
} else {
PRINT_MEMPROT_ERROR(res);
}
panic_print_str( "\r\n world: ");
esp_mprot_pms_world_t world;
res = esp_mprot_get_violate_world(s_memp_intr.mem_type, &world, s_memp_intr.core);
if (res == ESP_OK) {
panic_print_str(esp_mprot_pms_world_to_str(world));
} else {
PRINT_MEMPROT_ERROR(res);
}
panic_print_str( "\r\n operation type: ");
uint32_t operation;
res = esp_mprot_get_violate_operation(s_memp_intr.mem_type, &operation, s_memp_intr.core);
if (res == ESP_OK) {
panic_print_str(esp_mprot_oper_type_to_str(operation));
} else {
PRINT_MEMPROT_ERROR(res);
}
if (esp_mprot_has_byte_enables(s_memp_intr.mem_type)) {
panic_print_str("\r\n byte-enables: " );
uint32_t byte_enables;
res = esp_mprot_get_violate_byte_enables(s_memp_intr.mem_type, &byte_enables, s_memp_intr.core);
if (res == ESP_OK) {
panic_print_hex(byte_enables);
} else {
PRINT_MEMPROT_ERROR(res);
}
}
panic_print_str("\r\n");
}
#endif
static void panic_print_register_array(const char* names[], const uint32_t* regs, int size)
{
const int regs_per_line = 4;
for (int i = 0; i < size; i++) {
if (i % regs_per_line == 0) {
panic_print_str("\r\n");
}
panic_print_str(names[i]);
panic_print_str(": 0x");
panic_print_hex(regs[i]);
panic_print_str(" ");
}
}
void panic_print_registers(const void *f, int core)
{
/**
* General Purpose context, only print ABI name
*/
const char *desc[] = {
"MEPC ", "RA ", "SP ", "GP ", "TP ", "T0 ", "T1 ", "T2 ",
"S0/FP ", "S1 ", "A0 ", "A1 ", "A2 ", "A3 ", "A4 ", "A5 ",
"A6 ", "A7 ", "S2 ", "S3 ", "S4 ", "S5 ", "S6 ", "S7 ",
"S8 ", "S9 ", "S10 ", "S11 ", "T3 ", "T4 ", "T5 ", "T6 ",
"MSTATUS ", "MTVEC ", "MCAUSE ", "MTVAL ", "MHARTID "
};
panic_print_str("Core ");
panic_print_dec(core);
panic_print_str(" register dump:");
panic_print_register_array(desc, f, DIM(desc));
}
/**
* This function will be called when a SoC-level panic occurs.
* SoC-level panics include cache errors and watchdog interrupts.
*/
void panic_soc_fill_info(void *f, panic_info_t *info)
{
RvExcFrame *frame = (RvExcFrame *) f;
info->reason = "Unknown reason";
info->addr = (void *) frame->mepc;
/* The mcause has been set by the CPU when the panic occured.
* All SoC-level panic will call this function, thus, this register
* lets us know which error was triggered. */
if (frame->mcause == ETS_CACHEERR_INUM) {
/* Panic due to a cache error, multiple cache error are possible,
* assign function print_cache_err_details to our structure's
* details field. As its name states, it will give more details
* about why the error happened. */
info->core = esp_cache_err_get_cpuid();
info->reason = "Cache error";
info->details = print_cache_err_details;
} else if (frame->mcause == PANIC_RSN_INTWDT_CPU0) {
const int core = 0;
info->core = core;
info->exception = PANIC_EXCEPTION_IWDT;
info->reason = "Interrupt wdt timeout on CPU0";
}
#if SOC_CPU_CORES_NUM > 1
else if (frame->mcause == PANIC_RSN_INTWDT_CPU1) {
const int core = 1;
info->core = core;
info->exception = PANIC_EXCEPTION_IWDT;
info->reason = "Interrupt wdt timeout on CPU1";
}
#endif
#if CONFIG_ESP_SYSTEM_HW_STACK_GUARD
else if (frame->mcause == ETS_ASSIST_DEBUG_INUM) {
info->core = esp_cache_err_get_cpuid();
info->reason = "Stack protection fault";
info->details = print_assist_debug_details;
}
#endif
#if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
else if (frame->mcause == ETS_MEMPROT_ERR_INUM) {
info->reason = "Memory protection fault";
info->details = print_memprot_err_details;
info->core = esp_mprot_get_active_intr(&s_memp_intr) == ESP_OK ? s_memp_intr.core : -1;
}
#endif
}
void panic_arch_fill_info(void *frame, panic_info_t *info)
{
RvExcFrame *regs = (RvExcFrame *) frame;
info->core = rv_utils_get_core_id();
info->exception = PANIC_EXCEPTION_FAULT;
static const char *reason[] = {
"Instruction address misaligned",
"Instruction access fault",
"Illegal instruction",
"Breakpoint",
"Load address misaligned",
"Load access fault",
"Store address misaligned",
"Store access fault",
"Environment call from U-mode",
"Environment call from S-mode",
NULL,
"Environment call from M-mode",
"Instruction page fault",
"Load page fault",
NULL,
"Store page fault",
};
if (regs->mcause < (sizeof(reason) / sizeof(reason[0]))) {
if (reason[regs->mcause] != NULL) {
info->reason = (reason[regs->mcause]);
}
}
info->description = "Exception was unhandled.";
info->addr = (void *) regs->mepc;
}
static void panic_print_basic_backtrace(const void *frame, int core)
{
// Basic backtrace
panic_print_str("\r\nStack memory:\r\n");
uint32_t sp = (uint32_t)((RvExcFrame *)frame)->sp;
const int per_line = 8;
for (int x = 0; x < 1024; x += per_line * sizeof(uint32_t)) {
uint32_t *spp = (uint32_t *)(sp + x);
panic_print_hex(sp + x);
panic_print_str(": ");
for (int y = 0; y < per_line; y++) {
panic_print_str("0x");
panic_print_hex(spp[y]);
panic_print_str(y == per_line - 1 ? "\r\n" : " ");
}
}
}
void panic_print_backtrace(const void *frame, int core)
{
#if CONFIG_ESP_SYSTEM_USE_EH_FRAME
if (!spi_flash_cache_enabled()) {
panic_print_str("\r\nWarning: SPI Flash cache is disabled, cannot process eh_frame parsing. "
"Falling back to basic backtrace.\r\n");
panic_print_basic_backtrace(frame, core);
} else {
esp_eh_frame_print_backtrace(frame);
}
#else
panic_print_basic_backtrace(frame, core);
#endif
}
uint32_t panic_get_address(const void *f)
{
return ((RvExcFrame *)f)->mepc;
}
uint32_t panic_get_cause(const void *f)
{
return ((RvExcFrame *)f)->mcause;
}
void panic_set_address(void *f, uint32_t addr)
{
((RvExcFrame *)f)->mepc = addr;
}