esp-idf/components/esp_driver_spi/test_apps/slave/main/test_spi_slave.c

744 wiersze
29 KiB
C

/*
* SPDX-FileCopyrightText: 2021-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/*
Tests for the spi_slave device driver
*/
#include <string.h>
#include "sdkconfig.h"
#include "unity.h"
#include "test_utils.h"
#include "test_spi_utils.h"
#include "hal/spi_slave_hal.h"
#include "driver/spi_master.h"
#include "driver/spi_slave.h"
#include "driver/gpio.h"
#include "esp_private/cache_utils.h"
#include "esp_private/spi_slave_internal.h"
#include "esp_log.h"
#include "esp_rom_gpio.h"
#if (TEST_SPI_PERIPH_NUM >= 2)
//These will only be enabled on chips with 2 or more SPI peripherals
#ifndef CONFIG_SPIRAM
//This test should be removed once the timing test is merged.
static spi_device_handle_t spi;
static WORD_ALIGNED_ATTR uint8_t master_txbuf[320];
static WORD_ALIGNED_ATTR uint8_t master_rxbuf[320];
static WORD_ALIGNED_ATTR uint8_t slave_txbuf[320];
static WORD_ALIGNED_ATTR uint8_t slave_rxbuf[320];
static const uint8_t master_send[] = { 0x93, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43 };
static const uint8_t slave_send[] = { 0xaa, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x13, 0x57, 0x9b, 0xdf, 0x24, 0x68, 0xac, 0xe0 };
static inline void int_connect(uint32_t gpio, uint32_t sigo, uint32_t sigi)
{
esp_rom_gpio_connect_out_signal(gpio, sigo, false, false);
esp_rom_gpio_connect_in_signal(gpio, sigi, false);
}
static void master_init(spi_device_handle_t *spi)
{
esp_err_t ret;
spi_bus_config_t buscfg = {
.miso_io_num = PIN_NUM_MISO,
.mosi_io_num = PIN_NUM_MOSI,
.sclk_io_num = PIN_NUM_CLK,
.quadwp_io_num = UNCONNECTED_PIN,
.quadhd_io_num = -1
};
spi_device_interface_config_t devcfg = {
.clock_speed_hz = 4 * 1000 * 1000, //currently only up to 4MHz for internel connect
.mode = 0, //SPI mode 0
.spics_io_num = PIN_NUM_CS, //CS pin
.queue_size = 7, //We want to be able to queue 7 transactions at a time
.pre_cb = NULL,
.cs_ena_posttrans = 5,
.cs_ena_pretrans = 1,
};
//Initialize the SPI bus
ret = spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO);
TEST_ASSERT(ret == ESP_OK);
//Attach the LCD to the SPI bus
ret = spi_bus_add_device(TEST_SPI_HOST, &devcfg, spi);
TEST_ASSERT(ret == ESP_OK);
}
static void slave_init(void)
{
//Configuration for the SPI bus
spi_bus_config_t buscfg = {
.mosi_io_num = PIN_NUM_MOSI,
.miso_io_num = PIN_NUM_MISO,
.sclk_io_num = PIN_NUM_CLK
};
//Configuration for the SPI slave interface
spi_slave_interface_config_t slvcfg = {
.mode = 0,
.spics_io_num = PIN_NUM_CS,
.queue_size = 3,
.flags = 0,
};
//Enable pull-ups on SPI lines so we don't detect rogue pulses when no master is connected.
gpio_set_pull_mode(PIN_NUM_MOSI, GPIO_PULLUP_ONLY);
gpio_set_pull_mode(PIN_NUM_CLK, GPIO_PULLUP_ONLY);
gpio_set_pull_mode(PIN_NUM_CS, GPIO_PULLUP_ONLY);
//Initialize SPI slave interface
TEST_ESP_OK(spi_slave_initialize(TEST_SLAVE_HOST, &buscfg, &slvcfg, SPI_DMA_CH_AUTO));
}
static void custom_setup(void)
{
//Initialize buffers
memset(master_txbuf, 0, sizeof(master_txbuf));
memset(master_rxbuf, 0, sizeof(master_rxbuf));
memset(slave_txbuf, 0, sizeof(slave_txbuf));
memset(slave_rxbuf, 0, sizeof(slave_rxbuf));
//Initialize SPI Master
master_init(&spi);
//Initialize SPI Slave
slave_init();
//Do internal connections
int_connect(PIN_NUM_MOSI, spi_periph_signal[TEST_SPI_HOST].spid_out, spi_periph_signal[TEST_SLAVE_HOST].spiq_in);
int_connect(PIN_NUM_MISO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out, spi_periph_signal[TEST_SPI_HOST].spid_in);
int_connect(PIN_NUM_CS, spi_periph_signal[TEST_SPI_HOST].spics_out[0], spi_periph_signal[TEST_SLAVE_HOST].spics_in);
int_connect(PIN_NUM_CLK, spi_periph_signal[TEST_SPI_HOST].spiclk_out, spi_periph_signal[TEST_SLAVE_HOST].spiclk_in);
}
static void custom_teardown(void)
{
TEST_ASSERT(spi_slave_free(TEST_SLAVE_HOST) == ESP_OK);
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
}
TEST_CASE("test fullduplex slave with only RX direction", "[spi]")
{
custom_setup();
memcpy(master_txbuf, master_send, sizeof(master_send));
for (int i = 0; i < 4; i ++) {
//slave send
spi_slave_transaction_t slave_t;
spi_slave_transaction_t *out;
memset(&slave_t, 0, sizeof(spi_slave_transaction_t));
slave_t.length = 8 * 32;
slave_t.tx_buffer = NULL;
slave_t.rx_buffer = slave_rxbuf;
slave_t.flags |= SPI_SLAVE_TRANS_DMA_BUFFER_ALIGN_AUTO;
// Colorize RX buffer with known pattern
memset(slave_rxbuf, 0x66, sizeof(slave_rxbuf));
TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY));
//send
spi_transaction_t t = {};
t.length = 32 * (i + 1);
if (t.length != 0) {
t.tx_buffer = master_txbuf;
t.rx_buffer = NULL;
}
spi_device_transmit(spi, (spi_transaction_t *)&t);
//wait for end
TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &out, portMAX_DELAY));
//show result
ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len);
ESP_LOG_BUFFER_HEX("master tx", t.tx_buffer, t.length / 8);
ESP_LOG_BUFFER_HEX("slave rx", slave_t.rx_buffer, (slave_t.trans_len + 7) / 8);
TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, slave_t.rx_buffer, t.length / 8);
TEST_ASSERT_EQUAL(t.length, slave_t.trans_len);
}
custom_teardown();
ESP_LOGI(SLAVE_TAG, "test passed.");
}
TEST_CASE("test fullduplex slave with only TX direction", "[spi]")
{
custom_setup();
memcpy(slave_txbuf, slave_send, sizeof(slave_send));
for (int i = 0; i < 4; i ++) {
//slave send
spi_slave_transaction_t slave_t;
spi_slave_transaction_t *out;
memset(&slave_t, 0, sizeof(spi_slave_transaction_t));
slave_t.length = 8 * 32;
slave_t.tx_buffer = slave_txbuf;
slave_t.rx_buffer = NULL;
slave_t.flags |= SPI_SLAVE_TRANS_DMA_BUFFER_ALIGN_AUTO;
// Colorize RX buffer with known pattern
memset(master_rxbuf, 0x66, sizeof(master_rxbuf));
TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY));
//send
spi_transaction_t t = {};
t.length = 32 * (i + 1);
if (t.length != 0) {
t.tx_buffer = NULL;
t.rx_buffer = master_rxbuf;
}
spi_device_transmit(spi, (spi_transaction_t *)&t);
//wait for end
TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &out, portMAX_DELAY));
//show result
ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len);
ESP_LOG_BUFFER_HEX("master rx", t.rx_buffer, t.length / 8);
ESP_LOG_BUFFER_HEX("slave tx", slave_t.tx_buffer, (slave_t.trans_len + 7) / 8);
TEST_ASSERT_EQUAL_HEX8_ARRAY(slave_t.tx_buffer, t.rx_buffer, t.length / 8);
TEST_ASSERT_EQUAL(t.length, slave_t.trans_len);
}
custom_teardown();
ESP_LOGI(SLAVE_TAG, "test passed.");
}
TEST_CASE("test slave send unaligned", "[spi]")
{
custom_setup();
memcpy(master_txbuf, master_send, sizeof(master_send));
memcpy(slave_txbuf, slave_send, sizeof(slave_send));
for (int i = 0; i < 4; i ++) {
//slave send
spi_slave_transaction_t slave_t;
spi_slave_transaction_t *out;
memset(&slave_t, 0, sizeof(spi_slave_transaction_t));
slave_t.length = 8 * 32;
slave_t.tx_buffer = slave_txbuf + i;
slave_t.rx_buffer = slave_rxbuf;
slave_t.flags |= SPI_SLAVE_TRANS_DMA_BUFFER_ALIGN_AUTO;
// Colorize RX buffers with known pattern
memset(master_rxbuf, 0x66, sizeof(master_rxbuf));
memset(slave_rxbuf, 0x66, sizeof(slave_rxbuf));
TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY));
//send
spi_transaction_t t = {};
t.length = 32 * (i + 1);
if (t.length != 0) {
t.tx_buffer = master_txbuf + i;
t.rx_buffer = master_rxbuf + i;
}
spi_device_transmit(spi, (spi_transaction_t *)&t);
//wait for end
TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &out, portMAX_DELAY));
//show result
ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len);
ESP_LOG_BUFFER_HEX("master tx", t.tx_buffer, t.length / 8);
ESP_LOG_BUFFER_HEX("master rx", t.rx_buffer, t.length / 8);
ESP_LOG_BUFFER_HEX("slave tx", slave_t.tx_buffer, (slave_t.trans_len + 7) / 8);
ESP_LOG_BUFFER_HEX("slave rx", slave_t.rx_buffer, (slave_t.trans_len + 7) / 8);
TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, slave_t.rx_buffer, t.length / 8);
TEST_ASSERT_EQUAL_HEX8_ARRAY(slave_t.tx_buffer, t.rx_buffer, t.length / 8);
TEST_ASSERT_EQUAL(t.length, slave_t.trans_len);
}
custom_teardown();
ESP_LOGI(SLAVE_TAG, "test passed.");
}
#endif // !CONFIG_SPIRAM
#endif // #if (TEST_SPI_PERIPH_NUM >= 2)
#if (TEST_SPI_PERIPH_NUM == 1)
//These tests are for chips which only have 1 SPI controller
/********************************************************************************
* Test By Master & Slave (2 boards)
*
* Master (C3, C2, H2) && Slave (C3, C2, H2):
* PIN | Master | Slave |
* ----| --------- | --------- |
* CS | 10 | 10 |
* CLK | 6 | 6 |
* MOSI| 7 | 7 |
* MISO| 2 | 2 |
* GND | GND | GND |
*
********************************************************************************/
#define BUF_SIZE 320
static void unaligned_test_master(void)
{
spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, 0));
spi_device_handle_t spi;
spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
devcfg.clock_speed_hz = 4 * 1000 * 1000;
devcfg.queue_size = 7;
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
unity_send_signal("Master ready");
uint8_t *master_send_buf = heap_caps_malloc(BUF_SIZE, MALLOC_CAP_DMA);
uint8_t *master_recv_buf = heap_caps_calloc(BUF_SIZE, 1, MALLOC_CAP_DMA);
//This buffer is used for 2-board test and should be assigned totally the same as the ``test_slave_loop`` does.
uint8_t *slave_send_buf = heap_caps_malloc(BUF_SIZE, MALLOC_CAP_DMA);
srand(199);
for (int i = 0; i < BUF_SIZE; i++) {
master_send_buf[i] = rand();
}
srand(299);
for (int i = 0; i < BUF_SIZE; i++) {
slave_send_buf[i] = rand();
}
for (int i = 0; i < 4; i++) {
uint32_t length_in_bytes = 4 * (i + 1);
spi_transaction_t t = {
.tx_buffer = master_send_buf + i,
.rx_buffer = master_recv_buf,
.length = length_in_bytes * 8,
};
vTaskDelay(50);
unity_wait_for_signal("Slave ready");
TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t *)&t));
//show result
ESP_LOG_BUFFER_HEX("master tx:", master_send_buf + i, length_in_bytes);
ESP_LOG_BUFFER_HEX("master rx:", master_recv_buf, length_in_bytes);
TEST_ASSERT_EQUAL_HEX8_ARRAY(slave_send_buf + i, master_recv_buf, length_in_bytes);
//clean
memset(master_recv_buf, 0x00, BUF_SIZE);
}
free(master_send_buf);
free(master_recv_buf);
free(slave_send_buf);
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
}
static void unaligned_test_slave(void)
{
unity_wait_for_signal("Master ready");
spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
TEST_ESP_OK(spi_slave_initialize(TEST_SPI_HOST, &buscfg, &slvcfg, SPI_DMA_CH_AUTO));
uint8_t *slave_send_buf = heap_caps_malloc(BUF_SIZE, MALLOC_CAP_DMA);
uint8_t *slave_recv_buf = heap_caps_calloc(BUF_SIZE, 1, MALLOC_CAP_DMA);
//This buffer is used for 2-board test and should be assigned totally the same as the ``test_slave_loop`` does.
uint8_t *master_send_buf = heap_caps_malloc(BUF_SIZE, MALLOC_CAP_DMA);
srand(199);
for (int i = 0; i < BUF_SIZE; i++) {
master_send_buf[i] = rand();
}
srand(299);
for (int i = 0; i < BUF_SIZE; i++) {
slave_send_buf[i] = rand();
}
for (int i = 0; i < 4; i++) {
uint32_t mst_length_in_bytes = 4 * (i + 1);
spi_slave_transaction_t slave_t = {
.tx_buffer = slave_send_buf + i,
.rx_buffer = slave_recv_buf,
.length = 32 * 8,
};
unity_send_signal("Slave ready");
TEST_ESP_OK(spi_slave_transmit(TEST_SPI_HOST, &slave_t, portMAX_DELAY));
//show result
ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len);
ESP_LOG_BUFFER_HEX("slave tx:", slave_send_buf + i, mst_length_in_bytes);
ESP_LOG_BUFFER_HEX("slave rx:", slave_recv_buf, mst_length_in_bytes);
TEST_ASSERT_EQUAL(mst_length_in_bytes * 8, slave_t.trans_len);
TEST_ASSERT_EQUAL_HEX8_ARRAY(master_send_buf + i, slave_recv_buf, mst_length_in_bytes);
//clean
memset(slave_recv_buf, 0x00, BUF_SIZE);
}
free(slave_send_buf);
free(slave_recv_buf);
free(master_send_buf);
TEST_ASSERT(spi_slave_free(TEST_SPI_HOST) == ESP_OK);
}
TEST_CASE_MULTIPLE_DEVICES("SPI_Slave_Unaligned_Test", "[spi_ms][timeout=120]", unaligned_test_master, unaligned_test_slave);
#endif //#if (TEST_SPI_PERIPH_NUM == 1)
#if CONFIG_SPI_SLAVE_ISR_IN_IRAM
#define TEST_IRAM_TRANS_NUM 8
#define TEST_TRANS_LEN 64
#define TEST_BUFFER_SZ (TEST_IRAM_TRANS_NUM*TEST_TRANS_LEN)
static void test_slave_iram_master_normal(void)
{
spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
spi_device_handle_t dev_handle = {0};
spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &dev_handle));
uint8_t *master_send = heap_caps_malloc(TEST_BUFFER_SZ, MALLOC_CAP_DMA);
uint8_t *master_recv = heap_caps_calloc(1, TEST_BUFFER_SZ, MALLOC_CAP_DMA);
uint8_t *master_exp = heap_caps_malloc(TEST_BUFFER_SZ, MALLOC_CAP_DEFAULT);
test_fill_random_to_buffers_dualboard(1001, master_send, master_exp, TEST_BUFFER_SZ);
spi_transaction_t trans_cfg = {
.tx_buffer = master_send,
.rx_buffer = master_recv,
.user = master_exp,
.length = TEST_TRANS_LEN * 8,
};
//first trans to trigger slave enter isr
unity_send_signal("Master ready");
unity_wait_for_signal("Slave ready");
TEST_ESP_OK(spi_device_transmit(dev_handle, &trans_cfg));
for (uint8_t cnt = 0; cnt < TEST_IRAM_TRANS_NUM; cnt ++) {
trans_cfg.tx_buffer = master_send + TEST_TRANS_LEN * cnt;
trans_cfg.rx_buffer = master_recv + TEST_TRANS_LEN * cnt;
trans_cfg.user = master_exp + TEST_TRANS_LEN * cnt;
unity_wait_for_signal("Slave ready");
TEST_ESP_OK(spi_device_transmit(dev_handle, &trans_cfg));
ESP_LOG_BUFFER_HEX("master tx", trans_cfg.tx_buffer, TEST_TRANS_LEN);
ESP_LOG_BUFFER_HEX_LEVEL("master rx", trans_cfg.rx_buffer, TEST_TRANS_LEN, ESP_LOG_DEBUG);
ESP_LOG_BUFFER_HEX_LEVEL("master exp", trans_cfg.user, TEST_TRANS_LEN, ESP_LOG_DEBUG);
spitest_cmp_or_dump(trans_cfg.user, trans_cfg.rx_buffer, TEST_TRANS_LEN);
}
free(master_send);
free(master_recv);
free(master_exp);
spi_bus_remove_device(dev_handle);
spi_bus_free(TEST_SPI_HOST);
}
//------------------------------------test slave func-----------------------------------------
static IRAM_ATTR void ESP_LOG_BUFFER_HEX_ISR(const char *tag, const uint8_t *buff, const uint32_t byte_len)
{
esp_rom_printf(DRAM_STR("%s: "), tag);
for (uint16_t i = 0; i < byte_len; i++) {
if (0 == i % 16) {
esp_rom_printf(DRAM_STR("\n"));
}
esp_rom_printf(DRAM_STR("%02x "), buff[i]);
}
esp_rom_printf(DRAM_STR("\n"));
}
static uint32_t isr_iram_cnt;
static uint32_t iram_test_fail;
static IRAM_ATTR void test_slave_iram_post_trans_cbk(spi_slave_transaction_t *curr_trans)
{
isr_iram_cnt ++;
// first trans is the trigger trans with random data by master
if (isr_iram_cnt > 1) {
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("slave tx"), curr_trans->tx_buffer, curr_trans->trans_len / 8);
if (memcmp(curr_trans->rx_buffer, curr_trans->user, curr_trans->trans_len / 8)) {
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("slave rx"), curr_trans->rx_buffer, curr_trans->trans_len / 8);
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("slave exp"), curr_trans->user, curr_trans->trans_len / 8);
iram_test_fail = true;
}
}
if (isr_iram_cnt <= TEST_IRAM_TRANS_NUM) {
// str "Send signal: [Slave ready]!\n" used for CI to run test automatically
// here use `esp_rom_printf` instead `unity_send_signal` because cache is disabled by test
esp_rom_printf(DRAM_STR("Send signal: [Slave ready]!\n"));
}
}
static IRAM_ATTR void test_slave_isr_iram(void)
{
spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
bus_cfg.intr_flags |= ESP_INTR_FLAG_IRAM;
spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
slvcfg.flags = SPI_SLAVE_NO_RETURN_RESULT;
slvcfg.queue_size = 16;
slvcfg.post_trans_cb = test_slave_iram_post_trans_cbk;
TEST_ESP_OK(spi_slave_initialize(TEST_SPI_HOST, &bus_cfg, &slvcfg, SPI_DMA_CH_AUTO));
uint8_t *slave_iram_send = heap_caps_aligned_alloc(64, TEST_BUFFER_SZ, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
uint8_t *slave_iram_recv = heap_caps_aligned_alloc(64, TEST_BUFFER_SZ, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
uint8_t *slave_iram_exp = heap_caps_malloc(TEST_BUFFER_SZ, MALLOC_CAP_DEFAULT | MALLOC_CAP_INTERNAL);
test_fill_random_to_buffers_dualboard(1001, slave_iram_exp, slave_iram_send, TEST_BUFFER_SZ);
spi_slave_transaction_t trans_cfg[TEST_IRAM_TRANS_NUM] = {0};
unity_wait_for_signal("Master ready");
trans_cfg[0].tx_buffer = slave_iram_send;
trans_cfg[0].rx_buffer = slave_iram_recv;
trans_cfg[0].user = slave_iram_exp;
trans_cfg[0].length = TEST_TRANS_LEN * 8;
spi_slave_queue_trans(TEST_SPI_HOST, &trans_cfg[0], portMAX_DELAY);
// mount several transaction first
for (uint8_t i = 0; i < TEST_IRAM_TRANS_NUM; i++) {
trans_cfg[i].tx_buffer = slave_iram_send + TEST_TRANS_LEN * i;
trans_cfg[i].rx_buffer = slave_iram_recv + TEST_TRANS_LEN * i;
trans_cfg[i].user = slave_iram_exp + TEST_TRANS_LEN * i;
trans_cfg[i].length = TEST_TRANS_LEN * 8;
spi_slave_queue_trans(TEST_SPI_HOST, &trans_cfg[i], portMAX_DELAY);
}
// disable cache then send signal `ready` to start transaction
spi_flash_disable_interrupts_caches_and_other_cpu();
esp_rom_printf(DRAM_STR("Send signal: [Slave ready]!\n"));
while (isr_iram_cnt <= TEST_IRAM_TRANS_NUM) {
esp_rom_delay_us(10);
}
spi_flash_enable_interrupts_caches_and_other_cpu();
if (iram_test_fail) {
TEST_FAIL();
}
free(slave_iram_send);
free(slave_iram_recv);
free(slave_iram_exp);
spi_slave_free(TEST_SPI_HOST);
}
TEST_CASE_MULTIPLE_DEVICES("SPI_Slave: Test_ISR_IRAM_disable_cache", "[spi_ms]", test_slave_iram_master_normal, test_slave_isr_iram);
static uint32_t isr_trans_cnt, isr_trans_test_fail;
static IRAM_ATTR void test_trans_in_isr_post_trans_cbk(spi_slave_transaction_t *curr_trans)
{
isr_trans_cnt ++;
//first trans is the trigger trans with random data
if (isr_trans_cnt > 1) {
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("slave tx"), curr_trans->tx_buffer, curr_trans->trans_len / 8);
if (memcmp(curr_trans->rx_buffer, curr_trans->user, curr_trans->trans_len / 8)) {
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("slave rx"), curr_trans->rx_buffer, curr_trans->trans_len / 8);
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("slave exp"), curr_trans->user, curr_trans->trans_len / 8);
isr_trans_test_fail = true;
}
curr_trans->tx_buffer = (uint8_t *)curr_trans->tx_buffer + TEST_TRANS_LEN;
curr_trans->rx_buffer = (uint8_t *)curr_trans->rx_buffer + TEST_TRANS_LEN;
curr_trans->user = (uint8_t *)curr_trans->user + TEST_TRANS_LEN;
}
if (isr_trans_cnt <= TEST_IRAM_TRANS_NUM) {
if (ESP_OK == spi_slave_queue_trans_isr(TEST_SPI_HOST, curr_trans)) {
// use `esp_rom_printf` instead `unity_send_signal` because cache is disabled by test
esp_rom_printf(DRAM_STR("Send signal: [Slave ready]!\n"));
} else {
esp_rom_printf(DRAM_STR("SPI Add trans in isr fail, Queue full\n"));
}
}
}
static IRAM_ATTR void spi_slave_trans_in_isr(void)
{
spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
bus_cfg.intr_flags |= ESP_INTR_FLAG_IRAM;
spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
slvcfg.flags = SPI_SLAVE_NO_RETURN_RESULT;
slvcfg.queue_size = 16;
slvcfg.post_trans_cb = test_trans_in_isr_post_trans_cbk;
TEST_ESP_OK(spi_slave_initialize(TEST_SPI_HOST, &bus_cfg, &slvcfg, SPI_DMA_CH_AUTO));
uint8_t *slave_isr_send = heap_caps_aligned_alloc(64, TEST_BUFFER_SZ, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
uint8_t *slave_isr_recv = heap_caps_aligned_alloc(64, TEST_BUFFER_SZ, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
uint8_t *slave_isr_exp = heap_caps_malloc(TEST_BUFFER_SZ, MALLOC_CAP_DEFAULT | MALLOC_CAP_INTERNAL);
test_fill_random_to_buffers_dualboard(1001, slave_isr_exp, slave_isr_send, TEST_BUFFER_SZ);
spi_slave_transaction_t trans_cfg = {
.tx_buffer = slave_isr_send,
.rx_buffer = slave_isr_recv,
.user = slave_isr_exp,
.length = TEST_TRANS_LEN * 8,
};
unity_wait_for_signal("Master ready");
//start a trans by normal API first to trigger spi isr
spi_slave_queue_trans(TEST_SPI_HOST, &trans_cfg, portMAX_DELAY);
spi_flash_disable_interrupts_caches_and_other_cpu();
esp_rom_printf(DRAM_STR("Send signal: [Slave ready]!\n"));
while (isr_trans_cnt <= TEST_IRAM_TRANS_NUM) {
esp_rom_delay_us(10);
}
spi_flash_enable_interrupts_caches_and_other_cpu();
if (isr_trans_test_fail) {
TEST_FAIL();
}
free(slave_isr_send);
free(slave_isr_recv);
free(slave_isr_exp);
spi_slave_free(TEST_SPI_HOST);
}
TEST_CASE_MULTIPLE_DEVICES("SPI_Slave: Test_Queue_Trans_in_ISR", "[spi_ms]", test_slave_iram_master_normal, spi_slave_trans_in_isr);
spi_slave_transaction_t dummy_trans[2];
static uint32_t queue_reset_isr_trans_cnt, test_queue_reset_isr_fail;
static IRAM_ATTR void test_queue_reset_in_isr_post_trans_cbk(spi_slave_transaction_t *curr_trans)
{
queue_reset_isr_trans_cnt ++;
//first trans is the trigger trans with random data
if (queue_reset_isr_trans_cnt > 1) {
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("slave tx"), curr_trans->tx_buffer, curr_trans->length / 8);
if (memcmp(curr_trans->rx_buffer, curr_trans->user, curr_trans->length / 8)) {
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("slave rx"), curr_trans->rx_buffer, curr_trans->length / 8);
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("slave exp"), curr_trans->user, curr_trans->length / 8);
test_queue_reset_isr_fail = true;
}
if (queue_reset_isr_trans_cnt > 4) {
// add some confusing transactions
spi_slave_queue_trans_isr(TEST_SPI_HOST, &dummy_trans[0]);
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("Queue Hacked hahhhhh..."), dummy_trans[0].tx_buffer, dummy_trans[0].length / 8);
spi_slave_queue_trans_isr(TEST_SPI_HOST, &dummy_trans[1]);
ESP_LOG_BUFFER_HEX_ISR(DRAM_STR("Queue Hacked hahhhhh..."), dummy_trans[1].tx_buffer, dummy_trans[1].length / 8);
if (ESP_OK == spi_slave_queue_reset_isr(TEST_SPI_HOST)) {
esp_rom_printf(DRAM_STR("Queue reset done, continue\n"));
}
}
curr_trans->tx_buffer = (uint8_t *)curr_trans->tx_buffer + TEST_TRANS_LEN;
curr_trans->rx_buffer = (uint8_t *)curr_trans->rx_buffer + TEST_TRANS_LEN;
curr_trans->user = (uint8_t *)curr_trans->user + TEST_TRANS_LEN;
}
if (queue_reset_isr_trans_cnt <= TEST_IRAM_TRANS_NUM) {
if (ESP_OK == spi_slave_queue_trans_isr(TEST_SPI_HOST, curr_trans)) {
// use `esp_rom_printf` instead `unity_send_signal` because cache is disabled by test
esp_rom_printf(DRAM_STR("Send signal: [Slave ready]!\n"));
} else {
esp_rom_printf(DRAM_STR("SPI Add trans in isr fail, Queue full\n"));
}
}
}
static IRAM_ATTR void spi_queue_reset_in_isr(void)
{
spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
bus_cfg.intr_flags |= ESP_INTR_FLAG_IRAM;
spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
slvcfg.flags = SPI_SLAVE_NO_RETURN_RESULT;
slvcfg.queue_size = 16;
slvcfg.post_trans_cb = test_queue_reset_in_isr_post_trans_cbk;
TEST_ESP_OK(spi_slave_initialize(TEST_SPI_HOST, &bus_cfg, &slvcfg, SPI_DMA_CH_AUTO));
uint8_t *slave_isr_send = heap_caps_aligned_alloc(64, TEST_BUFFER_SZ, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
uint8_t *slave_isr_recv = heap_caps_aligned_alloc(64, TEST_BUFFER_SZ, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
uint8_t *dummy_data = heap_caps_aligned_alloc(64, 64 * 2, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
uint8_t *slave_isr_exp = heap_caps_malloc(TEST_BUFFER_SZ, MALLOC_CAP_DEFAULT | MALLOC_CAP_INTERNAL);
test_fill_random_to_buffers_dualboard(1001, slave_isr_exp, slave_isr_send, TEST_BUFFER_SZ);
test_fill_random_to_buffers_dualboard(1001, dummy_data, dummy_data + 64, 64);
spi_slave_transaction_t trans_cfg = {
.tx_buffer = slave_isr_send,
.rx_buffer = slave_isr_recv,
.user = slave_isr_exp,
.length = TEST_TRANS_LEN * 8,
};
unity_wait_for_signal("Master ready");
queue_reset_isr_trans_cnt = 0;
test_queue_reset_isr_fail = 0;
for (uint8_t i = 0; i < 2; i++) {
dummy_trans[i].tx_buffer = dummy_data + i * 64;
dummy_trans[i].rx_buffer = dummy_data + i * 64;
dummy_trans[i].user = dummy_data + i * 64;
dummy_trans[i].length = 64 * 8;
}
// start a trans by normal API first to trigger spi isr
spi_slave_queue_trans(TEST_SPI_HOST, &trans_cfg, portMAX_DELAY);
spi_flash_disable_interrupts_caches_and_other_cpu();
esp_rom_printf(DRAM_STR("Send signal: [Slave ready]!\n"));
while (queue_reset_isr_trans_cnt <= TEST_IRAM_TRANS_NUM) {
esp_rom_delay_us(10);
}
spi_flash_enable_interrupts_caches_and_other_cpu();
if (test_queue_reset_isr_fail) {
TEST_FAIL();
}
free(slave_isr_send);
free(slave_isr_recv);
free(slave_isr_exp);
spi_slave_free(TEST_SPI_HOST);
}
TEST_CASE_MULTIPLE_DEVICES("SPI_Slave: Test_Queue_Reset_in_ISR", "[spi_ms]", test_slave_iram_master_normal, spi_queue_reset_in_isr);
#endif // CONFIG_SPI_SLAVE_ISR_IN_IRAM
#if (SOC_CPU_CORES_NUM > 1) && (!CONFIG_FREERTOS_UNICORE)
#define TEST_ISR_CNT 100
static void test_slave_isr_core_setup_cbk(spi_slave_transaction_t *curr_trans)
{
*((int *)curr_trans->user) += esp_cpu_get_core_id();
}
TEST_CASE("test_slave_isr_pin_to_core", "[spi]")
{
uint32_t slave_send;
uint32_t slave_recive;
uint32_t slave_expect;
spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
slvcfg.post_setup_cb = test_slave_isr_core_setup_cbk;
spi_slave_transaction_t trans_cfg = {
.tx_buffer = &slave_send,
.rx_buffer = &slave_recive,
.user = &slave_expect,
.length = sizeof(uint32_t) * 8,
};
slave_expect = 0;
for (int i = 0; i < TEST_ISR_CNT; i++) {
TEST_ESP_OK(spi_slave_initialize(TEST_SPI_HOST, &buscfg, &slvcfg, SPI_DMA_DISABLED));
TEST_ESP_OK(spi_slave_queue_trans(TEST_SPI_HOST, &trans_cfg, portMAX_DELAY));
TEST_ESP_OK(spi_slave_free(TEST_SPI_HOST));
}
printf("Test Slave ISR Not Assign: %d : %ld\n", TEST_ISR_CNT, slave_expect);
// by default the esp_intr_alloc is called on ESP_MAIN_TASK_AFFINITY_CPU0 now
TEST_ASSERT_EQUAL_UINT32(0, slave_expect);
//-------------------------------------CPU1---------------------------------------
buscfg.isr_cpu_id = ESP_INTR_CPU_AFFINITY_1;
slave_expect = 0;
for (int i = 0; i < TEST_ISR_CNT; i++) {
TEST_ESP_OK(spi_slave_initialize(TEST_SPI_HOST, &buscfg, &slvcfg, SPI_DMA_DISABLED));
TEST_ESP_OK(spi_slave_queue_trans(TEST_SPI_HOST, &trans_cfg, portMAX_DELAY));
vTaskDelay(1); // Waiting ISR on core 1 to be done.
TEST_ESP_OK(spi_slave_free(TEST_SPI_HOST));
}
printf("Test Slave ISR Assign CPU1: %d : %ld\n", TEST_ISR_CNT, slave_expect);
TEST_ASSERT_EQUAL_UINT32(TEST_ISR_CNT, slave_expect);
}
#endif