esp-idf/components/esp_driver_spi/test_apps/master/main/test_spi_master.c

1762 wiersze
76 KiB
C

/*
* SPDX-FileCopyrightText: 2021-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/*
Tests for the spi_master device driver
*/
#include "sdkconfig.h"
#include "driver/spi_master.h"
#include "driver/spi_slave.h"
#include "driver/gpio.h"
#include "soc/gpio_periph.h"
#include "soc/spi_periph.h"
#include "soc/soc_memory_layout.h"
#include "esp_private/cache_utils.h"
#include "esp_private/spi_common_internal.h"
#include "esp_private/esp_clk.h"
#include "esp_heap_caps.h"
#include "esp_clk_tree.h"
#include "esp_log.h"
#include "test_utils.h"
#include "test_spi_utils.h"
#include "spi_performance.h"
const static char TAG[] = "test_spi";
// There is no input-only pin except on esp32 and esp32s2
#define TEST_SOC_HAS_INPUT_ONLY_PINS (CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2)
static void check_spi_pre_n_for(spi_clock_source_t clock_source, int clk, int pre, int n)
{
spi_device_handle_t handle;
spi_device_interface_config_t devcfg = {
.command_bits = 0,
.address_bits = 0,
.dummy_bits = 0,
.clock_source = clock_source,
.clock_speed_hz = clk,
.duty_cycle_pos = 128,
.mode = 0,
.spics_io_num = PIN_NUM_CS,
.queue_size = 3
};
char sendbuf[16] = "";
spi_transaction_t t;
memset(&t, 0, sizeof(t));
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle));
t.length = 16 * 8;
t.tx_buffer = sendbuf;
TEST_ESP_OK(spi_device_transmit(handle, &t));
spi_dev_t *hw = spi_periph_signal[TEST_SPI_HOST].hw;
int real_freq_khz;
spi_device_get_actual_freq(handle, &real_freq_khz);
printf("Checking clk rate %dHz. expect pre %d n %d, got pre %d n %d, real_freq %d kHZ\n", clk, pre, n, hw->clock.clkdiv_pre + 1, hw->clock.clkcnt_n + 1, real_freq_khz);
TEST_ASSERT(hw->clock.clkcnt_n + 1 == n);
TEST_ASSERT(hw->clock.clkdiv_pre + 1 == pre);
TEST_ESP_OK(spi_bus_remove_device(handle));
}
/**
* In this test, SPI Clock Calculation:
* Fspi = Fclk_spi_mst / (pre + n)
*
* For each item:
* {freq, pre, n}
*/
#define TEST_CLK_TIMES 8
struct test_clk_param_group_t {
uint32_t clk_param_80m[TEST_CLK_TIMES][3];
uint32_t clk_param_48m[TEST_CLK_TIMES][3];
uint32_t clk_param_40m[TEST_CLK_TIMES][3];
uint32_t clk_param_32m[TEST_CLK_TIMES][3];
uint32_t clk_param_17m[TEST_CLK_TIMES][3];
uint32_t clk_param_7m[TEST_CLK_TIMES][3];
} test_clk_param = {
{{1, SOC_SPI_MAX_PRE_DIVIDER, 64}, {100000, 16, 50}, {333333, 4, 60}, {800000, 2, 50}, {900000, 2, 44}, {8000000, 1, 10}, {20000000, 1, 4}, {26000000, 1, 3} },
{{1, SOC_SPI_MAX_PRE_DIVIDER, 64}, {100000, 8, 60}, {333333, 3, 48}, {800000, 1, 60}, {5000000, 1, 10}, {12000000, 1, 4}, {18000000, 1, 3}, {26000000, 1, 2} },
{{1, SOC_SPI_MAX_PRE_DIVIDER, 64}, {100000, 8, 50}, {333333, 2, 60}, {800000, 1, 50}, {900000, 1, 44}, {8000000, 1, 5}, {10000000, 1, 4}, {20000000, 1, 2} },
{{1, SOC_SPI_MAX_PRE_DIVIDER, 64}, {100000, 5, 64}, {333333, 2, 48}, {800000, 1, 40}, {2000000, 1, 16}, {8000000, 1, 4}, {15000000, 1, 2}, {20000000, 1, 2} },
{{1, SOC_SPI_MAX_PRE_DIVIDER, 64}, {100000, 5, 35}, {333333, 1, 53}, {800000, 1, 22}, {900000, 1, 19}, {8000000, 1, 2}, {10000000, 1, 2}, {15000000, 1, 1} },
{{1, SOC_SPI_MAX_PRE_DIVIDER, 64}, {100000, 2, 35}, {333333, 1, 21}, {800000, 1, 9}, {900000, 1, 8}, {1100000, 1, 6}, {4000000, 1, 2,}, {7000000, 1, 1} },
};
TEST_CASE("SPI Master clockdiv calculation routines", "[spi]")
{
spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
uint32_t clock_source_hz;
// Test main clock source
#if SOC_SPI_SUPPORT_CLK_PLL_F80M
esp_clk_tree_src_get_freq_hz(SPI_CLK_SRC_PLL_F80M, ESP_CLK_TREE_SRC_FREQ_PRECISION_APPROX, &clock_source_hz);
printf("\nTest clock source PLL_80M = %ld\n", clock_source_hz);
TEST_ASSERT((80 * 1000 * 1000) == clock_source_hz);
for (int i = 0; i < TEST_CLK_TIMES; i++) {
check_spi_pre_n_for(SPI_CLK_SRC_PLL_F80M, test_clk_param.clk_param_80m[i][0], test_clk_param.clk_param_80m[i][1], test_clk_param.clk_param_80m[i][2]);
}
#endif
#if SOC_SPI_SUPPORT_CLK_PLL_F48M
esp_clk_tree_src_get_freq_hz(SPI_CLK_SRC_PLL_F48M, ESP_CLK_TREE_SRC_FREQ_PRECISION_APPROX, &clock_source_hz);
printf("\nTest clock source PLL_48M = %ld\n", clock_source_hz);
TEST_ASSERT((48 * 1000 * 1000) == clock_source_hz);
for (int i = 0; i < TEST_CLK_TIMES; i++) {
check_spi_pre_n_for(SPI_CLK_SRC_PLL_F48M, test_clk_param.clk_param_48m[i][0], test_clk_param.clk_param_48m[i][1], test_clk_param.clk_param_48m[i][2]);
}
#endif
#if SOC_SPI_SUPPORT_CLK_AHB
esp_clk_tree_src_get_freq_hz(SPI_CLK_SRC_AHB, ESP_CLK_TREE_SRC_FREQ_PRECISION_APPROX, &clock_source_hz);
printf("\nTest clock source AHB = %ld\n", clock_source_hz);
TEST_ASSERT((48 * 1000 * 1000) == clock_source_hz);
for (int i = 0; i < TEST_CLK_TIMES; i++) {
check_spi_pre_n_for(SPI_CLK_SRC_AHB, test_clk_param.clk_param_48m[i][0], test_clk_param.clk_param_48m[i][1], test_clk_param.clk_param_48m[i][2]);
}
#endif
#if SOC_SPI_SUPPORT_CLK_PLL_F40M
esp_clk_tree_src_get_freq_hz(SPI_CLK_SRC_PLL_F40M, ESP_CLK_TREE_SRC_FREQ_PRECISION_APPROX, &clock_source_hz);
printf("\nTest clock source PLL_40M = %ld\n", clock_source_hz);
TEST_ASSERT((40 * 1000 * 1000) == clock_source_hz);
for (int i = 0; i < TEST_CLK_TIMES; i++) {
check_spi_pre_n_for(SPI_CLK_SRC_PLL_F40M, test_clk_param.clk_param_40m[i][0], test_clk_param.clk_param_40m[i][1], test_clk_param.clk_param_40m[i][2]);
}
#endif
#if SOC_SPI_SUPPORT_CLK_APB
esp_clk_tree_src_get_freq_hz(SPI_CLK_SRC_APB, ESP_CLK_TREE_SRC_FREQ_PRECISION_APPROX, &clock_source_hz);
printf("\nTest clock source APB = %ld\n", clock_source_hz);
TEST_ASSERT((80 * 1000 * 1000) == clock_source_hz);
for (int i = 0; i < TEST_CLK_TIMES; i++) {
check_spi_pre_n_for(SPI_CLK_SRC_APB, test_clk_param.clk_param_80m[i][0], test_clk_param.clk_param_80m[i][1], test_clk_param.clk_param_80m[i][2]);
}
#endif
// Test XTAL clock source
#if SOC_SPI_SUPPORT_CLK_XTAL
esp_clk_tree_src_get_freq_hz(SPI_CLK_SRC_XTAL, ESP_CLK_TREE_SRC_FREQ_PRECISION_APPROX, &clock_source_hz);
printf("\nTest clock source XTAL = %ld\n", clock_source_hz);
if ((40 * 1000 * 1000) == clock_source_hz) {
for (int i = 0; i < TEST_CLK_TIMES; i++) {
check_spi_pre_n_for(SPI_CLK_SRC_XTAL, test_clk_param.clk_param_40m[i][0], test_clk_param.clk_param_40m[i][1], test_clk_param.clk_param_40m[i][2]);
}
}
if ((32 * 1000 * 1000) == clock_source_hz) {
for (int i = 0; i < TEST_CLK_TIMES; i++) {
check_spi_pre_n_for(SPI_CLK_SRC_XTAL, test_clk_param.clk_param_32m[i][0], test_clk_param.clk_param_32m[i][1], test_clk_param.clk_param_32m[i][2]);
}
}
#endif
// Test RC fast osc clock source
#if SOC_SPI_SUPPORT_CLK_RC_FAST
esp_clk_tree_src_get_freq_hz(SPI_CLK_SRC_RC_FAST, ESP_CLK_TREE_SRC_FREQ_PRECISION_APPROX, &clock_source_hz);
printf("\nTest clock source RC_FAST = %ld\n", clock_source_hz);
if ((17500000) == clock_source_hz) {
for (int i = 0; i < TEST_CLK_TIMES; i++) {
check_spi_pre_n_for(SPI_CLK_SRC_RC_FAST, test_clk_param.clk_param_17m[i][0], test_clk_param.clk_param_17m[i][1], test_clk_param.clk_param_17m[i][2]);
}
}
if ((7000000) == clock_source_hz) {
for (int i = 0; i < TEST_CLK_TIMES; i++) {
check_spi_pre_n_for(SPI_CLK_SRC_RC_FAST, test_clk_param.clk_param_7m[i][0], test_clk_param.clk_param_7m[i][1], test_clk_param.clk_param_7m[i][2]);
}
}
#endif
TEST_ESP_OK(spi_bus_free(TEST_SPI_HOST));
}
static spi_device_handle_t setup_spi_bus_loopback(int clkspeed, bool dma)
{
spi_bus_config_t buscfg = {
.mosi_io_num = PIN_NUM_MOSI,
.miso_io_num = PIN_NUM_MOSI,
.sclk_io_num = PIN_NUM_CLK,
.quadwp_io_num = -1,
.quadhd_io_num = -1,
.max_transfer_sz = 4096 * 3
};
spi_device_interface_config_t devcfg = {
.command_bits = 0,
.address_bits = 0,
.dummy_bits = 0,
.clock_speed_hz = clkspeed,
.duty_cycle_pos = 128,
.mode = 0,
.spics_io_num = PIN_NUM_CS,
.queue_size = 3,
};
spi_device_handle_t handle;
TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, dma ? SPI_DMA_CH_AUTO : 0));
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle));
//connect MOSI to two devices breaks the output, fix it.
spitest_gpio_output_sel(PIN_NUM_MOSI, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
printf("Bus/dev inited.\n");
return handle;
}
static int spi_test(spi_device_handle_t handle, int num_bytes)
{
esp_err_t ret;
int x;
bool success = true;
srand(num_bytes);
char *sendbuf = heap_caps_malloc((num_bytes + 3) & (~3), MALLOC_CAP_DMA);
char *recvbuf = heap_caps_malloc((num_bytes + 3) & (~3), MALLOC_CAP_DMA);
for (x = 0; x < num_bytes; x++) {
sendbuf[x] = rand() & 0xff;
recvbuf[x] = 0x55;
}
spi_transaction_t t;
memset(&t, 0, sizeof(t));
t.length = num_bytes * 8;
t.tx_buffer = sendbuf;
t.rx_buffer = recvbuf;
t.addr = 0xA00000000000000FL;
t.cmd = 0x55;
printf("Transmitting %d bytes...\n", num_bytes);
ret = spi_device_transmit(handle, &t);
TEST_ASSERT(ret == ESP_OK);
srand(num_bytes);
for (x = 0; x < num_bytes; x++) {
if (sendbuf[x] != (rand() & 0xff)) {
printf("Huh? Sendbuf corrupted at byte %d\n", x);
TEST_ASSERT(0);
}
if (sendbuf[x] != recvbuf[x]) {
break;
}
}
if (x != num_bytes) {
int from = x - 16;
if (from < 0) {
from = 0;
}
success = false;
printf("Error at %d! Sent vs recved: (starting from %d)\n", x, from);
for (int i = 0; i < 32; i++) {
if (i + from < num_bytes) {
printf("%02X ", sendbuf[from + i]);
}
}
printf("\n");
for (int i = 0; i < 32; i++) {
if (i + from < num_bytes) {
printf("%02X ", recvbuf[from + i]);
}
}
printf("\n");
}
if (success) {
printf("Success!\n");
}
free(sendbuf);
free(recvbuf);
return success;
}
TEST_CASE("SPI Master test", "[spi]")
{
bool success = true;
printf("Testing bus at 80KHz\n");
spi_device_handle_t handle = setup_spi_bus_loopback(80000, true);
success &= spi_test(handle, 16); //small
success &= spi_test(handle, 21); //small, unaligned
success &= spi_test(handle, 36); //aligned
success &= spi_test(handle, 128); //aligned
success &= spi_test(handle, 129); //unaligned
success &= spi_test(handle, 4096 - 2); //multiple descs, edge case 1
success &= spi_test(handle, 4096 - 1); //multiple descs, edge case 2
success &= spi_test(handle, 4096 * 3); //multiple descs
master_free_device_bus(handle);
TEST_ASSERT(success);
printf("Testing bus at 80KHz, non-DMA\n");
handle = setup_spi_bus_loopback(80000, false);
success &= spi_test(handle, 4); //aligned
success &= spi_test(handle, 16); //small
success &= spi_test(handle, 21); //small, unaligned
success &= spi_test(handle, 32); //small
success &= spi_test(handle, 47); //small, unaligned
success &= spi_test(handle, 63); //small
success &= spi_test(handle, 64); //small, unaligned
master_free_device_bus(handle);
TEST_ASSERT(success);
printf("Testing bus at 20MHz\n");
handle = setup_spi_bus_loopback(20000000, true);
success &= spi_test(handle, 128); //DMA, aligned
success &= spi_test(handle, 4096 * 3); //DMA, multiple descs
master_free_device_bus(handle);
TEST_ASSERT(success);
printf("Testing bus at 900KHz\n");
handle = setup_spi_bus_loopback(9000000, true);
success &= spi_test(handle, 128); //DMA, aligned
success &= spi_test(handle, 4096 * 3); //DMA, multiple descs
master_free_device_bus(handle);
TEST_ASSERT(success);
}
TEST_CASE("SPI Master test, interaction of multiple devs", "[spi]")
{
esp_err_t ret;
bool success = true;
spi_device_interface_config_t devcfg = {
.command_bits = 0,
.address_bits = 0,
.dummy_bits = 0,
.clock_speed_hz = 1000000,
.duty_cycle_pos = 128,
.mode = 0,
.spics_io_num = PIN_NUM_CS,
.queue_size = 3,
};
spi_device_handle_t handle1 = setup_spi_bus_loopback(80000, true);
spi_device_handle_t handle2;
spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle2);
printf("Sending to dev 1\n");
success &= spi_test(handle1, 7);
printf("Sending to dev 1\n");
success &= spi_test(handle1, 15);
printf("Sending to dev 2\n");
success &= spi_test(handle2, 15);
printf("Sending to dev 1\n");
success &= spi_test(handle1, 32);
printf("Sending to dev 2\n");
success &= spi_test(handle2, 32);
printf("Sending to dev 1\n");
success &= spi_test(handle1, 63);
printf("Sending to dev 2\n");
success &= spi_test(handle2, 63);
printf("Sending to dev 1\n");
success &= spi_test(handle1, 5000);
printf("Sending to dev 2\n");
success &= spi_test(handle2, 5000);
ret = spi_bus_remove_device(handle2);
TEST_ASSERT(ret == ESP_OK);
master_free_device_bus(handle1);
TEST_ASSERT(success);
}
#if TEST_SOC_HAS_INPUT_ONLY_PINS //There is no input-only pin, so this test could be ignored.
static esp_err_t test_master_pins(int mosi, int miso, int sclk, int cs)
{
esp_err_t ret;
spi_bus_config_t cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
cfg.mosi_io_num = mosi;
cfg.miso_io_num = miso;
cfg.sclk_io_num = sclk;
spi_device_interface_config_t master_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
master_cfg.spics_io_num = cs;
ret = spi_bus_initialize(TEST_SPI_HOST, &cfg, SPI_DMA_CH_AUTO);
if (ret != ESP_OK) {
return ret;
}
spi_device_handle_t spi;
ret = spi_bus_add_device(TEST_SPI_HOST, &master_cfg, &spi);
if (ret != ESP_OK) {
spi_bus_free(TEST_SPI_HOST);
return ret;
}
master_free_device_bus(spi);
return ESP_OK;
}
static esp_err_t test_slave_pins(int mosi, int miso, int sclk, int cs)
{
esp_err_t ret;
spi_bus_config_t cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
cfg.mosi_io_num = mosi;
cfg.miso_io_num = miso;
cfg.sclk_io_num = sclk;
spi_slave_interface_config_t slave_cfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
slave_cfg.spics_io_num = cs;
ret = spi_slave_initialize(TEST_SLAVE_HOST, &cfg, &slave_cfg, SPI_DMA_CH_AUTO);
if (ret != ESP_OK) {
return ret;
}
spi_slave_free(TEST_SLAVE_HOST);
return ESP_OK;
}
TEST_CASE("spi placed on input-only pins", "[spi]")
{
TEST_ESP_OK(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
TEST_ASSERT(test_master_pins(INPUT_ONLY_PIN, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS) != ESP_OK);
TEST_ESP_OK(test_master_pins(PIN_NUM_MOSI, INPUT_ONLY_PIN, PIN_NUM_CLK, PIN_NUM_CS));
TEST_ASSERT(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, INPUT_ONLY_PIN, PIN_NUM_CS) != ESP_OK);
TEST_ASSERT(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, INPUT_ONLY_PIN) != ESP_OK);
TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
TEST_ESP_OK(test_slave_pins(INPUT_ONLY_PIN, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
TEST_ASSERT(test_slave_pins(PIN_NUM_MOSI, INPUT_ONLY_PIN, PIN_NUM_CLK, PIN_NUM_CS) != ESP_OK);
TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, INPUT_ONLY_PIN, PIN_NUM_CS));
TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, INPUT_ONLY_PIN));
}
//There is no input-only pin except on esp32 and esp32s2, so this test could be ignored.
#endif //#if TEST_SOC_HAS_INPUT_ONLY_PINS
TEST_CASE("spi bus setting with different pin configs", "[spi]")
{
spi_bus_config_t cfg;
uint32_t flags_o;
uint32_t flags_expected;
ESP_LOGI(TAG, "test 6 iomux output pins...");
flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_IOMUX_PINS | SPICOMMON_BUSFLAG_QUAD;
cfg = (spi_bus_config_t) {
.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
.max_transfer_sz = 8, .flags = flags_expected
};
TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL_HEX32(flags_expected, flags_o);
TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
TEST_ASSERT_EQUAL_HEX32(flags_expected, flags_o);
ESP_LOGI(TAG, "test 4 iomux output pins...");
flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_IOMUX_PINS | SPICOMMON_BUSFLAG_DUAL;
cfg = (spi_bus_config_t) {
.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
.max_transfer_sz = 8, .flags = flags_expected
};
TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL_HEX32(flags_expected, flags_o);
TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
TEST_ASSERT_EQUAL_HEX32(flags_expected, flags_o);
ESP_LOGI(TAG, "test 6 output pins...");
flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_QUAD | SPICOMMON_BUSFLAG_GPIO_PINS;
//swap MOSI and MISO
cfg = (spi_bus_config_t) {
.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
.max_transfer_sz = 8, .flags = flags_expected
};
TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL_HEX32(flags_expected, flags_o);
TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
TEST_ASSERT_EQUAL_HEX32(flags_expected, flags_o);
ESP_LOGI(TAG, "test 4 output pins...");
flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_DUAL | SPICOMMON_BUSFLAG_GPIO_PINS;
//swap MOSI and MISO
cfg = (spi_bus_config_t) {
.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
.max_transfer_sz = 8, .flags = flags_expected
};
TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL_HEX32(flags_expected, flags_o);
TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
TEST_ASSERT_EQUAL_HEX32(flags_expected, flags_o);
#if TEST_SOC_HAS_INPUT_ONLY_PINS //There is no input-only pin on esp32c3 and esp32s3, so this test could be ignored.
ESP_LOGI(TAG, "test master 5 output pins and MOSI on input-only pin...");
flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD | SPICOMMON_BUSFLAG_GPIO_PINS;
cfg = (spi_bus_config_t) {
.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = INPUT_ONLY_PIN, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
.max_transfer_sz = 8, .flags = flags_expected
};
TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL_HEX32(flags_expected, flags_o);
ESP_LOGI(TAG, "test slave 5 output pins and MISO on input-only pin...");
flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD | SPICOMMON_BUSFLAG_GPIO_PINS;
cfg = (spi_bus_config_t) {
.mosi_io_num = INPUT_ONLY_PIN, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
.max_transfer_sz = 8, .flags = flags_expected
};
TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
TEST_ASSERT_EQUAL_HEX32(flags_expected, flags_o);
ESP_LOGI(TAG, "test master 3 output pins and MOSI on input-only pin...");
flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_GPIO_PINS;
cfg = (spi_bus_config_t) {
.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = INPUT_ONLY_PIN, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
.max_transfer_sz = 8, .flags = flags_expected
};
TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL_HEX32(flags_expected, flags_o);
ESP_LOGI(TAG, "test slave 3 output pins and MISO on input-only pin...");
flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_GPIO_PINS;
cfg = (spi_bus_config_t) {
.mosi_io_num = INPUT_ONLY_PIN, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
.max_transfer_sz = 8, .flags = flags_expected
};
TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
TEST_ASSERT_EQUAL_HEX32(flags_expected, flags_o);
//There is no input-only pin on esp32c3 and esp32s3, so this test could be ignored.
#endif //#if TEST_SOC_HAS_INPUT_ONLY_PINS
ESP_LOGI(TAG, "check native flag for 6 output pins...");
flags_expected = SPICOMMON_BUSFLAG_IOMUX_PINS;
//swap MOSI and MISO
cfg = (spi_bus_config_t) {
.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
.max_transfer_sz = 8, .flags = flags_expected
};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
ESP_LOGI(TAG, "check native flag for 4 output pins...");
flags_expected = SPICOMMON_BUSFLAG_IOMUX_PINS;
//swap MOSI and MISO
cfg = (spi_bus_config_t) {
.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
.max_transfer_sz = 8, .flags = flags_expected
};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
#if TEST_SOC_HAS_INPUT_ONLY_PINS //There is no input-only pin on esp32c3 and esp32s3, so this test could be ignored.
ESP_LOGI(TAG, "check dual flag for master 5 output pins and MISO/MOSI on input-only pin...");
flags_expected = SPICOMMON_BUSFLAG_DUAL | SPICOMMON_BUSFLAG_GPIO_PINS;
cfg = (spi_bus_config_t) {
.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = INPUT_ONLY_PIN, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
.max_transfer_sz = 8, .flags = flags_expected
};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
cfg = (spi_bus_config_t) {
.mosi_io_num = INPUT_ONLY_PIN, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
.max_transfer_sz = 8, .flags = flags_expected
};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
ESP_LOGI(TAG, "check dual flag for master 3 output pins and MISO/MOSI on input-only pin...");
flags_expected = SPICOMMON_BUSFLAG_DUAL | SPICOMMON_BUSFLAG_GPIO_PINS;
cfg = (spi_bus_config_t) {
.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = INPUT_ONLY_PIN, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
.max_transfer_sz = 8, .flags = flags_expected
};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
cfg = (spi_bus_config_t) {
.mosi_io_num = INPUT_ONLY_PIN, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
.max_transfer_sz = 8, .flags = flags_expected
};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
//There is no input-only pin on esp32c3 and esp32s3, so this test could be ignored.
#endif //#if TEST_SOC_HAS_INPUT_ONLY_PINS
ESP_LOGI(TAG, "check sclk flag...");
flags_expected = SPICOMMON_BUSFLAG_SCLK;
cfg = (spi_bus_config_t) {
.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = -1, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
.max_transfer_sz = 8, .flags = flags_expected
};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
ESP_LOGI(TAG, "check mosi flag...");
flags_expected = SPICOMMON_BUSFLAG_MOSI;
cfg = (spi_bus_config_t) {
.mosi_io_num = -1, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
.max_transfer_sz = 8, .flags = flags_expected
};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
ESP_LOGI(TAG, "check miso flag...");
flags_expected = SPICOMMON_BUSFLAG_MISO;
cfg = (spi_bus_config_t) {
.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = -1, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
.max_transfer_sz = 8, .flags = flags_expected
};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
ESP_LOGI(TAG, "check quad flag...");
flags_expected = SPICOMMON_BUSFLAG_QUAD;
cfg = (spi_bus_config_t) {
.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
.max_transfer_sz = 8, .flags = flags_expected
};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
cfg = (spi_bus_config_t) {
.mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = -1,
.max_transfer_sz = 8, .flags = flags_expected
};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
}
TEST_CASE("SPI Master no response when switch from host1 (SPI2) to host2 (SPI3)", "[spi]")
{
//spi config
spi_bus_config_t bus_config;
spi_device_interface_config_t device_config;
spi_device_handle_t spi;
spi_host_device_t host;
memset(&bus_config, 0, sizeof(spi_bus_config_t));
memset(&device_config, 0, sizeof(spi_device_interface_config_t));
bus_config.miso_io_num = -1;
bus_config.mosi_io_num = PIN_NUM_MOSI;
bus_config.sclk_io_num = PIN_NUM_CLK;
bus_config.quadwp_io_num = -1;
bus_config.quadhd_io_num = -1;
device_config.clock_speed_hz = 50000;
device_config.mode = 0;
device_config.spics_io_num = -1;
device_config.queue_size = 1;
device_config.flags = SPI_DEVICE_TXBIT_LSBFIRST | SPI_DEVICE_RXBIT_LSBFIRST;
struct spi_transaction_t transaction = {
.flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA,
.length = 16,
.rx_buffer = NULL,
.tx_data = {0x04, 0x00}
};
//initialize for first host
host = TEST_SPI_HOST;
TEST_ESP_OK(spi_bus_initialize(host, &bus_config, SPI_DMA_CH_AUTO));
TEST_ESP_OK(spi_bus_add_device(host, &device_config, &spi));
printf("before first xmit\n");
TEST_ESP_OK(spi_device_transmit(spi, &transaction));
printf("after first xmit\n");
TEST_ESP_OK(spi_bus_remove_device(spi));
TEST_ESP_OK(spi_bus_free(host));
//for second host and failed before
host = TEST_SLAVE_HOST;
TEST_ESP_OK(spi_bus_initialize(host, &bus_config, SPI_DMA_CH_AUTO));
TEST_ESP_OK(spi_bus_add_device(host, &device_config, &spi));
printf("before second xmit\n");
// the original version (bit mis-written) stucks here.
TEST_ESP_OK(spi_device_transmit(spi, &transaction));
// test case success when see this.
printf("after second xmit\n");
TEST_ESP_OK(spi_bus_remove_device(spi));
TEST_ESP_OK(spi_bus_free(host));
}
DRAM_ATTR static uint32_t data_dram[80] = {0};
//force to place in code area.
static const uint8_t data_drom[320 + 3] = {
0xD8, 0xD1, 0x0A, 0xB8, 0xCE, 0x67, 0x1B, 0x11, 0x17, 0xA0, 0xDA, 0x89, 0x55, 0xC1, 0x40, 0x0F, 0x55, 0xEB, 0xF7, 0xEC, 0xF0, 0x3C, 0x0F, 0x4D, 0x2B, 0x9E, 0xBF, 0xCD, 0x57, 0x2C, 0x48, 0x1A,
0x8B, 0x47, 0xC5, 0x01, 0x0C, 0x05, 0x80, 0x30, 0xF4, 0xEA, 0xE5, 0x92, 0x56, 0x97, 0x98, 0x78, 0x21, 0x34, 0xA1, 0xBC, 0xAE, 0x93, 0x7E, 0x96, 0x08, 0xE6, 0x54, 0x6A, 0x6C, 0x67, 0xCF, 0x58,
0xEE, 0x15, 0xA8, 0xB6, 0x32, 0x8C, 0x85, 0xF7, 0xE9, 0x88, 0x5E, 0xB1, 0x76, 0xE4, 0xB2, 0xC7, 0x0F, 0x57, 0x51, 0x7A, 0x2F, 0xAB, 0x12, 0xC3, 0x37, 0x99, 0x4E, 0x67, 0x75, 0x28, 0xE4, 0x1D,
0xF8, 0xBA, 0x22, 0xCB, 0xA1, 0x18, 0x4C, 0xAB, 0x5F, 0xC9, 0xF3, 0xA2, 0x39, 0x92, 0x44, 0xE6, 0x7B, 0xE3, 0xD0, 0x16, 0xC5, 0xC2, 0xCB, 0xD9, 0xC0, 0x7F, 0x06, 0xBF, 0x3E, 0xCE, 0xE1, 0x26,
0xD5, 0x3C, 0xAD, 0x0E, 0xC1, 0xC7, 0x7D, 0x0D, 0x56, 0x85, 0x6F, 0x32, 0xC8, 0x63, 0x8D, 0x12, 0xAB, 0x1E, 0x81, 0x7B, 0xF4, 0xF1, 0xA9, 0xAF, 0xD9, 0x74, 0x60, 0x05, 0x3D, 0xCC, 0x0C, 0x34,
0x11, 0x44, 0xAE, 0x2A, 0x13, 0x2F, 0x04, 0xC3, 0x59, 0xF0, 0x54, 0x07, 0xBA, 0x26, 0xD9, 0xFB, 0x80, 0x95, 0xC0, 0x14, 0xFA, 0x27, 0xEF, 0xD3, 0x58, 0xB8, 0xE4, 0xA2, 0xE3, 0x5E, 0x94, 0xB3,
0xCD, 0x2C, 0x4F, 0xAC, 0x3B, 0xD1, 0xCA, 0xBE, 0x61, 0x71, 0x7B, 0x62, 0xEB, 0xF0, 0xFC, 0xEF, 0x22, 0xB7, 0x3F, 0x56, 0x65, 0x19, 0x61, 0x73, 0x1A, 0x4D, 0xE4, 0x23, 0xE5, 0x3A, 0x91, 0x5C,
0xE6, 0x1B, 0x5F, 0x0E, 0x10, 0x94, 0x7C, 0x9F, 0xCF, 0x75, 0xB3, 0xEB, 0x42, 0x4C, 0xCF, 0xFE, 0xAF, 0x68, 0x62, 0x3F, 0x9A, 0x3C, 0x81, 0x3E, 0x7A, 0x45, 0x92, 0x79, 0x91, 0x4F, 0xFF, 0xDE,
0x25, 0x18, 0x33, 0xB9, 0xA9, 0x3A, 0x3F, 0x1F, 0x4F, 0x4B, 0x5C, 0x71, 0x82, 0x75, 0xB0, 0x1F, 0xE9, 0x98, 0xA3, 0xE2, 0x65, 0xBB, 0xCA, 0x4F, 0xB7, 0x1D, 0x23, 0x43, 0x16, 0x73, 0xBD, 0x83,
0x70, 0x22, 0x7D, 0x0A, 0x6D, 0xD3, 0x77, 0x73, 0xD0, 0xF4, 0x06, 0xB2, 0x19, 0x8C, 0xFF, 0x58, 0xE4, 0xDB, 0xE9, 0xEC, 0x89, 0x6A, 0xF4, 0x0E, 0x67, 0x12, 0xEC, 0x11, 0xD2, 0x1F, 0x8D, 0xD7,
};
TEST_CASE("SPI Master DMA test, TX and RX in different regions", "[spi]")
{
#ifdef CONFIG_SPIRAM
//test psram if enabled
ESP_LOGI(TAG, "testing PSRAM...");
uint32_t *data_malloc = (uint32_t *)heap_caps_malloc(324, MALLOC_CAP_SPIRAM);
TEST_ASSERT(esp_ptr_external_ram(data_malloc));
#else
uint32_t *data_malloc = (uint32_t *)heap_caps_malloc(324, MALLOC_CAP_DMA);
TEST_ASSERT(esp_ptr_in_dram(data_malloc));
#endif
TEST_ASSERT(data_malloc != NULL);
TEST_ASSERT(esp_ptr_in_dram(data_dram));
TEST_ASSERT(esp_ptr_in_drom(data_drom));
ESP_LOGI(TAG, "dram: %p", data_dram);
ESP_LOGI(TAG, "drom: %p, malloc: %p", data_drom, data_malloc);
srand(52);
for (int i = 0; i < 320 / 4; i++) {
data_dram[i] = rand();
data_malloc[i] = rand();
}
esp_err_t ret;
spi_device_handle_t spi;
spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
buscfg.miso_io_num = PIN_NUM_MOSI;
spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
//Initialize the SPI bus
TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
//Attach the LCD to the SPI bus
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
//connect MOSI to two devices breaks the output, fix it.
spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
#define TEST_REGION_SIZE 2
static spi_transaction_t trans[TEST_REGION_SIZE];
int x;
memset(trans, 0, sizeof(trans));
trans[0].length = 320 * 8,
trans[0].tx_buffer = data_malloc + 2;
trans[0].rx_buffer = data_dram;
trans[1].length = 4 * 8,
trans[1].flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA;
uint32_t *ptr = (uint32_t *)trans[1].rx_data;
*ptr = 0x54545454;
ptr = (uint32_t *)trans[1].tx_data;
*ptr = 0xbc124960;
//Queue all transactions.
for (x = 0; x < TEST_REGION_SIZE; x++) {
ESP_LOGI(TAG, "transmitting %d...", x);
ret = spi_device_transmit(spi, &trans[x]);
TEST_ASSERT(ret == ESP_OK);
if (trans[x].flags & SPI_TRANS_USE_RXDATA) {
TEST_ASSERT_EQUAL_HEX8_ARRAY(trans[x].tx_data, trans[x].rx_data, 4);
} else {
TEST_ASSERT_EQUAL_HEX32_ARRAY(trans[x].tx_buffer, trans[x].rx_buffer, trans[x].length / 8 / 4);
}
}
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
free(data_malloc);
}
//this part tests 3 DMA issues in master mode, full-duplex in IDF2.1
// 1. RX buffer not aligned (start and end)
// 2. not setting rx_buffer
// 3. setting rx_length != length
TEST_CASE("SPI Master DMA test: length, start, not aligned", "[spi]")
{
uint8_t tx_buf[320] = {0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43};
uint8_t rx_buf[320];
spi_device_handle_t spi;
spi_bus_config_t buscfg = {
.miso_io_num = PIN_NUM_MOSI,
.mosi_io_num = PIN_NUM_MOSI,
.sclk_io_num = PIN_NUM_CLK,
.quadwp_io_num = -1,
.quadhd_io_num = -1
};
spi_device_interface_config_t devcfg = {
.clock_speed_hz = 10 * 1000 * 1000, //Clock out at 10 MHz
.mode = 0, //SPI mode 0
.spics_io_num = PIN_NUM_CS, //CS pin
.queue_size = 7, //We want to be able to queue 7 transactions at a time
.pre_cb = NULL,
};
//Initialize the SPI bus
TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
//Attach the LCD to the SPI bus
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
//connect MOSI to two devices breaks the output, fix it.
spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
for (int i = 0; i < 8; i ++) {
memset(rx_buf, 0x66, sizeof(rx_buf));
spi_transaction_t t = {};
t.length = 8 * (i + 1);
t.rxlength = 0;
t.tx_buffer = tx_buf + 2 * i;
t.rx_buffer = rx_buf + i;
if (i == 1) {
//test set no start
t.rx_buffer = NULL;
} else if (i == 2) {
//test rx length != tx_length
t.rxlength = t.length - 8;
}
spi_device_transmit(spi, &t);
for (int i = 0; i < 16; i ++) {
printf("%02X ", rx_buf[i]);
}
printf("\n");
if (i == 1) {
// no rx, skip check
} else if (i == 2) {
//test rx length = tx length-1
TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length / 8 - 1);
} else {
//normal check
TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length / 8);
}
}
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
}
#if (TEST_SPI_PERIPH_NUM >= 2)
//These will only be enabled on chips with 2 or more SPI peripherals
static uint8_t bitswap(uint8_t in)
{
uint8_t out = 0;
for (int i = 0; i < 8; i++) {
out = out >> 1;
if (in & 0x80) {
out |= 0x80;
}
in = in << 1;
}
return out;
}
void test_cmd_addr(spi_slave_task_context_t *slave_context, bool lsb_first)
{
spi_device_handle_t spi;
ESP_LOGI(MASTER_TAG, ">>>>>>>>> TEST %s FIRST <<<<<<<<<<<", lsb_first ? "LSB" : "MSB");
//initial master, mode 0, 1MHz
spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
buscfg.quadhd_io_num = UNCONNECTED_PIN;
TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
devcfg.clock_speed_hz = 1 * 1000 * 1000;
if (lsb_first) {
devcfg.flags |= SPI_DEVICE_BIT_LSBFIRST;
}
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
//connecting pins to two peripherals breaks the output, fix it.
spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
spitest_gpio_output_sel(buscfg.miso_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out);
spitest_gpio_output_sel(devcfg.spics_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spics_out[0]);
spitest_gpio_output_sel(buscfg.sclk_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spiclk_out);
for (int i = 0; i < 8; i++) {
//prepare slave tx data
slave_txdata_t slave_txdata = (slave_txdata_t) {
.start = spitest_slave_send + 4 * (i % 3),
.len = 256,
};
xQueueSend(slave_context->data_to_send, &slave_txdata, portMAX_DELAY);
vTaskDelay(50);
//prepare master tx data
int cmd_bits = (i + 1) * 2;
int addr_bits = 0;
#ifdef CONFIG_IDF_TARGET_ESP32
addr_bits = 56 - 8 * i;
#elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
//ESP32S2 only supportes up to 32 bits address
addr_bits = 28 - 4 * i;
#endif
int round_up = (cmd_bits + addr_bits + 7) / 8 * 8;
addr_bits = round_up - cmd_bits;
spi_transaction_ext_t trans = (spi_transaction_ext_t) {
.base = {
.flags = SPI_TRANS_VARIABLE_CMD | SPI_TRANS_VARIABLE_ADDR,
.addr = 0x456789abcdef0123,
.cmd = 0x9876,
},
.command_bits = cmd_bits,
.address_bits = addr_bits,
};
ESP_LOGI(MASTER_TAG, "===== test%d =====", i);
ESP_LOGI(MASTER_TAG, "cmd_bits: %d, addr_bits: %d", cmd_bits, addr_bits);
TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t *)&trans));
//wait for both master and slave end
size_t rcv_len;
slave_rxdata_t *rcv_data = xRingbufferReceive(slave_context->data_received, &rcv_len, portMAX_DELAY);
rcv_len -= 8;
uint8_t *buffer = rcv_data->data;
ESP_LOGI(SLAVE_TAG, "trans_len: %d", rcv_len);
TEST_ASSERT_EQUAL(rcv_len, (rcv_data->len + 7) / 8);
TEST_ASSERT_EQUAL(rcv_data->len, cmd_bits + addr_bits);
ESP_LOG_BUFFER_HEX("slave rx", buffer, rcv_len);
uint16_t cmd_expected = trans.base.cmd & (BIT(cmd_bits) - 1);
uint64_t addr_expected = trans.base.addr & ((1ULL << addr_bits) - 1);
uint8_t *data_ptr = buffer;
uint16_t cmd_got = *(uint16_t *)data_ptr;
data_ptr += cmd_bits / 8;
cmd_got = __builtin_bswap16(cmd_got);
cmd_got = cmd_got >> (16 - cmd_bits);
int remain_bits = cmd_bits % 8;
uint64_t addr_got = *(uint64_t *)data_ptr;
data_ptr += 8;
addr_got = __builtin_bswap64(addr_got);
addr_got = (addr_got << remain_bits);
addr_got |= (*data_ptr >> (8 - remain_bits));
addr_got = addr_got >> (64 - addr_bits);
if (lsb_first) {
cmd_got = __builtin_bswap16(cmd_got);
addr_got = __builtin_bswap64(addr_got);
uint8_t *swap_ptr = (uint8_t *)&cmd_got;
swap_ptr[0] = bitswap(swap_ptr[0]);
swap_ptr[1] = bitswap(swap_ptr[1]);
cmd_got = cmd_got >> (16 - cmd_bits);
swap_ptr = (uint8_t *)&addr_got;
for (int j = 0; j < 8; j++) {
swap_ptr[j] = bitswap(swap_ptr[j]);
}
addr_got = addr_got >> (64 - addr_bits);
}
ESP_LOGI(SLAVE_TAG, "cmd_got: %" PRIX16 ", addr_got: %" PRIX32 "%" PRIX32, cmd_got, (uint32_t)(addr_got >> 32), (uint32_t)addr_got);
TEST_ASSERT_EQUAL_HEX16(cmd_expected, cmd_got);
if (addr_bits > 0) {
TEST_ASSERT_EQUAL_HEX32(addr_expected, addr_got);
TEST_ASSERT_EQUAL_HEX32(addr_expected >> 8, addr_got >> 8);
}
//clean
vRingbufferReturnItem(slave_context->data_received, rcv_data);
}
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
}
TEST_CASE("SPI master variable cmd & addr test", "[spi]")
{
spi_slave_task_context_t slave_context = {};
esp_err_t err = init_slave_context(&slave_context, TEST_SLAVE_HOST);
TEST_ASSERT(err == ESP_OK);
TaskHandle_t handle_slave;
xTaskCreate(spitest_slave_task, "spi_slave", 4096, &slave_context, 0, &handle_slave);
//initial slave, mode 0, no dma
int dma_chan = 0;
int slave_mode = 0;
spi_bus_config_t slv_buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
slvcfg.mode = slave_mode;
//Initialize SPI slave interface
TEST_ESP_OK(spi_slave_initialize(TEST_SLAVE_HOST, &slv_buscfg, &slvcfg, dma_chan));
test_cmd_addr(&slave_context, false);
test_cmd_addr(&slave_context, true);
vTaskDelete(handle_slave);
handle_slave = 0;
deinit_slave_context(&slave_context);
TEST_ASSERT(spi_slave_free(TEST_SLAVE_HOST) == ESP_OK);
ESP_LOGI(MASTER_TAG, "test passed.");
}
void test_dummy(spi_device_handle_t spi, int dummy_n, uint8_t *data_to_send, int len)
{
ESP_LOGI(TAG, "testing dummy n=%d", dummy_n);
WORD_ALIGNED_ATTR uint8_t slave_buffer[len + (dummy_n + 7) / 8];
spi_slave_transaction_t slave_t = {
.tx_buffer = slave_buffer,
.rx_buffer = slave_buffer,
.length = len * 8 + ((dummy_n + 7) & (~8)) + 32, //receive more bytes to avoid slave discarding data
};
TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY));
vTaskDelay(50);
spi_transaction_ext_t t = {
.base = {
.tx_buffer = data_to_send,
.length = (len + 1) * 8, //send one more byte force slave receive all data
.flags = SPI_TRANS_VARIABLE_DUMMY,
},
.dummy_bits = dummy_n,
};
TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t *)&t));
spi_slave_transaction_t *ret_slave;
TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &ret_slave, portMAX_DELAY));
TEST_ASSERT(ret_slave == &slave_t);
ESP_LOG_BUFFER_HEXDUMP("rcv", slave_buffer, len + 4, ESP_LOG_INFO);
int skip_cnt = dummy_n / 8;
int dummy_remain = dummy_n % 8;
uint8_t *slave_ptr = slave_buffer;
if (dummy_remain > 0) {
for (int i = 0; i < len; i++) {
slave_ptr[0] = (slave_ptr[skip_cnt] << dummy_remain) | (slave_ptr[skip_cnt + 1] >> (8 - dummy_remain));
slave_ptr++;
}
} else {
for (int i = 0; i < len; i++) {
slave_ptr[0] = slave_ptr[skip_cnt];
slave_ptr++;
}
}
TEST_ASSERT_EQUAL_HEX8_ARRAY(data_to_send, slave_buffer, len);
}
TEST_CASE("SPI master variable dummy test", "[spi]")
{
spi_device_handle_t spi;
spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
spi_device_interface_config_t dev_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
dev_cfg.flags = SPI_DEVICE_HALFDUPLEX;
TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &bus_cfg, 0));
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, &spi));
spi_slave_interface_config_t slave_cfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
TEST_ESP_OK(spi_slave_initialize(TEST_SLAVE_HOST, &bus_cfg, &slave_cfg, SPI_DMA_DISABLED));
spitest_gpio_output_sel(bus_cfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
spitest_gpio_output_sel(bus_cfg.miso_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out);
spitest_gpio_output_sel(dev_cfg.spics_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spics_out[0]);
spitest_gpio_output_sel(bus_cfg.sclk_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spiclk_out);
uint8_t data_to_send[] = {0x12, 0x34, 0x56, 0x78};
test_dummy(spi, 0, data_to_send, sizeof(data_to_send));
test_dummy(spi, 1, data_to_send, sizeof(data_to_send));
test_dummy(spi, 2, data_to_send, sizeof(data_to_send));
test_dummy(spi, 3, data_to_send, sizeof(data_to_send));
test_dummy(spi, 4, data_to_send, sizeof(data_to_send));
test_dummy(spi, 8, data_to_send, sizeof(data_to_send));
test_dummy(spi, 12, data_to_send, sizeof(data_to_send));
test_dummy(spi, 16, data_to_send, sizeof(data_to_send));
spi_slave_free(TEST_SLAVE_HOST);
master_free_device_bus(spi);
}
/**
* This test is to check when the first transaction of the HD master is to send data without receiving data via DMA,
* then if the master could receive data correctly.
*
* Because an old version ESP32 silicon issue, there is a workaround to enable and start the RX DMA in FD/HD mode in
* this condition (TX without RX). And if RX DMA is enabled and started in HD mode, because there is no correctly
* linked RX DMA descriptor, there will be an inlink_dscr_error interrupt emerging, which will influence the following
* RX transactions.
*
* This bug is fixed by triggering this workaround only in FD mode.
*
*/
TEST_CASE("SPI master hd dma TX without RX test", "[spi]")
{
spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &bus_cfg, SPI_DMA_CH_AUTO));
spi_device_handle_t spi;
spi_device_interface_config_t dev_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
dev_cfg.flags = SPI_DEVICE_HALFDUPLEX;
dev_cfg.clock_speed_hz = 1 * 1000 * 1000;
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, &spi));
spi_slave_interface_config_t slave_cfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
TEST_ESP_OK(spi_slave_initialize(TEST_SLAVE_HOST, &bus_cfg, &slave_cfg, SPI_DMA_CH_AUTO));
same_pin_func_sel(bus_cfg, dev_cfg, 0);
uint32_t buf_size = 32;
uint8_t *mst_send_buf = heap_caps_malloc(buf_size, MALLOC_CAP_DMA);
uint8_t *mst_recv_buf = heap_caps_calloc(buf_size, 1, MALLOC_CAP_DMA);
uint8_t *slv_send_buf = heap_caps_malloc(buf_size, MALLOC_CAP_DMA);
uint8_t *slv_recv_buf = heap_caps_calloc(buf_size, 1, MALLOC_CAP_DMA);
srand(199);
for (int i = 0; i < buf_size; i++) {
mst_send_buf[i] = rand();
}
//1. Master sends without receiving, no rx_buffer is set
spi_slave_transaction_t slave_trans = {
.rx_buffer = slv_recv_buf,
.length = buf_size * 8,
.flags = SPI_SLAVE_TRANS_DMA_BUFFER_ALIGN_AUTO,
};
TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_trans, portMAX_DELAY));
spi_transaction_t master_trans = {
.tx_buffer = mst_send_buf,
.length = buf_size * 8,
};
TEST_ESP_OK(spi_device_transmit(spi, &master_trans));
spi_slave_transaction_t *ret_slave;
TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &ret_slave, portMAX_DELAY));
spitest_cmp_or_dump(mst_send_buf, slv_recv_buf, buf_size);
//2. Master receives data
for (int i = 100; i < 110; i++) {
srand(i);
for (int j = 0; j < buf_size; j++) {
slv_send_buf[j] = rand();
}
slave_trans = (spi_slave_transaction_t) {};
slave_trans.tx_buffer = slv_send_buf;
slave_trans.length = buf_size * 8;
slave_trans.flags |= SPI_SLAVE_TRANS_DMA_BUFFER_ALIGN_AUTO;
TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_trans, portMAX_DELAY));
vTaskDelay(50);
master_trans = (spi_transaction_t) {};
master_trans.rx_buffer = mst_recv_buf;
master_trans.rxlength = buf_size * 8;
TEST_ESP_OK(spi_device_transmit(spi, &master_trans));
TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &ret_slave, portMAX_DELAY));
spitest_cmp_or_dump(slv_send_buf, mst_recv_buf, buf_size);
}
free(mst_send_buf);
free(mst_recv_buf);
free(slv_send_buf);
free(slv_recv_buf);
spi_slave_free(TEST_SLAVE_HOST);
master_free_device_bus(spi);
}
#endif //#if (TEST_SPI_PERIPH_NUM >= 2)
#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32) //TODO: IDF-3494
#define FD_TEST_BUF_SIZE 32
#define TEST_NUM 4
#define FD_SEED1 199
#define FD_SEED2 29
#define FD_SEED3 48
#define FD_SEED4 327
static void master_only_tx_trans(spi_device_handle_t spi, uint8_t *mst_send_buf, uint32_t length)
{
ESP_LOGI(MASTER_TAG, "FD DMA, Only TX:");
spi_transaction_t trans = {0};
trans.tx_buffer = mst_send_buf;
trans.length = length * 8;
unity_wait_for_signal("Slave ready");
TEST_ESP_OK(spi_device_transmit(spi, &trans));
ESP_LOG_BUFFER_HEX("MASTER TX:", mst_send_buf, length);
}
static void master_only_rx_trans(spi_device_handle_t spi, uint8_t *mst_recv_buf, uint8_t *slv_send_buf, uint32_t length)
{
ESP_LOGI(MASTER_TAG, "FD DMA, Only RX:");
spi_transaction_t trans = {0};
trans.tx_buffer = NULL;
trans.rx_buffer = mst_recv_buf;
trans.length = length * 8;
unity_wait_for_signal("Slave ready");
TEST_ESP_OK(spi_device_transmit(spi, &trans));
ESP_LOG_BUFFER_HEX("MASTER RX:", mst_recv_buf, length);
TEST_ASSERT_EQUAL_HEX8_ARRAY(slv_send_buf, mst_recv_buf, length);
}
static void master_both_trans(spi_device_handle_t spi, uint8_t *mst_send_buf, uint8_t *mst_recv_buf, uint8_t *slv_send_buf, uint32_t length)
{
ESP_LOGI(MASTER_TAG, "FD DMA, Both TX and RX:");
spi_transaction_t trans = {0};
trans.tx_buffer = mst_send_buf;
trans.rx_buffer = mst_recv_buf;
trans.length = length * 8;
unity_wait_for_signal("Slave ready");
TEST_ESP_OK(spi_device_transmit(spi, &trans));
ESP_LOG_BUFFER_HEX("MASTER TX:", mst_send_buf, length);
ESP_LOG_BUFFER_HEX("MASTER RX:", mst_recv_buf, length);
TEST_ASSERT_EQUAL_HEX8_ARRAY(slv_send_buf, mst_recv_buf, length);
}
static void fd_master(void)
{
spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &bus_cfg, SPI_DMA_CH_AUTO));
spi_device_handle_t spi;
spi_device_interface_config_t dev_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, &spi));
unity_send_signal("Master ready");
uint8_t *mst_send_buf = heap_caps_malloc(FD_TEST_BUF_SIZE, MALLOC_CAP_DMA);
uint8_t *mst_recv_buf = heap_caps_calloc(FD_TEST_BUF_SIZE, 1, MALLOC_CAP_DMA);
uint8_t *slv_send_buf = heap_caps_malloc(FD_TEST_BUF_SIZE, MALLOC_CAP_DMA);
//Master FD DMA, RX without TX Test
for (int i = 0; i < TEST_NUM; i++) {
// 1. Master FD DMA, only receive, with NULL tx_buffer
test_fill_random_to_buffers_dualboard(FD_SEED1 + i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
memset(mst_recv_buf, 0x0, FD_TEST_BUF_SIZE);
master_only_rx_trans(spi, mst_recv_buf, slv_send_buf, FD_TEST_BUF_SIZE);
//2. Master FD DMA with TX and RX
test_fill_random_to_buffers_dualboard(FD_SEED2 + i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
memset(mst_recv_buf, 0x0, FD_TEST_BUF_SIZE);
master_both_trans(spi, mst_send_buf, mst_recv_buf, slv_send_buf, FD_TEST_BUF_SIZE);
}
//Master FD DMA, TX without RX Test
for (int i = 0; i < TEST_NUM; i++) {
// 1. Master FD DMA, only send, with NULL rx_buffer
test_fill_random_to_buffers_dualboard(FD_SEED3 + i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
master_only_tx_trans(spi, mst_send_buf, FD_TEST_BUF_SIZE);
//2. Master FD DMA with TX and RX
test_fill_random_to_buffers_dualboard(FD_SEED4 + i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
memset(mst_recv_buf, 0x0, FD_TEST_BUF_SIZE);
master_both_trans(spi, mst_send_buf, mst_recv_buf, slv_send_buf, FD_TEST_BUF_SIZE);
}
free(mst_send_buf);
free(mst_recv_buf);
free(slv_send_buf);
master_free_device_bus(spi);
}
static void slave_only_tx_trans(uint8_t *slv_send_buf, uint32_t length)
{
ESP_LOGI(SLAVE_TAG, "FD DMA, Only TX");
spi_slave_transaction_t trans = {0};
trans.tx_buffer = slv_send_buf;
trans.length = length * 8;
unity_send_signal("Slave ready");
TEST_ESP_OK(spi_slave_transmit(SPI2_HOST, &trans, portMAX_DELAY));
ESP_LOG_BUFFER_HEX("SLAVE TX:", slv_send_buf, length);
}
static void slave_only_rx_trans(uint8_t *slv_recv_buf, uint8_t *mst_send_buf, uint32_t length)
{
ESP_LOGI(SLAVE_TAG, "FD DMA, Only RX");
spi_slave_transaction_t trans = {};
trans.tx_buffer = NULL;
trans.rx_buffer = slv_recv_buf;
trans.length = length * 8;
unity_send_signal("Slave ready");
TEST_ESP_OK(spi_slave_transmit(SPI2_HOST, &trans, portMAX_DELAY));
ESP_LOG_BUFFER_HEX("SLAVE RX:", slv_recv_buf, length);
TEST_ASSERT_EQUAL(length * 8, trans.trans_len);
TEST_ASSERT_EQUAL_HEX8_ARRAY(mst_send_buf, slv_recv_buf, length);
}
static void slave_both_trans(uint8_t *slv_send_buf, uint8_t *slv_recv_buf, uint8_t *mst_send_buf, uint32_t length)
{
ESP_LOGI(SLAVE_TAG, "FD DMA, Both TX and RX:");
spi_slave_transaction_t trans = {0};
trans.tx_buffer = slv_send_buf;
trans.rx_buffer = slv_recv_buf;
trans.length = length * 8;
unity_send_signal("Slave ready");
TEST_ESP_OK(spi_slave_transmit(SPI2_HOST, &trans, portMAX_DELAY));
ESP_LOG_BUFFER_HEX("SLAVE TX:", slv_send_buf, length);
ESP_LOG_BUFFER_HEX("SLAVE RX:", slv_recv_buf, length);
TEST_ASSERT_EQUAL_HEX8_ARRAY(mst_send_buf, slv_recv_buf, length);
}
static void fd_slave(void)
{
spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
TEST_ESP_OK(spi_slave_initialize(SPI2_HOST, &buscfg, &slvcfg, SPI_DMA_CH_AUTO));
unity_wait_for_signal("Master ready");
uint8_t *slv_send_buf = heap_caps_malloc(FD_TEST_BUF_SIZE, MALLOC_CAP_DMA);
uint8_t *slv_recv_buf = heap_caps_calloc(FD_TEST_BUF_SIZE, 1, MALLOC_CAP_DMA);
uint8_t *mst_send_buf = heap_caps_malloc(FD_TEST_BUF_SIZE, MALLOC_CAP_DMA);
for (int i = 0; i < TEST_NUM; i++) {
//1. Slave TX without RX (rx_buffer == NULL)
test_fill_random_to_buffers_dualboard(FD_SEED1 + i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
slave_only_tx_trans(slv_send_buf, FD_TEST_BUF_SIZE);
//2. Slave both TX and RX
test_fill_random_to_buffers_dualboard(FD_SEED2 + i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
memset(slv_recv_buf, 0x0, FD_TEST_BUF_SIZE);
slave_both_trans(slv_send_buf, slv_recv_buf, mst_send_buf, FD_TEST_BUF_SIZE);
}
for (int i = 0; i < TEST_NUM; i++) {
// 1. Slave RX without TX (tx_buffer == NULL)
test_fill_random_to_buffers_dualboard(FD_SEED3 + i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
memset(slv_recv_buf, 0x0, FD_TEST_BUF_SIZE);
slave_only_rx_trans(slv_recv_buf, mst_send_buf, FD_TEST_BUF_SIZE);
//2. Slave both TX and RX
test_fill_random_to_buffers_dualboard(FD_SEED4 + i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
memset(slv_recv_buf, 0x0, FD_TEST_BUF_SIZE);
slave_both_trans(slv_send_buf, slv_recv_buf, mst_send_buf, FD_TEST_BUF_SIZE);
}
free(slv_send_buf);
free(slv_recv_buf);
free(mst_send_buf);
TEST_ASSERT(spi_slave_free(SPI2_HOST) == ESP_OK);
}
TEST_CASE_MULTIPLE_DEVICES("SPI Master: FD, DMA, Master Single Direction Test", "[spi_ms][test_env=generic_multi_device]", fd_master, fd_slave);
#endif //#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32) //TODO: IDF-3494
//NOTE: Explained in IDF-1445 | MR !14996
#if !(CONFIG_SPIRAM) || (CONFIG_SPIRAM_MALLOC_ALWAYSINTERNAL >= 16384)
/********************************************************************************
* Test SPI transaction interval
********************************************************************************/
//Disabled since the check in portENTER_CRITICAL in esp_intr_enable/disable increase the delay
#ifndef CONFIG_FREERTOS_CHECK_PORT_CRITICAL_COMPLIANCE
#define RECORD_TIME_PREPARE() uint32_t __t1, __t2
#define RECORD_TIME_START() do {__t1 = esp_cpu_get_cycle_count();}while(0)
#define RECORD_TIME_END(p_time) do{__t2 = esp_cpu_get_cycle_count(); *p_time = (__t2-__t1);}while(0)
#define GET_US_BY_CCOUNT(t) ((double)t/CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ)
static void speed_setup(spi_device_handle_t *spi, bool use_dma)
{
spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
devcfg.queue_size = 8; //We want to be able to queue 7 transactions at a time
//Initialize the SPI bus and the device to test
TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, (use_dma ? SPI_DMA_CH_AUTO : 0)));
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, spi));
}
static void sorted_array_insert(uint32_t *array, int *size, uint32_t item)
{
int pos;
for (pos = *size; pos > 0; pos--) {
if (array[pos - 1] < item) {
break;
}
array[pos] = array[pos - 1];
}
array[pos] = item;
(*size)++;
}
#define TEST_TIMES 11
static IRAM_ATTR NOINLINE_ATTR void spi_transmit_measure(spi_device_handle_t spi, spi_transaction_t *trans, uint32_t *t_flight)
{
RECORD_TIME_PREPARE();
spi_device_transmit(spi, trans); // prime the flash cache
RECORD_TIME_START();
spi_device_transmit(spi, trans);
RECORD_TIME_END(t_flight);
}
static IRAM_ATTR NOINLINE_ATTR void spi_transmit_polling_measure(spi_device_handle_t spi, spi_transaction_t *trans, uint32_t *t_flight)
{
spi_flash_disable_interrupts_caches_and_other_cpu(); //this can test the code are all in the IRAM at the same time
RECORD_TIME_PREPARE();
spi_device_polling_transmit(spi, trans); // prime the flash cache
RECORD_TIME_START();
spi_device_polling_transmit(spi, trans);
RECORD_TIME_END(t_flight);
spi_flash_enable_interrupts_caches_and_other_cpu();
}
TEST_CASE("spi_speed", "[spi]")
{
uint32_t t_flight;
//to get rid of the influence of randomly interrupts, we measured the performance by median value
uint32_t t_flight_sorted[TEST_TIMES];
esp_err_t ret;
int t_flight_num = 0;
spi_device_handle_t spi;
const bool use_dma = true;
WORD_ALIGNED_ATTR spi_transaction_t trans = {
.length = 1 * 8,
.flags = SPI_TRANS_USE_TXDATA,
};
//first work with DMA
speed_setup(&spi, use_dma);
//record flight time by isr, with DMA
t_flight_num = 0;
for (int i = 0; i < TEST_TIMES; i++) {
spi_transmit_measure(spi, &trans, &t_flight);
sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
}
for (int i = 0; i < TEST_TIMES; i++) {
ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
}
#ifndef CONFIG_SPIRAM
printf("[Performance][%s]: %d us\n", "SPI_PER_TRANS_NO_POLLING", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES + 1) / 2]));
TEST_ASSERT_LESS_THAN_INT(IDF_PERFORMANCE_MAX_SPI_PER_TRANS_NO_POLLING, (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES + 1) / 2]));
#endif
//acquire the bus to send polling transactions faster
ret = spi_device_acquire_bus(spi, portMAX_DELAY);
TEST_ESP_OK(ret);
//record flight time by polling and with DMA
t_flight_num = 0;
for (int i = 0; i < TEST_TIMES; i++) {
spi_transmit_polling_measure(spi, &trans, &t_flight);
sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
}
for (int i = 0; i < TEST_TIMES; i++) {
ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
}
#ifndef CONFIG_SPIRAM
printf("[Performance][%s]: %d us\n", "SPI_PER_TRANS_POLLING", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES + 1) / 2]));
TEST_ASSERT_LESS_THAN_INT(IDF_PERFORMANCE_MAX_SPI_PER_TRANS_POLLING, (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES + 1) / 2]));
#endif
//release the bus
spi_device_release_bus(spi);
master_free_device_bus(spi);
speed_setup(&spi, !use_dma);
//record flight time by isr, without DMA
t_flight_num = 0;
for (int i = 0; i < TEST_TIMES; i++) {
spi_transmit_measure(spi, &trans, &t_flight);
sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
}
for (int i = 0; i < TEST_TIMES; i++) {
ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
}
#ifndef CONFIG_SPIRAM
printf("[Performance][%s]: %d us\n", "SPI_PER_TRANS_NO_POLLING_NO_DMA", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES + 1) / 2]));
TEST_ASSERT_LESS_THAN_INT(IDF_PERFORMANCE_MAX_SPI_PER_TRANS_NO_POLLING_NO_DMA, (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES + 1) / 2]));
#endif
//acquire the bus to send polling transactions faster
ret = spi_device_acquire_bus(spi, portMAX_DELAY);
TEST_ESP_OK(ret);
//record flight time by polling, without DMA
t_flight_num = 0;
for (int i = 0; i < TEST_TIMES; i++) {
spi_transmit_polling_measure(spi, &trans, &t_flight);
sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
}
for (int i = 0; i < TEST_TIMES; i++) {
ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
}
#ifndef CONFIG_SPIRAM
printf("[Performance][%s]: %d us\n", "SPI_PER_TRANS_POLLING_NO_DMA", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES + 1) / 2]));
TEST_ASSERT_LESS_THAN_INT(IDF_PERFORMANCE_MAX_SPI_PER_TRANS_POLLING_NO_DMA, (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES + 1) / 2]));
#endif
//release the bus
spi_device_release_bus(spi);
master_free_device_bus(spi);
}
#endif // CONFIG_FREERTOS_CHECK_PORT_CRITICAL_COMPLIANCE
#endif // !(CONFIG_SPIRAM) || (CONFIG_SPIRAM_MALLOC_ALWAYSINTERNAL >= 16384)
//****************************************spi master add device test************************************//
//add dummy devices first
#if CONFIG_IDF_TARGET_ESP32
#define DUMMY_CS_PINS() {25, 26, 27}
#elif CONFIG_IDF_TARGET_ESP32H2
#define DUMMY_CS_PINS() {9, 10, 11, 12, 22, 25}
#else
#define DUMMY_CS_PINS() {0, 1, 4, 5, 8, 9}
#endif //CONFIG_IDF_TARGET_ESP32
#define CS_REAL_DEV PIN_NUM_CS
#define TEST_TRANS_LEN 48
void test_add_device_master(void)
{
spi_device_handle_t devs[SOC_SPI_MAX_CS_NUM] = {};
uint8_t cs_pins[SOC_SPI_MAX_CS_NUM] = DUMMY_CS_PINS();
uint8_t master_sendbuf[TEST_TRANS_LEN] = {0};
uint8_t master_recvbuf[TEST_TRANS_LEN] = {0};
uint8_t master_expect[TEST_TRANS_LEN] = {0};
spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
ESP_ERROR_CHECK(spi_bus_initialize(TEST_SPI_HOST, &bus_cfg, SPI_DMA_CH_AUTO));
spi_device_interface_config_t dev_cfg = {
.clock_speed_hz = 1 * 1000 * 1000,
.queue_size = 3,
};
for (uint8_t i = 0; i < SOC_SPI_MAX_CS_NUM; i++) {
dev_cfg.spics_io_num = cs_pins[i];
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, &devs[i]));
}
spi_transaction_t trans = {};
trans.length = sizeof(master_sendbuf) * 8;
trans.tx_buffer = master_sendbuf;
trans.rx_buffer = master_recvbuf;
for (uint8_t i = 0; i < SOC_SPI_MAX_CS_NUM; i++) {
//1. add max dummy devices
//2. replace devs[i] as a real device, than start a transaction
//3. free devs[i] after transaction to release the real CS pin for using again by another dev,
//So it will loop to check every gpio_sigal one by one use one physical pin
spi_bus_remove_device(devs[i]);
dev_cfg.spics_io_num = CS_REAL_DEV;
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, &devs[i]));
memset(master_recvbuf, 0, sizeof(master_recvbuf));
test_fill_random_to_buffers_dualboard(21, master_sendbuf, master_expect, TEST_TRANS_LEN);
unity_send_signal("Master ready");
unity_wait_for_signal("Slave ready");
spi_device_transmit(devs[i], &trans);
ESP_LOGI("Master", "dev %d communication:", i);
ESP_LOG_BUFFER_HEX("Tx", master_sendbuf, sizeof(master_sendbuf));
// ESP_LOG_BUFFER_HEX("Rx", master_recvbuf, sizeof(master_recvbuf));
spitest_cmp_or_dump(master_expect, master_recvbuf, TEST_TRANS_LEN);
//swap self as a dummy device to free real cs line
spi_bus_remove_device(devs[i]);
dev_cfg.spics_io_num = cs_pins[i];
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, &devs[i]));
}
for (uint8_t i = 0; i < SOC_SPI_MAX_CS_NUM; i++) {
spi_bus_remove_device(devs[i]);
}
spi_bus_free(TEST_SPI_HOST);
}
void test_add_device_slave(void)
{
uint8_t slave_sendbuf[TEST_TRANS_LEN] = {0};
uint8_t slave_recvbuf[TEST_TRANS_LEN] = {0};
uint8_t slave_expect[TEST_TRANS_LEN] = {0};
spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
spi_slave_interface_config_t slvcfg = {
.spics_io_num = CS_REAL_DEV,
.queue_size = 3,
};
TEST_ESP_OK(spi_slave_initialize(TEST_SPI_HOST, &bus_cfg, &slvcfg, SPI_DMA_DISABLED));
spi_slave_transaction_t slave_trans = {};
slave_trans.length = sizeof(slave_sendbuf) * 8;
slave_trans.tx_buffer = slave_sendbuf;
slave_trans.rx_buffer = slave_recvbuf;
for (uint8_t i = 0; i < SOC_SPI_MAX_CS_NUM; i++) {
memset(slave_recvbuf, 0, sizeof(slave_recvbuf));
test_fill_random_to_buffers_dualboard(21, slave_expect, slave_sendbuf, TEST_TRANS_LEN);
unity_wait_for_signal("Master ready");
unity_send_signal("Slave ready");
spi_slave_transmit(TEST_SPI_HOST, &slave_trans, portMAX_DELAY);
ESP_LOGI("Slave", "dev %d communication:", i);
ESP_LOG_BUFFER_HEX("Tx", slave_sendbuf, sizeof(slave_sendbuf));
// ESP_LOG_BUFFER_HEX("Rx", slave_recvbuf, sizeof(slave_recvbuf));
spitest_cmp_or_dump(slave_expect, slave_recvbuf, TEST_TRANS_LEN);
}
spi_slave_free(TEST_SPI_HOST);
spi_bus_free(TEST_SPI_HOST);
}
TEST_CASE_MULTIPLE_DEVICES("SPI_Master:Test multiple devices", "[spi_ms]", test_add_device_master, test_add_device_slave);
#if (SOC_CPU_CORES_NUM > 1) && (!CONFIG_FREERTOS_UNICORE)
#define TEST_ISR_CNT 100
static void test_master_isr_core_post_trans_cbk(spi_transaction_t *curr_trans)
{
*((int *)curr_trans->user) += esp_cpu_get_core_id();
}
TEST_CASE("test_master_isr_pin_to_core", "[spi]")
{
spi_device_handle_t dev0;
uint32_t master_send;
uint32_t master_recive;
uint32_t master_expect;
spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
devcfg.post_cb = test_master_isr_core_post_trans_cbk;
spi_transaction_t trans_cfg = {
.tx_buffer = &master_send,
.rx_buffer = &master_recive,
.user = & master_expect,
.length = sizeof(uint32_t) * 8,
};
master_expect = 0;
for (int i = 0; i < TEST_ISR_CNT; i++) {
TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &dev0));
TEST_ESP_OK(spi_device_transmit(dev0, &trans_cfg));
TEST_ESP_OK(spi_bus_remove_device(dev0));
TEST_ESP_OK(spi_bus_free(TEST_SPI_HOST));
}
printf("Test Master ISR Not Assign: %d : %ld\n", TEST_ISR_CNT, master_expect);
// by default the esp_intr_alloc is called on ESP_MAIN_TASK_AFFINITY_CPU0 now
TEST_ASSERT_EQUAL_UINT32(0, master_expect);
//-------------------------------------CPU1---------------------------------------
buscfg.isr_cpu_id = ESP_INTR_CPU_AFFINITY_1;
master_expect = 0;
for (int i = 0; i < TEST_ISR_CNT; i++) {
TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &dev0));
TEST_ESP_OK(spi_device_transmit(dev0, &trans_cfg));
TEST_ESP_OK(spi_bus_remove_device(dev0));
TEST_ESP_OK(spi_bus_free(TEST_SPI_HOST));
}
printf("Test Master ISR Assign CPU1: %d : %ld\n", TEST_ISR_CNT, master_expect);
TEST_ASSERT_EQUAL_UINT32(TEST_ISR_CNT, master_expect);
}
#endif
#if CONFIG_SPI_MASTER_IN_IRAM
#define TEST_MASTER_IRAM_TRANS_LEN 120
static IRAM_ATTR void test_master_iram_post_trans_cbk(spi_transaction_t *trans)
{
*((bool *)trans->user) = true;
}
static IRAM_ATTR void test_master_iram(void)
{
spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
buscfg.intr_flags = ESP_INTR_FLAG_IRAM;
TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
spi_device_handle_t dev_handle = {0};
spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
devcfg.post_cb = test_master_iram_post_trans_cbk;
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &dev_handle));
bool flag_trans_done;
uint8_t *master_send = heap_caps_malloc(TEST_MASTER_IRAM_TRANS_LEN, MALLOC_CAP_DMA);
uint8_t *master_recv = heap_caps_calloc(1, TEST_MASTER_IRAM_TRANS_LEN, MALLOC_CAP_DMA);
uint8_t *master_exp = heap_caps_malloc(TEST_MASTER_IRAM_TRANS_LEN, MALLOC_CAP_DEFAULT);
test_fill_random_to_buffers_dualboard(211, master_send, master_exp, TEST_MASTER_IRAM_TRANS_LEN);
spi_transaction_t trans_cfg = {
.tx_buffer = master_send,
.rx_buffer = master_recv,
.user = &flag_trans_done,
.length = TEST_MASTER_IRAM_TRANS_LEN * 8,
}, *ret_trans;
// Test intrrupt trans api once -----------------------------
unity_send_signal("Master ready");
unity_wait_for_signal("Slave ready");
spi_flash_disable_interrupts_caches_and_other_cpu();
flag_trans_done = false;
spi_device_queue_trans(dev_handle, &trans_cfg, portMAX_DELAY);
while (!flag_trans_done) {
// waitting for transaction done and return from ISR
}
spi_device_get_trans_result(dev_handle, &ret_trans, portMAX_DELAY);
spi_flash_enable_interrupts_caches_and_other_cpu();
ESP_LOG_BUFFER_HEX("master tx", ret_trans->tx_buffer, TEST_MASTER_IRAM_TRANS_LEN);
ESP_LOG_BUFFER_HEX("master rx", ret_trans->rx_buffer, TEST_MASTER_IRAM_TRANS_LEN);
spitest_cmp_or_dump(master_exp, trans_cfg.rx_buffer, TEST_MASTER_IRAM_TRANS_LEN);
// Test polling trans api once -------------------------------
unity_wait_for_signal("Slave ready");
test_fill_random_to_buffers_dualboard(119, master_send, master_exp, TEST_MASTER_IRAM_TRANS_LEN);
spi_flash_disable_interrupts_caches_and_other_cpu();
spi_device_polling_transmit(dev_handle, &trans_cfg);
spi_flash_enable_interrupts_caches_and_other_cpu();
ESP_LOG_BUFFER_HEX("master tx", ret_trans->tx_buffer, TEST_MASTER_IRAM_TRANS_LEN);
ESP_LOG_BUFFER_HEX("master rx", ret_trans->rx_buffer, TEST_MASTER_IRAM_TRANS_LEN);
spitest_cmp_or_dump(master_exp, trans_cfg.rx_buffer, TEST_MASTER_IRAM_TRANS_LEN);
free(master_send);
free(master_recv);
free(master_exp);
spi_bus_remove_device(dev_handle);
spi_bus_free(TEST_SPI_HOST);
}
static void test_iram_slave_normal(void)
{
uint8_t *slave_sendbuf = heap_caps_malloc(TEST_MASTER_IRAM_TRANS_LEN, MALLOC_CAP_DMA);
uint8_t *slave_recvbuf = heap_caps_calloc(1, TEST_MASTER_IRAM_TRANS_LEN, MALLOC_CAP_DMA);
uint8_t *slave_expect = heap_caps_malloc(TEST_MASTER_IRAM_TRANS_LEN, MALLOC_CAP_DEFAULT);
spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
TEST_ESP_OK(spi_slave_initialize(TEST_SPI_HOST, &bus_cfg, &slvcfg, SPI_DMA_CH_AUTO));
spi_slave_transaction_t slave_trans = {};
slave_trans.length = TEST_MASTER_IRAM_TRANS_LEN * 8;
slave_trans.tx_buffer = slave_sendbuf;
slave_trans.rx_buffer = slave_recvbuf;
test_fill_random_to_buffers_dualboard(211, slave_expect, slave_sendbuf, TEST_MASTER_IRAM_TRANS_LEN);
unity_wait_for_signal("Master ready");
unity_send_signal("Slave ready");
spi_slave_transmit(TEST_SPI_HOST, &slave_trans, portMAX_DELAY);
ESP_LOG_BUFFER_HEX("slave tx", slave_sendbuf, TEST_MASTER_IRAM_TRANS_LEN);
ESP_LOG_BUFFER_HEX("slave rx", slave_recvbuf, TEST_MASTER_IRAM_TRANS_LEN);
spitest_cmp_or_dump(slave_expect, slave_recvbuf, TEST_MASTER_IRAM_TRANS_LEN);
unity_send_signal("Slave ready");
test_fill_random_to_buffers_dualboard(119, slave_expect, slave_sendbuf, TEST_MASTER_IRAM_TRANS_LEN);
spi_slave_transmit(TEST_SPI_HOST, &slave_trans, portMAX_DELAY);
ESP_LOG_BUFFER_HEX("slave tx", slave_sendbuf, TEST_MASTER_IRAM_TRANS_LEN);
ESP_LOG_BUFFER_HEX("slave rx", slave_recvbuf, TEST_MASTER_IRAM_TRANS_LEN);
spitest_cmp_or_dump(slave_expect, slave_recvbuf, TEST_MASTER_IRAM_TRANS_LEN);
free(slave_sendbuf);
free(slave_recvbuf);
free(slave_expect);
spi_slave_free(TEST_SPI_HOST);
spi_bus_free(TEST_SPI_HOST);
}
TEST_CASE_MULTIPLE_DEVICES("SPI_Master:IRAM_safe", "[spi_ms]", test_master_iram, test_iram_slave_normal);
#endif