esp-idf/components/esp_timer/src/esp_timer_impl_lac.c

350 wiersze
13 KiB
C

/*
* SPDX-FileCopyrightText: 2017-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "sdkconfig.h"
#include "sys/param.h"
#include "esp_timer_impl.h"
#include "esp_timer.h"
#include "esp_err.h"
#include "esp_system.h"
#include "esp_task.h"
#include "esp_attr.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "esp_private/esp_clk.h"
#include "esp_private/periph_ctrl.h"
#include "soc/soc.h"
#include "soc/timer_group_reg.h"
#include "soc/rtc.h"
#include "hal/timer_ll.h"
#include "freertos/FreeRTOS.h"
/**
* @file esp_timer_lac.c
* @brief Implementation of chip-specific part of esp_timer
*
* This implementation uses TG0 LAC timer of the ESP32. This timer is
* a 64-bit up-counting timer, with a programmable compare value (called 'alarm'
* hereafter). When the timer reaches compare value, interrupt is raised.
* The timer can be configured to produce an edge or a level interrupt.
*/
/* Selects which Timer Group peripheral to use */
#define LACT_MODULE 0
#if LACT_MODULE == 0
#define INTR_SOURCE_LACT ETS_TG0_LACT_LEVEL_INTR_SOURCE
#define PERIPH_LACT PERIPH_TIMG0_MODULE
#elif LACT_MODULE == 1
#define INTR_SOURCE_LACT ETS_TG1_LACT_LEVEL_INTR_SOURCE
#define PERIPH_LACT PERIPH_TIMG1_MODULE
#else
#error "Incorrect the number of LACT module (only 0 or 1)"
#endif
/* Desired number of timer ticks per microsecond.
* This value should be small enough so that all possible APB frequencies
* could be divided by it without remainder.
* On the other hand, the smaller this value is, the longer we need to wait
* after setting UPDATE_REG before the timer value can be read.
* If TICKS_PER_US == 1, then we need to wait up to 1 microsecond, which
* makes esp_timer_impl_get_time function take too much time.
* The value TICKS_PER_US == 2 allows for most of the APB frequencies, and
* allows reading the counter quickly enough.
*/
#define TICKS_PER_US 2
/* Shorter register names, used in this file */
#define CONFIG_REG (TIMG_LACTCONFIG_REG(LACT_MODULE))
#define RTC_STEP_REG (TIMG_LACTRTC_REG(LACT_MODULE))
#define ALARM_LO_REG (TIMG_LACTALARMLO_REG(LACT_MODULE))
#define ALARM_HI_REG (TIMG_LACTALARMHI_REG(LACT_MODULE))
#define COUNT_LO_REG (TIMG_LACTLO_REG(LACT_MODULE))
#define COUNT_HI_REG (TIMG_LACTHI_REG(LACT_MODULE))
#define UPDATE_REG (TIMG_LACTUPDATE_REG(LACT_MODULE))
#define LOAD_REG (TIMG_LACTLOAD_REG(LACT_MODULE))
#define LOAD_LO_REG (TIMG_LACTLOADLO_REG(LACT_MODULE))
#define LOAD_HI_REG (TIMG_LACTLOADHI_REG(LACT_MODULE))
#define INT_ENA_REG (TIMG_INT_ENA_TIMERS_REG(LACT_MODULE))
#define INT_ST_REG (TIMG_INT_ST_TIMERS_REG(LACT_MODULE))
#define INT_CLR_REG (TIMG_INT_CLR_TIMERS_REG(LACT_MODULE))
/* Helper type to convert between a 64-bit value and a pair of 32-bit values without shifts and masks */
typedef struct {
union {
struct {
uint32_t lo;
uint32_t hi;
};
uint64_t val;
};
} timer_64b_reg_t;
static const char* TAG = "esp_timer_impl";
#define NOT_USED 0xBAD00FAD
/* Interrupt handle returned by the interrupt allocator */
#ifdef CONFIG_ESP_TIMER_ISR_AFFINITY_NO_AFFINITY
#define ISR_HANDLERS (CONFIG_FREERTOS_NUMBER_OF_CORES)
#else
#define ISR_HANDLERS (1)
#endif
static intr_handle_t s_timer_interrupt_handle[ISR_HANDLERS] = { NULL };
/* Function from the upper layer to be called when the interrupt happens.
* Registered in esp_timer_impl_init.
*/
static intr_handler_t s_alarm_handler = NULL;
/* Spinlock used to protect access to the hardware registers. */
extern portMUX_TYPE s_time_update_lock;
/* Alarm values to generate interrupt on match */
extern uint64_t timestamp_id[2];
uint64_t IRAM_ATTR esp_timer_impl_get_counter_reg(void)
{
uint32_t lo, hi;
uint32_t lo_start = REG_READ(COUNT_LO_REG);
uint32_t div = REG_GET_FIELD(CONFIG_REG, TIMG_LACT_DIVIDER);
/* The peripheral doesn't have a bit to indicate that the update is done, so we poll the
* lower 32 bit part of the counter until it changes, or a timeout expires.
*/
REG_WRITE(UPDATE_REG, 1);
do {
lo = REG_READ(COUNT_LO_REG);
} while (lo == lo_start && div-- > 0);
/* Since this function is called without a critical section, verify that LO and HI
* registers are consistent. That is, if an interrupt happens between reading LO and
* HI registers, and esp_timer_impl_get_time is called from an ISR, then try to
* detect this by the change in LO register value, and re-read both registers.
*/
do {
lo_start = lo;
hi = REG_READ(COUNT_HI_REG);
lo = REG_READ(COUNT_LO_REG);
} while (lo != lo_start);
timer_64b_reg_t result = {
.lo = lo,
.hi = hi
};
return result.val;
}
int64_t IRAM_ATTR esp_timer_impl_get_time(void)
{
return esp_timer_impl_get_counter_reg() / TICKS_PER_US;
}
int64_t esp_timer_get_time(void) __attribute__((alias("esp_timer_impl_get_time")));
void IRAM_ATTR esp_timer_impl_set_alarm_id(uint64_t timestamp, unsigned alarm_id)
{
assert(alarm_id < sizeof(timestamp_id) / sizeof(timestamp_id[0]));
portENTER_CRITICAL_SAFE(&s_time_update_lock);
timestamp_id[alarm_id] = timestamp;
timestamp = MIN(timestamp_id[0], timestamp_id[1]);
if (timestamp != UINT64_MAX) {
int64_t offset = TICKS_PER_US * 2;
uint64_t now_time = esp_timer_impl_get_counter_reg();
timer_64b_reg_t alarm = { .val = MAX(timestamp * TICKS_PER_US, now_time + offset) };
do {
REG_CLR_BIT(CONFIG_REG, TIMG_LACT_ALARM_EN);
REG_WRITE(ALARM_LO_REG, alarm.lo);
REG_WRITE(ALARM_HI_REG, alarm.hi);
REG_SET_BIT(CONFIG_REG, TIMG_LACT_ALARM_EN);
now_time = esp_timer_impl_get_counter_reg();
int64_t delta = (int64_t)alarm.val - (int64_t)now_time;
if (delta <= 0 && REG_GET_FIELD(INT_ST_REG, TIMG_LACT_INT_ST) == 0) {
// new alarm is less than the counter and the interrupt flag is not set
offset += llabs(delta) + TICKS_PER_US * 2;
alarm.val = now_time + offset;
} else {
// finish if either (alarm > counter) or the interrupt flag is already set.
break;
}
} while (1);
}
portEXIT_CRITICAL_SAFE(&s_time_update_lock);
}
static void IRAM_ATTR timer_alarm_isr(void *arg)
{
#if ISR_HANDLERS == 1
/* Clear interrupt status */
REG_WRITE(INT_CLR_REG, TIMG_LACT_INT_CLR);
/* Call the upper layer handler */
(*s_alarm_handler)(arg);
#else
static volatile uint32_t processed_by = NOT_USED;
static volatile bool pending_alarm = false;
/* CRITICAL section ensures the read/clear is atomic between cores */
portENTER_CRITICAL_ISR(&s_time_update_lock);
if (REG_GET_FIELD(INT_ST_REG, TIMG_LACT_INT_ST)) {
// Clear interrupt status
REG_WRITE(INT_CLR_REG, TIMG_LACT_INT_CLR);
// Is the other core already processing a previous alarm?
if (processed_by == NOT_USED) {
// Current core is not processing an alarm yet
processed_by = xPortGetCoreID();
do {
pending_alarm = false;
// Clear interrupt status
REG_WRITE(INT_CLR_REG, TIMG_LACT_INT_CLR);
portEXIT_CRITICAL_ISR(&s_time_update_lock);
(*s_alarm_handler)(arg);
portENTER_CRITICAL_ISR(&s_time_update_lock);
// Another alarm could have occurred while were handling the previous alarm.
// Check if we need to call the s_alarm_handler again:
// 1) if the alarm has already been fired, it helps to handle it immediately without an additional ISR call.
// 2) handle pending alarm that was cleared by the other core in time when this core worked with the current alarm.
} while (REG_GET_FIELD(INT_ST_REG, TIMG_LACT_INT_ST) || pending_alarm);
processed_by = NOT_USED;
} else {
// Current core arrived at ISR but the other core is still handling a previous alarm.
// Once we already cleared the ISR status we need to let the other core know that it was.
// Set the flag to handle the current alarm by the other core later.
pending_alarm = true;
}
}
portEXIT_CRITICAL_ISR(&s_time_update_lock);
#endif // ISR_HANDLERS != 1
}
void IRAM_ATTR esp_timer_impl_update_apb_freq(uint32_t apb_ticks_per_us)
{
portENTER_CRITICAL(&s_time_update_lock);
assert(apb_ticks_per_us >= 3 && "divider value too low");
assert(apb_ticks_per_us % TICKS_PER_US == 0 && "APB frequency (in MHz) should be divisible by TICK_PER_US");
REG_SET_FIELD(CONFIG_REG, TIMG_LACT_DIVIDER, apb_ticks_per_us / TICKS_PER_US);
portEXIT_CRITICAL(&s_time_update_lock);
}
void esp_timer_impl_set(uint64_t new_us)
{
portENTER_CRITICAL(&s_time_update_lock);
timer_64b_reg_t dst = { .val = new_us * TICKS_PER_US };
REG_WRITE(LOAD_LO_REG, dst.lo);
REG_WRITE(LOAD_HI_REG, dst.hi);
REG_WRITE(LOAD_REG, 1);
portEXIT_CRITICAL(&s_time_update_lock);
}
void esp_timer_impl_advance(int64_t time_diff_us)
{
uint64_t now = esp_timer_impl_get_time();
esp_timer_impl_set(now + time_diff_us);
}
esp_err_t esp_timer_impl_early_init(void)
{
PERIPH_RCC_ACQUIRE_ATOMIC(PERIPH_LACT, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(LACT_MODULE, true);
timer_ll_reset_register(LACT_MODULE);
}
}
REG_WRITE(CONFIG_REG, 0);
REG_WRITE(LOAD_LO_REG, 0);
REG_WRITE(LOAD_HI_REG, 0);
REG_WRITE(ALARM_LO_REG, UINT32_MAX);
REG_WRITE(ALARM_HI_REG, UINT32_MAX);
REG_WRITE(LOAD_REG, 1);
REG_SET_BIT(INT_CLR_REG, TIMG_LACT_INT_CLR);
REG_SET_FIELD(CONFIG_REG, TIMG_LACT_DIVIDER, APB_CLK_FREQ / 1000000 / TICKS_PER_US);
REG_SET_BIT(CONFIG_REG, TIMG_LACT_INCREASE |
TIMG_LACT_LEVEL_INT_EN |
TIMG_LACT_EN);
return ESP_OK;
}
esp_err_t esp_timer_impl_init(intr_handler_t alarm_handler)
{
if (s_timer_interrupt_handle[(ISR_HANDLERS == 1) ? 0 : xPortGetCoreID()] != NULL) {
ESP_EARLY_LOGE(TAG, "timer ISR is already initialized");
return ESP_ERR_INVALID_STATE;
}
int isr_flags = ESP_INTR_FLAG_INTRDISABLED
| ((1 << CONFIG_ESP_TIMER_INTERRUPT_LEVEL) & ESP_INTR_FLAG_LEVELMASK)
| ESP_INTR_FLAG_IRAM;
esp_err_t err = esp_intr_alloc(INTR_SOURCE_LACT, isr_flags,
&timer_alarm_isr, NULL,
&s_timer_interrupt_handle[(ISR_HANDLERS == 1) ? 0 : xPortGetCoreID()]);
if (err != ESP_OK) {
ESP_EARLY_LOGE(TAG, "Can not allocate ISR handler (0x%0x)", err);
return err;
}
if (s_alarm_handler == NULL) {
s_alarm_handler = alarm_handler;
/* In theory, this needs a shared spinlock with the timer group driver.
* However since esp_timer_impl_init is called early at startup, this
* will not cause issues in practice.
*/
REG_SET_BIT(INT_ENA_REG, TIMG_LACT_INT_ENA);
esp_timer_impl_update_apb_freq(esp_clk_apb_freq() / 1000000);
// Set the step for the sleep mode when the timer will work
// from a slow_clk frequency instead of the APB frequency.
uint32_t slowclk_ticks_per_us = esp_clk_slowclk_cal_get() * TICKS_PER_US;
REG_SET_FIELD(RTC_STEP_REG, TIMG_LACT_RTC_STEP_LEN, slowclk_ticks_per_us);
}
err = esp_intr_enable(s_timer_interrupt_handle[(ISR_HANDLERS == 1) ? 0 : xPortGetCoreID()]);
if (err != ESP_OK) {
ESP_EARLY_LOGE(TAG, "Can not enable ISR (0x%0x)", err);
}
return err;
}
void esp_timer_impl_deinit(void)
{
REG_WRITE(CONFIG_REG, 0);
REG_SET_BIT(INT_CLR_REG, TIMG_LACT_INT_CLR);
/* TODO: also clear TIMG_LACT_INT_ENA; however see the note in esp_timer_impl_init. */
for (unsigned i = 0; i < ISR_HANDLERS; i++) {
if (s_timer_interrupt_handle[i] != NULL) {
esp_intr_disable(s_timer_interrupt_handle[i]);
esp_intr_free(s_timer_interrupt_handle[i]);
s_timer_interrupt_handle[i] = NULL;
}
}
s_alarm_handler = NULL;
PERIPH_RCC_RELEASE_ATOMIC(PERIPH_LACT, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(LACT_MODULE, false);
}
}
}
uint64_t esp_timer_impl_get_alarm_reg(void)
{
portENTER_CRITICAL_SAFE(&s_time_update_lock);
timer_64b_reg_t alarm = {
.lo = REG_READ(ALARM_LO_REG),
.hi = REG_READ(ALARM_HI_REG)
};
portEXIT_CRITICAL_SAFE(&s_time_update_lock);
return alarm.val;
}
void esp_timer_private_update_apb_freq(uint32_t apb_ticks_per_us) __attribute__((alias("esp_timer_impl_update_apb_freq")));
void esp_timer_private_set(uint64_t new_us) __attribute__((alias("esp_timer_impl_set")));
void esp_timer_private_advance(int64_t time_diff_us) __attribute__((alias("esp_timer_impl_advance")));