esp-idf/components/hal/esp32c6/include/hal/clk_tree_ll.h

841 wiersze
26 KiB
C

/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdint.h>
#include "soc/soc.h"
#include "soc/clk_tree_defs.h"
#include "soc/pcr_struct.h"
#include "soc/lp_clkrst_struct.h"
#include "soc/pmu_reg.h"
#include "hal/regi2c_ctrl.h"
#include "soc/regi2c_bbpll.h"
#include "hal/assert.h"
#include "hal/log.h"
#include "esp32c6/rom/rtc.h"
#include "hal/misc.h"
#ifdef __cplusplus
extern "C" {
#endif
#define MHZ (1000000)
#define CLK_LL_PLL_80M_FREQ_MHZ (80)
#define CLK_LL_PLL_120M_FREQ_MHZ (120)
#define CLK_LL_PLL_160M_FREQ_MHZ (160)
#define CLK_LL_PLL_240M_FREQ_MHZ (240)
#define CLK_LL_PLL_480M_FREQ_MHZ (480)
#define CLK_LL_XTAL32K_CONFIG_DEFAULT() { \
.dac = 3, \
.dres = 3, \
.dgm = 3, \
.dbuf = 1, \
}
/*
Set the frequency division factor of ref_tick
The FOSC of rtc calibration uses the 32 frequency division clock for ECO1,
So the frequency division factor of ref_tick must be greater than or equal to 32
*/
#define REG_FOSC_TICK_NUM 255
/**
* @brief XTAL32K_CLK enable modes
*/
typedef enum {
CLK_LL_XTAL32K_ENABLE_MODE_CRYSTAL, //!< Enable the external 32kHz crystal for XTAL32K_CLK
CLK_LL_XTAL32K_ENABLE_MODE_EXTERNAL, //!< Enable the external clock signal for OSC_SLOW_CLK
CLK_LL_XTAL32K_ENABLE_MODE_BOOTSTRAP, //!< Bootstrap the crystal oscillator for faster XTAL32K_CLK start up */
} clk_ll_xtal32k_enable_mode_t;
/**
* @brief XTAL32K_CLK configuration structure
*/
typedef struct {
uint32_t dac : 6;
uint32_t dres : 3;
uint32_t dgm : 3;
uint32_t dbuf: 1;
} clk_ll_xtal32k_config_t;
/**
* @brief Power up BBPLL circuit
*/
static inline __attribute__((always_inline)) void clk_ll_bbpll_enable(void)
{
SET_PERI_REG_MASK(PMU_IMM_HP_CK_POWER_REG, PMU_TIE_HIGH_XPD_BB_I2C |
PMU_TIE_HIGH_XPD_BBPLL | PMU_TIE_HIGH_XPD_BBPLL_I2C);
SET_PERI_REG_MASK(PMU_IMM_HP_CK_POWER_REG, PMU_TIE_HIGH_GLOBAL_BBPLL_ICG);
}
/**
* @brief Power down BBPLL circuit
*/
static inline __attribute__((always_inline)) void clk_ll_bbpll_disable(void)
{
SET_PERI_REG_MASK(PMU_IMM_HP_CK_POWER_REG, PMU_TIE_LOW_GLOBAL_BBPLL_ICG) ;
SET_PERI_REG_MASK(PMU_IMM_HP_CK_POWER_REG, PMU_TIE_LOW_XPD_BBPLL | PMU_TIE_LOW_XPD_BBPLL_I2C);
}
/**
* @brief Release the root clock source locked by PMU
*/
static inline __attribute__((always_inline)) void clk_ll_cpu_clk_src_lock_release(void)
{
SET_PERI_REG_MASK(PMU_IMM_SLEEP_SYSCLK_REG, PMU_UPDATE_DIG_SYS_CLK_SEL);
}
/**
* @brief Enable the 32kHz crystal oscillator
*
* @param mode Used to determine the xtal32k configuration parameters
*/
static inline __attribute__((always_inline)) void clk_ll_xtal32k_enable(clk_ll_xtal32k_enable_mode_t mode)
{
if (mode == CLK_LL_XTAL32K_ENABLE_MODE_EXTERNAL) {
// No need to configure anything for OSC_SLOW_CLK
return;
}
// Configure xtal32k
clk_ll_xtal32k_config_t cfg = CLK_LL_XTAL32K_CONFIG_DEFAULT();
LP_CLKRST.xtal32k.dac_xtal32k = cfg.dac;
LP_CLKRST.xtal32k.dres_xtal32k = cfg.dres;
LP_CLKRST.xtal32k.dgm_xtal32k = cfg.dgm;
LP_CLKRST.xtal32k.dbuf_xtal32k = cfg.dbuf;
// Enable xtal32k xpd
SET_PERI_REG_MASK(PMU_HP_SLEEP_LP_CK_POWER_REG, PMU_HP_SLEEP_XPD_XTAL32K);
}
/**
* @brief Disable the 32kHz crystal oscillator
*/
static inline __attribute__((always_inline)) void clk_ll_xtal32k_disable(void)
{
// Disable xtal32k xpd
CLEAR_PERI_REG_MASK(PMU_HP_SLEEP_LP_CK_POWER_REG, PMU_HP_SLEEP_XPD_XTAL32K);
}
/**
* @brief Get the state of the 32kHz crystal clock
*
* @return True if the 32kHz XTAL is enabled
*/
static inline __attribute__((always_inline)) bool clk_ll_xtal32k_is_enabled(void)
{
return REG_GET_FIELD(PMU_HP_SLEEP_LP_CK_POWER_REG, PMU_HP_SLEEP_XPD_XTAL32K) == 1;
}
/**
* @brief Enable the internal oscillator output for RC32K_CLK
*/
static inline __attribute__((always_inline)) void clk_ll_rc32k_enable(void)
{
// Enable rc32k xpd status
SET_PERI_REG_MASK(PMU_HP_SLEEP_LP_CK_POWER_REG, PMU_HP_SLEEP_XPD_RC32K);
}
/**
* @brief Disable the internal oscillator output for RC32K_CLK
*/
static inline __attribute__((always_inline)) void clk_ll_rc32k_disable(void)
{
// Disable rc32k xpd status
CLEAR_PERI_REG_MASK(PMU_HP_SLEEP_LP_CK_POWER_REG, PMU_HP_SLEEP_XPD_RC32K);
}
/**
* @brief Get the state of the internal oscillator for RC32K_CLK
*
* @return True if the oscillator is enabled
*/
static inline __attribute__((always_inline)) bool clk_ll_rc32k_is_enabled(void)
{
return REG_GET_FIELD(PMU_HP_SLEEP_LP_CK_POWER_REG, PMU_HP_SLEEP_XPD_RC32K) == 1;
}
/**
* @brief Enable the internal oscillator output for RC_FAST_CLK
*/
static inline __attribute__((always_inline)) void clk_ll_rc_fast_enable(void)
{
SET_PERI_REG_MASK(PMU_HP_SLEEP_LP_CK_POWER_REG, PMU_HP_SLEEP_XPD_FOSC_CLK);
}
/**
* @brief Disable the internal oscillator output for RC_FAST_CLK
*/
static inline __attribute__((always_inline)) void clk_ll_rc_fast_disable(void)
{
CLEAR_PERI_REG_MASK(PMU_HP_SLEEP_LP_CK_POWER_REG, PMU_HP_SLEEP_XPD_FOSC_CLK);
}
/**
* @brief Get the state of the internal oscillator for RC_FAST_CLK
*
* @return True if the oscillator is enabled
*/
static inline __attribute__((always_inline)) bool clk_ll_rc_fast_is_enabled(void)
{
return REG_GET_FIELD(PMU_HP_SLEEP_LP_CK_POWER_REG, PMU_HP_SLEEP_XPD_FOSC_CLK) == 1;
}
/**
* @brief Enable the digital RC_FAST_CLK, which is used to support peripherals.
*/
static inline __attribute__((always_inline)) void clk_ll_rc_fast_digi_enable(void)
{
LP_CLKRST.clk_to_hp.icg_hp_fosc = 1;
}
/**
* @brief Disable the digital RC_FAST_CLK, which is used to support peripherals.
*/
static inline __attribute__((always_inline)) void clk_ll_rc_fast_digi_disable(void)
{
LP_CLKRST.clk_to_hp.icg_hp_fosc = 0;
}
/**
* @brief Get the state of the digital RC_FAST_CLK
*
* @return True if the digital RC_FAST_CLK is enabled
*/
static inline __attribute__((always_inline)) bool clk_ll_rc_fast_digi_is_enabled(void)
{
return LP_CLKRST.clk_to_hp.icg_hp_fosc;
}
/**
* @brief Enable the digital XTAL32K_CLK, which is used to support peripherals.
*/
static inline __attribute__((always_inline)) void clk_ll_xtal32k_digi_enable(void)
{
LP_CLKRST.clk_to_hp.icg_hp_xtal32k = 1;
}
/**
* @brief Disable the digital XTAL32K_CLK, which is used to support peripherals.
*/
static inline __attribute__((always_inline)) void clk_ll_xtal32k_digi_disable(void)
{
LP_CLKRST.clk_to_hp.icg_hp_xtal32k = 0;
}
/**
* @brief Get the state of the digital XTAL32K_CLK
*
* @return True if the digital XTAL32K_CLK is enabled
*/
static inline __attribute__((always_inline)) bool clk_ll_xtal32k_digi_is_enabled(void)
{
return LP_CLKRST.clk_to_hp.icg_hp_xtal32k;
}
/**
* @brief Enable the digital RC32K_CLK, which is used to support peripherals.
*/
static inline __attribute__((always_inline)) void clk_ll_rc32k_digi_enable(void)
{
LP_CLKRST.clk_to_hp.icg_hp_osc32k = 1;
}
/**
* @brief Disable the digital RC32K_CLK, which is used to support peripherals.
*/
static inline __attribute__((always_inline)) void clk_ll_rc32k_digi_disable(void)
{
LP_CLKRST.clk_to_hp.icg_hp_osc32k = 0;
}
/**
* @brief Get the state of the digital RC32K_CLK
*
* @return True if the digital RC32K_CLK is enabled
*/
static inline __attribute__((always_inline)) bool clk_ll_rc32k_digi_is_enabled(void)
{
return LP_CLKRST.clk_to_hp.icg_hp_osc32k;
}
/**
* @brief Get PLL_CLK frequency
*
* @return PLL clock frequency, in MHz. Returns 0 if register field value is invalid.
*/
static inline __attribute__((always_inline)) uint32_t clk_ll_bbpll_get_freq_mhz(void)
{
// The target has a fixed 480MHz SPLL
return CLK_LL_PLL_480M_FREQ_MHZ;
}
/**
* @brief Set BBPLL frequency from XTAL source (Digital part)
*
* @param pll_freq_mhz PLL frequency, in MHz
*/
static inline __attribute__((always_inline)) void clk_ll_bbpll_set_freq_mhz(uint32_t pll_freq_mhz)
{
// The target SPLL is fixed to 480MHz
// Do nothing
HAL_ASSERT(pll_freq_mhz == CLK_LL_PLL_480M_FREQ_MHZ);
}
/**
* @brief Set BBPLL frequency from XTAL source (Analog part)
*
* @param pll_freq_mhz PLL frequency, in MHz
* @param xtal_freq_mhz XTAL frequency, in MHz
*/
static inline __attribute__((always_inline)) void clk_ll_bbpll_set_config(uint32_t pll_freq_mhz, uint32_t xtal_freq_mhz)
{
HAL_ASSERT(pll_freq_mhz == CLK_LL_PLL_480M_FREQ_MHZ);
uint8_t div_ref;
uint8_t div7_0;
uint8_t dr1;
uint8_t dr3;
uint8_t dchgp;
uint8_t dcur;
uint8_t dbias;
/* Configure 480M PLL */
switch (xtal_freq_mhz) {
case SOC_XTAL_FREQ_40M:
default:
div_ref = 0;
div7_0 = 8;
dr1 = 0;
dr3 = 0;
dchgp = 5;
dcur = 3;
dbias = 2;
break;
}
uint8_t i2c_bbpll_lref = (dchgp << I2C_BBPLL_OC_DCHGP_LSB) | (div_ref);
uint8_t i2c_bbpll_div_7_0 = div7_0;
uint8_t i2c_bbpll_dcur = (1 << I2C_BBPLL_OC_DLREF_SEL_LSB ) | (3 << I2C_BBPLL_OC_DHREF_SEL_LSB) | dcur;
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_REF_DIV, i2c_bbpll_lref);
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_DIV_7_0, i2c_bbpll_div_7_0);
REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_DR1, dr1);
REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_DR3, dr3);
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_DCUR, i2c_bbpll_dcur);
REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_VCO_DBIAS, dbias);
}
/**
* @brief Select the clock source for CPU_CLK (SOC Clock Root)
*
* @param in_sel One of the clock sources in soc_cpu_clk_src_t
*/
static inline __attribute__((always_inline)) void clk_ll_cpu_set_src(soc_cpu_clk_src_t in_sel)
{
switch (in_sel) {
case SOC_CPU_CLK_SRC_XTAL:
PCR.sysclk_conf.soc_clk_sel = 0;
break;
case SOC_CPU_CLK_SRC_PLL:
PCR.sysclk_conf.soc_clk_sel = 1;
break;
case SOC_CPU_CLK_SRC_RC_FAST:
PCR.sysclk_conf.soc_clk_sel = 2;
break;
default:
// Unsupported SOC_CLK mux input sel
abort();
}
}
/**
* @brief Get the clock source for CPU_CLK (SOC Clock Root)
*
* @return Currently selected clock source (one of soc_cpu_clk_src_t values)
*/
static inline __attribute__((always_inline)) soc_cpu_clk_src_t clk_ll_cpu_get_src(void)
{
uint32_t clk_sel = PCR.sysclk_conf.soc_clk_sel;
switch (clk_sel) {
case 0:
return SOC_CPU_CLK_SRC_XTAL;
case 1:
return SOC_CPU_CLK_SRC_PLL;
case 2:
return SOC_CPU_CLK_SRC_RC_FAST;
default:
// Invalid SOC_CLK_SEL value
return SOC_CPU_CLK_SRC_INVALID;
}
}
/**
* @brief Set CPU_CLK's high-speed divider (valid when SOC_ROOT clock source is PLL)
*
* @param divider Divider. (PCR_HS_DIV_NUM + 1) * (PCR_CPU_HS_DIV_NUM + 1) = divider.
*/
static inline __attribute__((always_inline)) void clk_ll_cpu_set_hs_divider(uint32_t divider)
{
// SOC_ROOT_CLK ---(1)---> HP_ROOT_CLK ---(2)---> CPU_CLK
// (1) not configurable for the target (HRO register field: PCR_HS_DIV_NUM)
// Fixed at 3 for HS clock source
// Corresponding register field value is PCR_HS_DIV_NUM=2
// (2) configurable
// HS divider option: 1, 2, 4 (PCR_CPU_HS_DIV_NUM=0, 1, 3)
HAL_ASSERT(divider == 3 || divider == 4 || divider == 6 || divider == 12);
HAL_FORCE_MODIFY_U32_REG_FIELD(PCR.cpu_freq_conf, cpu_hs_div_num, (divider / 3) - 1);
// 120MHz CPU freq cannot be achieved through divider, need to set force_120m
// This field is only valid if PCR_CPU_HS_DIV_NUM=0 and PCR_SOC_CLK_SEL=SOC_CPU_CLK_SRC_PLL
bool force_120m = (divider == 4) ? 1 : 0;
PCR.cpu_freq_conf.cpu_hs_120m_force = force_120m;
}
/**
* @brief Set CPU_CLK's low-speed divider (valid when SOC_ROOT clock source is XTAL/RC_FAST)
*
* @param divider Divider. (PCR_LS_DIV_NUM + 1) * (PCR_CPU_LS_DIV_NUM + 1) = divider.
*/
static inline __attribute__((always_inline)) void clk_ll_cpu_set_ls_divider(uint32_t divider)
{
// SOC_ROOT_CLK ---(1)---> HP_ROOT_CLK ---(2)---> CPU_CLK
// (1) not configurable for the target (HRO register field: PCR_LS_DIV_NUM)
// Fixed at 1 for LS clock source
// Corresponding register field value is PCR_LS_DIV_NUM=0
// (2) configurable
// LS divider option: 1, 2, 4, 8, 16, 32 (PCR_CPU_LS_DIV_NUM=0, 1, 3, 7, 15, 31)
HAL_ASSERT((divider > 0) && ((divider & (divider - 1)) == 0));
HAL_FORCE_MODIFY_U32_REG_FIELD(PCR.cpu_freq_conf, cpu_ls_div_num, divider - 1);
}
/**
* @brief Get CPU_CLK's high-speed divider
*
* @return Divider. Divider = (PCR_HS_DIV_NUM + 1) * (PCR_CPU_HS_DIV_NUM + 1).
*/
static inline __attribute__((always_inline)) uint32_t clk_ll_cpu_get_hs_divider(void)
{
uint32_t force_120m = PCR.cpu_freq_conf.cpu_hs_120m_force;
uint32_t cpu_hs_div = HAL_FORCE_READ_U32_REG_FIELD(PCR.cpu_freq_conf, cpu_hs_div_num);
if (cpu_hs_div == 0 && force_120m) {
return 4;
}
uint32_t hp_root_hs_div = HAL_FORCE_READ_U32_REG_FIELD(PCR.sysclk_conf, hs_div_num);
return (hp_root_hs_div + 1) * (cpu_hs_div + 1);
}
/**
* @brief Get CPU_CLK's low-speed divider
*
* @return Divider. Divider = (PCR_LS_DIV_NUM + 1) * (PCR_CPU_LS_DIV_NUM + 1).
*/
static inline __attribute__((always_inline)) uint32_t clk_ll_cpu_get_ls_divider(void)
{
uint32_t cpu_ls_div = HAL_FORCE_READ_U32_REG_FIELD(PCR.cpu_freq_conf, cpu_ls_div_num);
uint32_t hp_root_ls_div = HAL_FORCE_READ_U32_REG_FIELD(PCR.sysclk_conf, ls_div_num);
return (hp_root_ls_div + 1) * (cpu_ls_div + 1);
}
/**
* @brief Set AHB_CLK's high-speed divider (valid when SOC_ROOT clock source is PLL)
*
* @param divider Divider. (PCR_HS_DIV_NUM + 1) * (PCR_AHB_HS_DIV_NUM + 1) = divider.
*/
static inline __attribute__((always_inline)) void clk_ll_ahb_set_hs_divider(uint32_t divider)
{
// SOC_ROOT_CLK ---(1)---> HP_ROOT_CLK ---(2)---> AHB_CLK
// (1) not configurable for the target (HRO register field: PCR_HS_DIV_NUM)
// Fixed at 3 for HS clock source
// Corresponding register field value is PCR_HS_DIV_NUM=2
// (2) configurable
// HS divider option: 4, 8, 16 (PCR_AHB_HS_DIV_NUM=3, 7, 15)
HAL_ASSERT(divider == 12 || divider == 24 || divider == 48);
HAL_FORCE_MODIFY_U32_REG_FIELD(PCR.ahb_freq_conf, ahb_hs_div_num, (divider / 3) - 1);
}
/**
* @brief Set AHB_CLK's low-speed divider (valid when SOC_ROOT clock source is XTAL/RC_FAST)
*
* @param divider Divider. (PCR_LS_DIV_NUM + 1) * (PCR_AHB_LS_DIV_NUM + 1) = divider.
*/
static inline __attribute__((always_inline)) void clk_ll_ahb_set_ls_divider(uint32_t divider)
{
// SOC_ROOT_CLK ---(1)---> HP_ROOT_CLK ---(2)---> AHB_CLK
// (1) not configurable for the target (HRO register field: PCR_LS_DIV_NUM)
// Fixed at 1 for LS clock source
// Corresponding register field value is PCR_LS_DIV_NUM=0
// (2) configurable
// LS divider option: 1, 2, 4, 8, 16, 32 (PCR_CPU_LS_DIV_NUM=0, 1, 3, 7, 15, 31)
HAL_ASSERT((divider > 0) && ((divider & (divider - 1)) == 0));
HAL_FORCE_MODIFY_U32_REG_FIELD(PCR.ahb_freq_conf, ahb_ls_div_num, divider - 1);
}
/**
* @brief Get AHB_CLK's high-speed divider
*
* @return Divider. Divider = (PCR_HS_DIV_NUM + 1) * (PCR_AHB_HS_DIV_NUM + 1).
*/
static inline __attribute__((always_inline)) uint32_t clk_ll_ahb_get_hs_divider(void)
{
uint32_t ahb_hs_div = HAL_FORCE_READ_U32_REG_FIELD(PCR.ahb_freq_conf, ahb_hs_div_num);
uint32_t hp_root_hs_div = HAL_FORCE_READ_U32_REG_FIELD(PCR.sysclk_conf, hs_div_num);
return (hp_root_hs_div + 1) * (ahb_hs_div + 1);
}
/**
* @brief Get AHB_CLK's low-speed divider
*
* @return Divider. Divider = (PCR_LS_DIV_NUM + 1) * (PCR_AHB_LS_DIV_NUM + 1).
*/
static inline __attribute__((always_inline)) uint32_t clk_ll_ahb_get_ls_divider(void)
{
uint32_t ahb_ls_div = HAL_FORCE_READ_U32_REG_FIELD(PCR.ahb_freq_conf, ahb_ls_div_num);
uint32_t hp_root_ls_div = HAL_FORCE_READ_U32_REG_FIELD(PCR.sysclk_conf, ls_div_num);
return (hp_root_ls_div + 1) * (ahb_ls_div + 1);
}
/**
* @brief Set APB_CLK divider. freq of APB_CLK = freq of AHB_CLK / divider
*
* @param divider Divider. PCR_APB_DIV_NUM = divider - 1.
*/
static inline __attribute__((always_inline)) void clk_ll_apb_set_divider(uint32_t divider)
{
// AHB ------> APB
// Divider option: 1, 2, 4 (PCR_APB_DIV_NUM=0, 1, 3)
HAL_ASSERT(divider == 1 || divider == 2 || divider == 4);
HAL_FORCE_MODIFY_U32_REG_FIELD(PCR.apb_freq_conf, apb_div_num, divider - 1);
}
/**
* @brief Get APB_CLK divider
*
* @return Divider. Divider = (PCR_APB_DIV_NUM + 1).
*/
static inline __attribute__((always_inline)) uint32_t clk_ll_apb_get_divider(void)
{
return HAL_FORCE_READ_U32_REG_FIELD(PCR.apb_freq_conf, apb_div_num) + 1;
}
/**
* @brief Set MSPI_FAST_CLK's high-speed divider (valid when SOC_ROOT clock source is PLL)
*
* @param divider Divider.
*/
static inline __attribute__((always_inline)) void clk_ll_mspi_fast_set_hs_divider(uint32_t divider)
{
// SOC_ROOT_CLK ------> MSPI_FAST_CLK
// HS divider option: 4, 5, 6 (PCR_MSPI_FAST_HS_DIV_NUM=3, 4, 5)
uint32_t div_num = 0;
switch (divider) {
case 4:
div_num = 3;
break;
case 5:
div_num = 4;
break;
case 6:
div_num = 5;
break;
default:
// Unsupported HS MSPI_FAST divider
abort();
}
HAL_FORCE_MODIFY_U32_REG_FIELD(PCR.mspi_clk_conf, mspi_fast_hs_div_num, div_num);
}
/**
* @brief Set MSPI_FAST_CLK's low-speed divider (valid when SOC_ROOT clock source is XTAL/RC_FAST)
*
* @param divider Divider.
*/
static inline __attribute__((always_inline)) void clk_ll_mspi_fast_set_ls_divider(uint32_t divider)
{
// SOC_ROOT_CLK ------> MSPI_FAST_CLK
// LS divider option: 1, 2, 4 (PCR_MSPI_FAST_LS_DIV_NUM=0, 1, 2)
uint32_t div_num = 0;
switch (divider) {
case 1:
div_num = 0;
break;
case 2:
div_num = 1;
break;
case 4:
div_num = 2;
break;
default:
// Unsupported LS MSPI_FAST divider
abort();
}
HAL_FORCE_MODIFY_U32_REG_FIELD(PCR.mspi_clk_conf, mspi_fast_ls_div_num, div_num);
}
/**
* @brief Select the calibration 32kHz clock source for timergroup0
*
* @param in_sel One of the 32kHz clock sources (RC32K_CLK, XTAL32K_CLK, OSC_SLOW_CLK)
*/
static inline __attribute__((always_inline)) void clk_ll_32k_calibration_set_target(soc_rtc_slow_clk_src_t in_sel)
{
switch (in_sel) {
case SOC_RTC_SLOW_CLK_SRC_RC32K:
PCR.ctrl_32k_conf.clk_32k_sel = 0;
break;
case SOC_RTC_SLOW_CLK_SRC_XTAL32K:
PCR.ctrl_32k_conf.clk_32k_sel = 1;
break;
case SOC_RTC_SLOW_CLK_SRC_OSC_SLOW:
PCR.ctrl_32k_conf.clk_32k_sel = 2;
break;
default:
// Unsupported 32K_SEL mux input
abort();
}
}
/**
* @brief Get the calibration 32kHz clock source for timergroup0
*
* @return soc_rtc_slow_clk_src_t Currently selected calibration 32kHz clock (one of the 32kHz clocks)
*/
static inline __attribute__((always_inline)) soc_rtc_slow_clk_src_t clk_ll_32k_calibration_get_target(void)
{
uint32_t clk_sel = PCR.ctrl_32k_conf.clk_32k_sel;
switch (clk_sel) {
case 0:
return SOC_RTC_SLOW_CLK_SRC_RC32K;
case 1:
return SOC_RTC_SLOW_CLK_SRC_XTAL32K;
case 2:
return SOC_RTC_SLOW_CLK_SRC_OSC_SLOW;
default:
return SOC_RTC_SLOW_CLK_SRC_INVALID;
}
}
/**
* @brief Select the clock source for RTC_SLOW_CLK
*
* @param in_sel One of the clock sources in soc_rtc_slow_clk_src_t
*/
static inline __attribute__((always_inline)) void clk_ll_rtc_slow_set_src(soc_rtc_slow_clk_src_t in_sel)
{
switch (in_sel) {
case SOC_RTC_SLOW_CLK_SRC_RC_SLOW:
LP_CLKRST.lp_clk_conf.slow_clk_sel = 0;
break;
case SOC_RTC_SLOW_CLK_SRC_XTAL32K:
LP_CLKRST.lp_clk_conf.slow_clk_sel = 1;
break;
case SOC_RTC_SLOW_CLK_SRC_RC32K:
LP_CLKRST.lp_clk_conf.slow_clk_sel = 2;
break;
case SOC_RTC_SLOW_CLK_SRC_OSC_SLOW:
LP_CLKRST.lp_clk_conf.slow_clk_sel = 3;
break;
default:
// Unsupported RTC_SLOW_CLK mux input sel
abort();
}
}
/**
* @brief Get the clock source for RTC_SLOW_CLK
*
* @return Currently selected clock source (one of soc_rtc_slow_clk_src_t values)
*/
static inline __attribute__((always_inline)) soc_rtc_slow_clk_src_t clk_ll_rtc_slow_get_src(void)
{
uint32_t clk_sel = LP_CLKRST.lp_clk_conf.slow_clk_sel;
switch (clk_sel) {
case 0:
return SOC_RTC_SLOW_CLK_SRC_RC_SLOW;
case 1:
return SOC_RTC_SLOW_CLK_SRC_XTAL32K;
case 2:
return SOC_RTC_SLOW_CLK_SRC_RC32K;
case 3:
return SOC_RTC_SLOW_CLK_SRC_OSC_SLOW;
default:
return SOC_RTC_SLOW_CLK_SRC_INVALID;
}
}
/**
* @brief Select the clock source for RTC_FAST_CLK
*
* @param in_sel One of the clock sources in soc_rtc_fast_clk_src_t
*/
static inline __attribute__((always_inline)) void clk_ll_rtc_fast_set_src(soc_rtc_fast_clk_src_t in_sel)
{
switch (in_sel) {
case SOC_RTC_FAST_CLK_SRC_RC_FAST:
LP_CLKRST.lp_clk_conf.fast_clk_sel = 0;
break;
case SOC_RTC_FAST_CLK_SRC_XTAL_D2:
LP_CLKRST.lp_clk_conf.fast_clk_sel = 1;
break;
default:
// Unsupported RTC_FAST_CLK mux input sel
abort();
}
}
/**
* @brief Get the clock source for RTC_FAST_CLK
*
* @return Currently selected clock source (one of soc_rtc_fast_clk_src_t values)
*/
static inline __attribute__((always_inline)) soc_rtc_fast_clk_src_t clk_ll_rtc_fast_get_src(void)
{
uint32_t clk_sel = LP_CLKRST.lp_clk_conf.fast_clk_sel;
switch (clk_sel) {
case 0:
return SOC_RTC_FAST_CLK_SRC_RC_FAST;
case 1:
return SOC_RTC_FAST_CLK_SRC_XTAL_D2;
default:
return SOC_RTC_FAST_CLK_SRC_INVALID;
}
}
/**
* @brief Set RC_FAST_CLK divider. The output from the divider is passed into rtc_fast_clk MUX.
*
* @param divider Divider of RC_FAST_CLK. Usually this divider is set to 1 (reg. value is 0) in bootloader stage.
*/
static inline __attribute__((always_inline)) void clk_ll_rc_fast_set_divider(uint32_t divider)
{
// No divider on the target
HAL_ASSERT(divider == 1);
}
/**
* @brief Get RC_FAST_CLK divider
*
* @return Divider. Divider = (CK8M_DIV_SEL + 1).
*/
static inline __attribute__((always_inline)) uint32_t clk_ll_rc_fast_get_divider(void)
{
// No divider on the target, always return divider = 1
return 1;
}
/**
* @brief Set RC_SLOW_CLK divider
*
* @param divider Divider of RC_SLOW_CLK. Usually this divider is set to 1 (reg. value is 0) in bootloader stage.
*/
static inline __attribute__((always_inline)) void clk_ll_rc_slow_set_divider(uint32_t divider)
{
// No divider on the target
HAL_ASSERT(divider == 1);
}
/************************** LP STORAGE REGISTER STORE/LOAD **************************/
/**
* @brief Store XTAL_CLK frequency in RTC storage register
*
* Value of RTC_XTAL_FREQ_REG is stored as two copies in lower and upper 16-bit
* halves. These are the routines to work with that representation.
*
* @param xtal_freq_mhz XTAL frequency, in MHz. The frequency must necessarily be even,
* otherwise there will be a conflict with the low bit, which is used to disable logs
* in the ROM code.
*/
static inline __attribute__((always_inline)) void clk_ll_xtal_store_freq_mhz(uint32_t xtal_freq_mhz)
{
// Read the status of whether disabling logging from ROM code
uint32_t reg = READ_PERI_REG(RTC_XTAL_FREQ_REG) & RTC_DISABLE_ROM_LOG;
// If so, need to write back this setting
if (reg == RTC_DISABLE_ROM_LOG) {
xtal_freq_mhz |= 1;
}
WRITE_PERI_REG(RTC_XTAL_FREQ_REG, (xtal_freq_mhz & UINT16_MAX) | ((xtal_freq_mhz & UINT16_MAX) << 16));
}
/**
* @brief Load XTAL_CLK frequency from RTC storage register
*
* Value of RTC_XTAL_FREQ_REG is stored as two copies in lower and upper 16-bit
* halves. These are the routines to work with that representation.
*
* @return XTAL frequency, in MHz. Returns 0 if value in reg is invalid.
*/
static inline __attribute__((always_inline)) uint32_t clk_ll_xtal_load_freq_mhz(void)
{
// Read from RTC storage register
uint32_t xtal_freq_reg = READ_PERI_REG(RTC_XTAL_FREQ_REG);
if ((xtal_freq_reg & 0xFFFF) == ((xtal_freq_reg >> 16) & 0xFFFF) &&
xtal_freq_reg != 0 && xtal_freq_reg != UINT32_MAX) {
return xtal_freq_reg & ~RTC_DISABLE_ROM_LOG & UINT16_MAX;
}
// If the format in reg is invalid
return 0;
}
/**
* @brief Store RTC_SLOW_CLK calibration value in RTC storage register
*
* Value of RTC_SLOW_CLK_CAL_REG has to be in the same format as returned by rtc_clk_cal (microseconds,
* in Q13.19 fixed-point format).
*
* @param cal_value The calibration value of slow clock period in microseconds, in Q13.19 fixed point format
*/
static inline __attribute__((always_inline)) void clk_ll_rtc_slow_store_cal(uint32_t cal_value)
{
REG_WRITE(RTC_SLOW_CLK_CAL_REG, cal_value);
}
/**
* @brief Load the calibration value of RTC_SLOW_CLK frequency from RTC storage register
*
* This value gets updated (i.e. rtc slow clock gets calibrated) every time RTC_SLOW_CLK source switches
*
* @return The calibration value of slow clock period in microseconds, in Q13.19 fixed point format
*/
static inline __attribute__((always_inline)) uint32_t clk_ll_rtc_slow_load_cal(void)
{
return REG_READ(RTC_SLOW_CLK_CAL_REG);
}
/*
Set the frequency division factor of ref_tick
*/
static inline void clk_ll_rc_fast_tick_conf(void)
{
PCR.ctrl_tick_conf.fosc_tick_num = REG_FOSC_TICK_NUM;
}
/*
* Enable/Disable the clock gate for clock output signal source
*/
static inline void clk_ll_enable_clkout_source(soc_clkout_sig_id_t clk_src, bool en)
{
switch (clk_src)
{
case CLKOUT_SIG_PLL:
PCR.ctrl_clk_out_en.clk160_oen = en;
break;
case CLKOUT_SIG_PLL_F80M:
PCR.ctrl_clk_out_en.clk80_oen = en;
break;
case CLKOUT_SIG_XTAL:
PCR.ctrl_clk_out_en.clk_xtal_oen = en;
break;
default:
break;
}
}
#ifdef __cplusplus
}
#endif