esp-idf/examples/bluetooth/bluedroid/classic_bt/a2dp_source/main/main.c

795 wiersze
28 KiB
C

/*
* SPDX-FileCopyrightText: 2021-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <inttypes.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/timers.h"
#include "nvs.h"
#include "nvs_flash.h"
#include "esp_system.h"
#include "esp_log.h"
#include "esp_bt.h"
#include "bt_app_core.h"
#include "esp_bt_main.h"
#include "esp_bt_device.h"
#include "esp_gap_bt_api.h"
#include "esp_a2dp_api.h"
#include "esp_avrc_api.h"
/* log tags */
#define BT_AV_TAG "BT_AV"
#define BT_RC_CT_TAG "RC_CT"
/* device name */
#define TARGET_DEVICE_NAME "ESP_SPEAKER"
#define LOCAL_DEVICE_NAME "ESP_A2DP_SRC"
/* AVRCP used transaction label */
#define APP_RC_CT_TL_GET_CAPS (0)
#define APP_RC_CT_TL_RN_VOLUME_CHANGE (1)
enum {
BT_APP_STACK_UP_EVT = 0x0000, /* event for stack up */
BT_APP_HEART_BEAT_EVT = 0xff00, /* event for heart beat */
};
/* A2DP global states */
enum {
APP_AV_STATE_IDLE,
APP_AV_STATE_DISCOVERING,
APP_AV_STATE_DISCOVERED,
APP_AV_STATE_UNCONNECTED,
APP_AV_STATE_CONNECTING,
APP_AV_STATE_CONNECTED,
APP_AV_STATE_DISCONNECTING,
};
/* sub states of APP_AV_STATE_CONNECTED */
enum {
APP_AV_MEDIA_STATE_IDLE,
APP_AV_MEDIA_STATE_STARTING,
APP_AV_MEDIA_STATE_STARTED,
APP_AV_MEDIA_STATE_STOPPING,
};
/*********************************
* STATIC FUNCTION DECLARATIONS
********************************/
/* handler for bluetooth stack enabled events */
static void bt_av_hdl_stack_evt(uint16_t event, void *p_param);
/* avrc controller event handler */
static void bt_av_hdl_avrc_ct_evt(uint16_t event, void *p_param);
/* GAP callback function */
static void bt_app_gap_cb(esp_bt_gap_cb_event_t event, esp_bt_gap_cb_param_t *param);
/* callback function for A2DP source */
static void bt_app_a2d_cb(esp_a2d_cb_event_t event, esp_a2d_cb_param_t *param);
/* callback function for A2DP source audio data stream */
static int32_t bt_app_a2d_data_cb(uint8_t *data, int32_t len);
/* callback function for AVRCP controller */
static void bt_app_rc_ct_cb(esp_avrc_ct_cb_event_t event, esp_avrc_ct_cb_param_t *param);
/* handler for heart beat timer */
static void bt_app_a2d_heart_beat(TimerHandle_t arg);
/* A2DP application state machine */
static void bt_app_av_sm_hdlr(uint16_t event, void *param);
/* utils for transfer BLuetooth Deveice Address into string form */
static char *bda2str(esp_bd_addr_t bda, char *str, size_t size);
/* A2DP application state machine handler for each state */
static void bt_app_av_state_unconnected_hdlr(uint16_t event, void *param);
static void bt_app_av_state_connecting_hdlr(uint16_t event, void *param);
static void bt_app_av_state_connected_hdlr(uint16_t event, void *param);
static void bt_app_av_state_disconnecting_hdlr(uint16_t event, void *param);
/*********************************
* STATIC VARIABLE DEFINITIONS
********************************/
static esp_bd_addr_t s_peer_bda = {0}; /* Bluetooth Device Address of peer device*/
static uint8_t s_peer_bdname[ESP_BT_GAP_MAX_BDNAME_LEN + 1]; /* Bluetooth Device Name of peer device*/
static int s_a2d_state = APP_AV_STATE_IDLE; /* A2DP global state */
static int s_media_state = APP_AV_MEDIA_STATE_IDLE; /* sub states of APP_AV_STATE_CONNECTED */
static int s_intv_cnt = 0; /* count of heart beat intervals */
static int s_connecting_intv = 0; /* count of heart beat intervals for connecting */
static uint32_t s_pkt_cnt = 0; /* count of packets */
static esp_avrc_rn_evt_cap_mask_t s_avrc_peer_rn_cap; /* AVRC target notification event capability bit mask */
static TimerHandle_t s_tmr; /* handle of heart beat timer */
/*********************************
* STATIC FUNCTION DEFINITIONS
********************************/
static char *bda2str(esp_bd_addr_t bda, char *str, size_t size)
{
if (bda == NULL || str == NULL || size < 18) {
return NULL;
}
sprintf(str, "%02x:%02x:%02x:%02x:%02x:%02x",
bda[0], bda[1], bda[2], bda[3], bda[4], bda[5]);
return str;
}
static bool get_name_from_eir(uint8_t *eir, uint8_t *bdname, uint8_t *bdname_len)
{
uint8_t *rmt_bdname = NULL;
uint8_t rmt_bdname_len = 0;
if (!eir) {
return false;
}
/* get complete or short local name from eir data */
rmt_bdname = esp_bt_gap_resolve_eir_data(eir, ESP_BT_EIR_TYPE_CMPL_LOCAL_NAME, &rmt_bdname_len);
if (!rmt_bdname) {
rmt_bdname = esp_bt_gap_resolve_eir_data(eir, ESP_BT_EIR_TYPE_SHORT_LOCAL_NAME, &rmt_bdname_len);
}
if (rmt_bdname) {
if (rmt_bdname_len > ESP_BT_GAP_MAX_BDNAME_LEN) {
rmt_bdname_len = ESP_BT_GAP_MAX_BDNAME_LEN;
}
if (bdname) {
memcpy(bdname, rmt_bdname, rmt_bdname_len);
bdname[rmt_bdname_len] = '\0';
}
if (bdname_len) {
*bdname_len = rmt_bdname_len;
}
return true;
}
return false;
}
static void filter_inquiry_scan_result(esp_bt_gap_cb_param_t *param)
{
char bda_str[18];
uint32_t cod = 0; /* class of device */
int32_t rssi = -129; /* invalid value */
uint8_t *eir = NULL;
esp_bt_gap_dev_prop_t *p;
/* handle the discovery results */
ESP_LOGI(BT_AV_TAG, "Scanned device: %s", bda2str(param->disc_res.bda, bda_str, 18));
for (int i = 0; i < param->disc_res.num_prop; i++) {
p = param->disc_res.prop + i;
switch (p->type) {
case ESP_BT_GAP_DEV_PROP_COD:
cod = *(uint32_t *)(p->val);
ESP_LOGI(BT_AV_TAG, "--Class of Device: 0x%"PRIx32, cod);
break;
case ESP_BT_GAP_DEV_PROP_RSSI:
rssi = *(int8_t *)(p->val);
ESP_LOGI(BT_AV_TAG, "--RSSI: %"PRId32, rssi);
break;
case ESP_BT_GAP_DEV_PROP_EIR:
eir = (uint8_t *)(p->val);
break;
case ESP_BT_GAP_DEV_PROP_BDNAME:
default:
break;
}
}
/* search for device with MAJOR service class as "rendering" in COD */
if (!esp_bt_gap_is_valid_cod(cod) ||
!(esp_bt_gap_get_cod_srvc(cod) & ESP_BT_COD_SRVC_RENDERING)) {
return;
}
/* search for target device in its Extended Inqury Response */
if (eir) {
get_name_from_eir(eir, s_peer_bdname, NULL);
if (strcmp((char *)s_peer_bdname, TARGET_DEVICE_NAME) == 0) {
ESP_LOGI(BT_AV_TAG, "Found a target device, address %s, name %s", bda_str, s_peer_bdname);
s_a2d_state = APP_AV_STATE_DISCOVERED;
memcpy(s_peer_bda, param->disc_res.bda, ESP_BD_ADDR_LEN);
ESP_LOGI(BT_AV_TAG, "Cancel device discovery ...");
esp_bt_gap_cancel_discovery();
}
}
}
static void bt_app_gap_cb(esp_bt_gap_cb_event_t event, esp_bt_gap_cb_param_t *param)
{
switch (event) {
/* when device discovered a result, this event comes */
case ESP_BT_GAP_DISC_RES_EVT: {
if (s_a2d_state == APP_AV_STATE_DISCOVERING) {
filter_inquiry_scan_result(param);
}
break;
}
/* when discovery state changed, this event comes */
case ESP_BT_GAP_DISC_STATE_CHANGED_EVT: {
if (param->disc_st_chg.state == ESP_BT_GAP_DISCOVERY_STOPPED) {
if (s_a2d_state == APP_AV_STATE_DISCOVERED) {
s_a2d_state = APP_AV_STATE_CONNECTING;
ESP_LOGI(BT_AV_TAG, "Device discovery stopped.");
ESP_LOGI(BT_AV_TAG, "a2dp connecting to peer: %s", s_peer_bdname);
/* connect source to peer device specified by Bluetooth Device Address */
esp_a2d_source_connect(s_peer_bda);
} else {
/* not discovered, continue to discover */
ESP_LOGI(BT_AV_TAG, "Device discovery failed, continue to discover...");
esp_bt_gap_start_discovery(ESP_BT_INQ_MODE_GENERAL_INQUIRY, 10, 0);
}
} else if (param->disc_st_chg.state == ESP_BT_GAP_DISCOVERY_STARTED) {
ESP_LOGI(BT_AV_TAG, "Discovery started.");
}
break;
}
/* when authentication completed, this event comes */
case ESP_BT_GAP_AUTH_CMPL_EVT: {
if (param->auth_cmpl.stat == ESP_BT_STATUS_SUCCESS) {
ESP_LOGI(BT_AV_TAG, "authentication success: %s", param->auth_cmpl.device_name);
esp_log_buffer_hex(BT_AV_TAG, param->auth_cmpl.bda, ESP_BD_ADDR_LEN);
} else {
ESP_LOGE(BT_AV_TAG, "authentication failed, status: %d", param->auth_cmpl.stat);
}
break;
}
/* when Legacy Pairing pin code requested, this event comes */
case ESP_BT_GAP_PIN_REQ_EVT: {
ESP_LOGI(BT_AV_TAG, "ESP_BT_GAP_PIN_REQ_EVT min_16_digit: %d", param->pin_req.min_16_digit);
if (param->pin_req.min_16_digit) {
ESP_LOGI(BT_AV_TAG, "Input pin code: 0000 0000 0000 0000");
esp_bt_pin_code_t pin_code = {0};
esp_bt_gap_pin_reply(param->pin_req.bda, true, 16, pin_code);
} else {
ESP_LOGI(BT_AV_TAG, "Input pin code: 1234");
esp_bt_pin_code_t pin_code;
pin_code[0] = '1';
pin_code[1] = '2';
pin_code[2] = '3';
pin_code[3] = '4';
esp_bt_gap_pin_reply(param->pin_req.bda, true, 4, pin_code);
}
break;
}
#if (CONFIG_EXAMPLE_SSP_ENABLED == true)
/* when Security Simple Pairing user confirmation requested, this event comes */
case ESP_BT_GAP_CFM_REQ_EVT:
ESP_LOGI(BT_AV_TAG, "ESP_BT_GAP_CFM_REQ_EVT Please compare the numeric value: %"PRIu32, param->cfm_req.num_val);
esp_bt_gap_ssp_confirm_reply(param->cfm_req.bda, true);
break;
/* when Security Simple Pairing passkey notified, this event comes */
case ESP_BT_GAP_KEY_NOTIF_EVT:
ESP_LOGI(BT_AV_TAG, "ESP_BT_GAP_KEY_NOTIF_EVT passkey: %"PRIu32, param->key_notif.passkey);
break;
/* when Security Simple Pairing passkey requested, this event comes */
case ESP_BT_GAP_KEY_REQ_EVT:
ESP_LOGI(BT_AV_TAG, "ESP_BT_GAP_KEY_REQ_EVT Please enter passkey!");
break;
#endif
/* when GAP mode changed, this event comes */
case ESP_BT_GAP_MODE_CHG_EVT:
ESP_LOGI(BT_AV_TAG, "ESP_BT_GAP_MODE_CHG_EVT mode: %d", param->mode_chg.mode);
break;
case ESP_BT_GAP_GET_DEV_NAME_CMPL_EVT:
if (param->get_dev_name_cmpl.status == ESP_BT_STATUS_SUCCESS) {
ESP_LOGI(BT_AV_TAG, "ESP_BT_GAP_GET_DEV_NAME_CMPL_EVT device name: %s", param->get_dev_name_cmpl.name);
} else {
ESP_LOGI(BT_AV_TAG, "ESP_BT_GAP_GET_DEV_NAME_CMPL_EVT failed, state: %d", param->get_dev_name_cmpl.status);
}
break;
/* other */
default: {
ESP_LOGI(BT_AV_TAG, "event: %d", event);
break;
}
}
return;
}
static void bt_av_hdl_stack_evt(uint16_t event, void *p_param)
{
ESP_LOGD(BT_AV_TAG, "%s event: %d", __func__, event);
switch (event) {
/* when stack up worked, this event comes */
case BT_APP_STACK_UP_EVT: {
char *dev_name = LOCAL_DEVICE_NAME;
esp_bt_gap_set_device_name(dev_name);
esp_bt_gap_register_callback(bt_app_gap_cb);
esp_avrc_ct_init();
esp_avrc_ct_register_callback(bt_app_rc_ct_cb);
esp_avrc_rn_evt_cap_mask_t evt_set = {0};
esp_avrc_rn_evt_bit_mask_operation(ESP_AVRC_BIT_MASK_OP_SET, &evt_set, ESP_AVRC_RN_VOLUME_CHANGE);
ESP_ERROR_CHECK(esp_avrc_tg_set_rn_evt_cap(&evt_set));
esp_a2d_source_init();
esp_a2d_register_callback(&bt_app_a2d_cb);
esp_a2d_source_register_data_callback(bt_app_a2d_data_cb);
/* Avoid the state error of s_a2d_state caused by the connection initiated by the peer device. */
esp_bt_gap_set_scan_mode(ESP_BT_NON_CONNECTABLE, ESP_BT_NON_DISCOVERABLE);
esp_bt_gap_get_device_name();
ESP_LOGI(BT_AV_TAG, "Starting device discovery...");
s_a2d_state = APP_AV_STATE_DISCOVERING;
esp_bt_gap_start_discovery(ESP_BT_INQ_MODE_GENERAL_INQUIRY, 10, 0);
/* create and start heart beat timer */
do {
int tmr_id = 0;
s_tmr = xTimerCreate("connTmr", (10000 / portTICK_PERIOD_MS),
pdTRUE, (void *) &tmr_id, bt_app_a2d_heart_beat);
xTimerStart(s_tmr, portMAX_DELAY);
} while (0);
break;
}
/* other */
default: {
ESP_LOGE(BT_AV_TAG, "%s unhandled event: %d", __func__, event);
break;
}
}
}
static void bt_app_a2d_cb(esp_a2d_cb_event_t event, esp_a2d_cb_param_t *param)
{
bt_app_work_dispatch(bt_app_av_sm_hdlr, event, param, sizeof(esp_a2d_cb_param_t), NULL);
}
/* generate some random noise to simulate source audio */
static int32_t bt_app_a2d_data_cb(uint8_t *data, int32_t len)
{
if (data == NULL || len < 0) {
return 0;
}
int16_t *p_buf = (int16_t *)data;
for (int i = 0; i < (len >> 1); i++) {
p_buf[i] = rand() % (1 << 16);
}
return len;
}
static void bt_app_a2d_heart_beat(TimerHandle_t arg)
{
bt_app_work_dispatch(bt_app_av_sm_hdlr, BT_APP_HEART_BEAT_EVT, NULL, 0, NULL);
}
static void bt_app_av_sm_hdlr(uint16_t event, void *param)
{
ESP_LOGI(BT_AV_TAG, "%s state: %d, event: 0x%x", __func__, s_a2d_state, event);
/* select handler according to different states */
switch (s_a2d_state) {
case APP_AV_STATE_DISCOVERING:
case APP_AV_STATE_DISCOVERED:
break;
case APP_AV_STATE_UNCONNECTED:
bt_app_av_state_unconnected_hdlr(event, param);
break;
case APP_AV_STATE_CONNECTING:
bt_app_av_state_connecting_hdlr(event, param);
break;
case APP_AV_STATE_CONNECTED:
bt_app_av_state_connected_hdlr(event, param);
break;
case APP_AV_STATE_DISCONNECTING:
bt_app_av_state_disconnecting_hdlr(event, param);
break;
default:
ESP_LOGE(BT_AV_TAG, "%s invalid state: %d", __func__, s_a2d_state);
break;
}
}
static void bt_app_av_state_unconnected_hdlr(uint16_t event, void *param)
{
esp_a2d_cb_param_t *a2d = NULL;
/* handle the events of interest in unconnected state */
switch (event) {
case ESP_A2D_CONNECTION_STATE_EVT:
case ESP_A2D_AUDIO_STATE_EVT:
case ESP_A2D_AUDIO_CFG_EVT:
case ESP_A2D_MEDIA_CTRL_ACK_EVT:
break;
case BT_APP_HEART_BEAT_EVT: {
uint8_t *bda = s_peer_bda;
ESP_LOGI(BT_AV_TAG, "a2dp connecting to peer: %02x:%02x:%02x:%02x:%02x:%02x",
bda[0], bda[1], bda[2], bda[3], bda[4], bda[5]);
esp_a2d_source_connect(s_peer_bda);
s_a2d_state = APP_AV_STATE_CONNECTING;
s_connecting_intv = 0;
break;
}
case ESP_A2D_REPORT_SNK_DELAY_VALUE_EVT: {
a2d = (esp_a2d_cb_param_t *)(param);
ESP_LOGI(BT_AV_TAG, "%s, delay value: %u * 1/10 ms", __func__, a2d->a2d_report_delay_value_stat.delay_value);
break;
}
default: {
ESP_LOGE(BT_AV_TAG, "%s unhandled event: %d", __func__, event);
break;
}
}
}
static void bt_app_av_state_connecting_hdlr(uint16_t event, void *param)
{
esp_a2d_cb_param_t *a2d = NULL;
/* handle the events of interest in connecting state */
switch (event) {
case ESP_A2D_CONNECTION_STATE_EVT: {
a2d = (esp_a2d_cb_param_t *)(param);
if (a2d->conn_stat.state == ESP_A2D_CONNECTION_STATE_CONNECTED) {
ESP_LOGI(BT_AV_TAG, "a2dp connected");
s_a2d_state = APP_AV_STATE_CONNECTED;
s_media_state = APP_AV_MEDIA_STATE_IDLE;
} else if (a2d->conn_stat.state == ESP_A2D_CONNECTION_STATE_DISCONNECTED) {
s_a2d_state = APP_AV_STATE_UNCONNECTED;
}
break;
}
case ESP_A2D_AUDIO_STATE_EVT:
case ESP_A2D_AUDIO_CFG_EVT:
case ESP_A2D_MEDIA_CTRL_ACK_EVT:
break;
case BT_APP_HEART_BEAT_EVT:
/**
* Switch state to APP_AV_STATE_UNCONNECTED
* when connecting lasts more than 2 heart beat intervals.
*/
if (++s_connecting_intv >= 2) {
s_a2d_state = APP_AV_STATE_UNCONNECTED;
s_connecting_intv = 0;
}
break;
case ESP_A2D_REPORT_SNK_DELAY_VALUE_EVT: {
a2d = (esp_a2d_cb_param_t *)(param);
ESP_LOGI(BT_AV_TAG, "%s, delay value: %u * 1/10 ms", __func__, a2d->a2d_report_delay_value_stat.delay_value);
break;
}
default:
ESP_LOGE(BT_AV_TAG, "%s unhandled event: %d", __func__, event);
break;
}
}
static void bt_app_av_media_proc(uint16_t event, void *param)
{
esp_a2d_cb_param_t *a2d = NULL;
switch (s_media_state) {
case APP_AV_MEDIA_STATE_IDLE: {
if (event == BT_APP_HEART_BEAT_EVT) {
ESP_LOGI(BT_AV_TAG, "a2dp media ready checking ...");
esp_a2d_media_ctrl(ESP_A2D_MEDIA_CTRL_CHECK_SRC_RDY);
} else if (event == ESP_A2D_MEDIA_CTRL_ACK_EVT) {
a2d = (esp_a2d_cb_param_t *)(param);
if (a2d->media_ctrl_stat.cmd == ESP_A2D_MEDIA_CTRL_CHECK_SRC_RDY &&
a2d->media_ctrl_stat.status == ESP_A2D_MEDIA_CTRL_ACK_SUCCESS) {
ESP_LOGI(BT_AV_TAG, "a2dp media ready, starting ...");
esp_a2d_media_ctrl(ESP_A2D_MEDIA_CTRL_START);
s_media_state = APP_AV_MEDIA_STATE_STARTING;
}
}
break;
}
case APP_AV_MEDIA_STATE_STARTING: {
if (event == ESP_A2D_MEDIA_CTRL_ACK_EVT) {
a2d = (esp_a2d_cb_param_t *)(param);
if (a2d->media_ctrl_stat.cmd == ESP_A2D_MEDIA_CTRL_START &&
a2d->media_ctrl_stat.status == ESP_A2D_MEDIA_CTRL_ACK_SUCCESS) {
ESP_LOGI(BT_AV_TAG, "a2dp media start successfully.");
s_intv_cnt = 0;
s_media_state = APP_AV_MEDIA_STATE_STARTED;
} else {
/* not started successfully, transfer to idle state */
ESP_LOGI(BT_AV_TAG, "a2dp media start failed.");
s_media_state = APP_AV_MEDIA_STATE_IDLE;
}
}
break;
}
case APP_AV_MEDIA_STATE_STARTED: {
if (event == BT_APP_HEART_BEAT_EVT) {
/* stop media after 10 heart beat intervals */
if (++s_intv_cnt >= 10) {
ESP_LOGI(BT_AV_TAG, "a2dp media suspending...");
esp_a2d_media_ctrl(ESP_A2D_MEDIA_CTRL_SUSPEND);
s_media_state = APP_AV_MEDIA_STATE_STOPPING;
s_intv_cnt = 0;
}
}
break;
}
case APP_AV_MEDIA_STATE_STOPPING: {
if (event == ESP_A2D_MEDIA_CTRL_ACK_EVT) {
a2d = (esp_a2d_cb_param_t *)(param);
if (a2d->media_ctrl_stat.cmd == ESP_A2D_MEDIA_CTRL_SUSPEND &&
a2d->media_ctrl_stat.status == ESP_A2D_MEDIA_CTRL_ACK_SUCCESS) {
ESP_LOGI(BT_AV_TAG, "a2dp media suspend successfully, disconnecting...");
s_media_state = APP_AV_MEDIA_STATE_IDLE;
esp_a2d_source_disconnect(s_peer_bda);
s_a2d_state = APP_AV_STATE_DISCONNECTING;
} else {
ESP_LOGI(BT_AV_TAG, "a2dp media suspending...");
esp_a2d_media_ctrl(ESP_A2D_MEDIA_CTRL_SUSPEND);
}
}
break;
}
default: {
break;
}
}
}
static void bt_app_av_state_connected_hdlr(uint16_t event, void *param)
{
esp_a2d_cb_param_t *a2d = NULL;
/* handle the events of interest in connected state */
switch (event) {
case ESP_A2D_CONNECTION_STATE_EVT: {
a2d = (esp_a2d_cb_param_t *)(param);
if (a2d->conn_stat.state == ESP_A2D_CONNECTION_STATE_DISCONNECTED) {
ESP_LOGI(BT_AV_TAG, "a2dp disconnected");
s_a2d_state = APP_AV_STATE_UNCONNECTED;
}
break;
}
case ESP_A2D_AUDIO_STATE_EVT: {
a2d = (esp_a2d_cb_param_t *)(param);
if (ESP_A2D_AUDIO_STATE_STARTED == a2d->audio_stat.state) {
s_pkt_cnt = 0;
}
break;
}
case ESP_A2D_AUDIO_CFG_EVT:
// not supposed to occur for A2DP source
break;
case ESP_A2D_MEDIA_CTRL_ACK_EVT:
case BT_APP_HEART_BEAT_EVT: {
bt_app_av_media_proc(event, param);
break;
}
case ESP_A2D_REPORT_SNK_DELAY_VALUE_EVT: {
a2d = (esp_a2d_cb_param_t *)(param);
ESP_LOGI(BT_AV_TAG, "%s, delay value: %u * 1/10 ms", __func__, a2d->a2d_report_delay_value_stat.delay_value);
break;
}
default: {
ESP_LOGE(BT_AV_TAG, "%s unhandled event: %d", __func__, event);
break;
}
}
}
static void bt_app_av_state_disconnecting_hdlr(uint16_t event, void *param)
{
esp_a2d_cb_param_t *a2d = NULL;
/* handle the events of interest in disconnecing state */
switch (event) {
case ESP_A2D_CONNECTION_STATE_EVT: {
a2d = (esp_a2d_cb_param_t *)(param);
if (a2d->conn_stat.state == ESP_A2D_CONNECTION_STATE_DISCONNECTED) {
ESP_LOGI(BT_AV_TAG, "a2dp disconnected");
s_a2d_state = APP_AV_STATE_UNCONNECTED;
}
break;
}
case ESP_A2D_AUDIO_STATE_EVT:
case ESP_A2D_AUDIO_CFG_EVT:
case ESP_A2D_MEDIA_CTRL_ACK_EVT:
case BT_APP_HEART_BEAT_EVT:
break;
case ESP_A2D_REPORT_SNK_DELAY_VALUE_EVT: {
a2d = (esp_a2d_cb_param_t *)(param);
ESP_LOGI(BT_AV_TAG, "%s, delay value: 0x%u * 1/10 ms", __func__, a2d->a2d_report_delay_value_stat.delay_value);
break;
}
default: {
ESP_LOGE(BT_AV_TAG, "%s unhandled event: %d", __func__, event);
break;
}
}
}
/* callback function for AVRCP controller */
static void bt_app_rc_ct_cb(esp_avrc_ct_cb_event_t event, esp_avrc_ct_cb_param_t *param)
{
switch (event) {
case ESP_AVRC_CT_CONNECTION_STATE_EVT:
case ESP_AVRC_CT_PASSTHROUGH_RSP_EVT:
case ESP_AVRC_CT_METADATA_RSP_EVT:
case ESP_AVRC_CT_CHANGE_NOTIFY_EVT:
case ESP_AVRC_CT_REMOTE_FEATURES_EVT:
case ESP_AVRC_CT_GET_RN_CAPABILITIES_RSP_EVT:
case ESP_AVRC_CT_SET_ABSOLUTE_VOLUME_RSP_EVT: {
bt_app_work_dispatch(bt_av_hdl_avrc_ct_evt, event, param, sizeof(esp_avrc_ct_cb_param_t), NULL);
break;
}
default: {
ESP_LOGE(BT_RC_CT_TAG, "Invalid AVRC event: %d", event);
break;
}
}
}
static void bt_av_volume_changed(void)
{
if (esp_avrc_rn_evt_bit_mask_operation(ESP_AVRC_BIT_MASK_OP_TEST, &s_avrc_peer_rn_cap,
ESP_AVRC_RN_VOLUME_CHANGE)) {
esp_avrc_ct_send_register_notification_cmd(APP_RC_CT_TL_RN_VOLUME_CHANGE, ESP_AVRC_RN_VOLUME_CHANGE, 0);
}
}
void bt_av_notify_evt_handler(uint8_t event_id, esp_avrc_rn_param_t *event_parameter)
{
switch (event_id) {
/* when volume changed locally on target, this event comes */
case ESP_AVRC_RN_VOLUME_CHANGE: {
ESP_LOGI(BT_RC_CT_TAG, "Volume changed: %d", event_parameter->volume);
ESP_LOGI(BT_RC_CT_TAG, "Set absolute volume: volume %d", event_parameter->volume + 5);
esp_avrc_ct_send_set_absolute_volume_cmd(APP_RC_CT_TL_RN_VOLUME_CHANGE, event_parameter->volume + 5);
bt_av_volume_changed();
break;
}
/* other */
default:
break;
}
}
/* AVRC controller event handler */
static void bt_av_hdl_avrc_ct_evt(uint16_t event, void *p_param)
{
ESP_LOGD(BT_RC_CT_TAG, "%s evt %d", __func__, event);
esp_avrc_ct_cb_param_t *rc = (esp_avrc_ct_cb_param_t *)(p_param);
switch (event) {
/* when connection state changed, this event comes */
case ESP_AVRC_CT_CONNECTION_STATE_EVT: {
uint8_t *bda = rc->conn_stat.remote_bda;
ESP_LOGI(BT_RC_CT_TAG, "AVRC conn_state event: state %d, [%02x:%02x:%02x:%02x:%02x:%02x]",
rc->conn_stat.connected, bda[0], bda[1], bda[2], bda[3], bda[4], bda[5]);
if (rc->conn_stat.connected) {
esp_avrc_ct_send_get_rn_capabilities_cmd(APP_RC_CT_TL_GET_CAPS);
} else {
s_avrc_peer_rn_cap.bits = 0;
}
break;
}
/* when passthrough responded, this event comes */
case ESP_AVRC_CT_PASSTHROUGH_RSP_EVT: {
ESP_LOGI(BT_RC_CT_TAG, "AVRC passthrough response: key_code 0x%x, key_state %d, rsp_code %d", rc->psth_rsp.key_code,
rc->psth_rsp.key_state, rc->psth_rsp.rsp_code);
break;
}
/* when metadata responded, this event comes */
case ESP_AVRC_CT_METADATA_RSP_EVT: {
ESP_LOGI(BT_RC_CT_TAG, "AVRC metadata response: attribute id 0x%x, %s", rc->meta_rsp.attr_id, rc->meta_rsp.attr_text);
free(rc->meta_rsp.attr_text);
break;
}
/* when notification changed, this event comes */
case ESP_AVRC_CT_CHANGE_NOTIFY_EVT: {
ESP_LOGI(BT_RC_CT_TAG, "AVRC event notification: %d", rc->change_ntf.event_id);
bt_av_notify_evt_handler(rc->change_ntf.event_id, &rc->change_ntf.event_parameter);
break;
}
/* when indicate feature of remote device, this event comes */
case ESP_AVRC_CT_REMOTE_FEATURES_EVT: {
ESP_LOGI(BT_RC_CT_TAG, "AVRC remote features %"PRIx32", TG features %x", rc->rmt_feats.feat_mask, rc->rmt_feats.tg_feat_flag);
break;
}
/* when get supported notification events capability of peer device, this event comes */
case ESP_AVRC_CT_GET_RN_CAPABILITIES_RSP_EVT: {
ESP_LOGI(BT_RC_CT_TAG, "remote rn_cap: count %d, bitmask 0x%x", rc->get_rn_caps_rsp.cap_count,
rc->get_rn_caps_rsp.evt_set.bits);
s_avrc_peer_rn_cap.bits = rc->get_rn_caps_rsp.evt_set.bits;
bt_av_volume_changed();
break;
}
/* when set absolute volume responded, this event comes */
case ESP_AVRC_CT_SET_ABSOLUTE_VOLUME_RSP_EVT: {
ESP_LOGI(BT_RC_CT_TAG, "Set absolute volume response: volume %d", rc->set_volume_rsp.volume);
break;
}
/* other */
default: {
ESP_LOGE(BT_RC_CT_TAG, "%s unhandled event: %d", __func__, event);
break;
}
}
}
/*********************************
* MAIN ENTRY POINT
********************************/
void app_main(void)
{
/* initialize NVS — it is used to store PHY calibration data */
esp_err_t ret = nvs_flash_init();
if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
ESP_ERROR_CHECK(nvs_flash_erase());
ret = nvs_flash_init();
}
ESP_ERROR_CHECK(ret);
/*
* This example only uses the functions of Classical Bluetooth.
* So release the controller memory for Bluetooth Low Energy.
*/
ESP_ERROR_CHECK(esp_bt_controller_mem_release(ESP_BT_MODE_BLE));
esp_bt_controller_config_t bt_cfg = BT_CONTROLLER_INIT_CONFIG_DEFAULT();
if (esp_bt_controller_init(&bt_cfg) != ESP_OK) {
ESP_LOGE(BT_AV_TAG, "%s initialize controller failed", __func__);
return;
}
if (esp_bt_controller_enable(ESP_BT_MODE_CLASSIC_BT) != ESP_OK) {
ESP_LOGE(BT_AV_TAG, "%s enable controller failed", __func__);
return;
}
esp_bluedroid_config_t bluedroid_cfg = BT_BLUEDROID_INIT_CONFIG_DEFAULT();
#if (CONFIG_EXAMPLE_SSP_ENABLED == false)
bluedroid_cfg.ssp_en = false;
#endif
if ((ret = esp_bluedroid_init_with_cfg(&bluedroid_cfg)) != ESP_OK) {
ESP_LOGE(BT_AV_TAG, "%s initialize bluedroid failed: %s", __func__, esp_err_to_name(ret));
return;
}
if (esp_bluedroid_enable() != ESP_OK) {
ESP_LOGE(BT_AV_TAG, "%s enable bluedroid failed", __func__);
return;
}
#if (CONFIG_EXAMPLE_SSP_ENABLED == true)
/* set default parameters for Secure Simple Pairing */
esp_bt_sp_param_t param_type = ESP_BT_SP_IOCAP_MODE;
esp_bt_io_cap_t iocap = ESP_BT_IO_CAP_IO;
esp_bt_gap_set_security_param(param_type, &iocap, sizeof(uint8_t));
#endif
/*
* Set default parameters for Legacy Pairing
* Use variable pin, input pin code when pairing
*/
esp_bt_pin_type_t pin_type = ESP_BT_PIN_TYPE_VARIABLE;
esp_bt_pin_code_t pin_code;
esp_bt_gap_set_pin(pin_type, 0, pin_code);
bt_app_task_start_up();
/* Bluetooth device name, connection mode and profile set up */
bt_app_work_dispatch(bt_av_hdl_stack_evt, BT_APP_STACK_UP_EVT, NULL, 0, NULL);
}