esp-idf/components/esp_psram/esp32s3/esp_psram_impl_quad.c

410 wiersze
16 KiB
C

/*
* SPDX-FileCopyrightText: 2013-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "sdkconfig.h"
#include "string.h"
#include "esp_attr.h"
#include "esp_err.h"
#include "esp_types.h"
#include "esp_bit_defs.h"
#include "esp_log.h"
#include "../esp_psram_impl.h"
#include "esp32s3/rom/spi_flash.h"
#include "esp32s3/rom/opi_flash.h"
#include "esp_rom_gpio.h"
#include "esp_rom_efuse.h"
#include "hal/gpio_hal.h"
#include "esp_private/spi_flash_os.h"
#include "esp_private/mspi_timing_tuning.h"
#include "esp_private/esp_gpio_reserve.h"
static const char* TAG = "quad_psram";
//Commands for PSRAM chip
#define PSRAM_READ 0x03
#define PSRAM_FAST_READ 0x0B
#define PSRAM_FAST_READ_QUAD 0xEB
#define PSRAM_WRITE 0x02
#define PSRAM_QUAD_WRITE 0x38
#define PSRAM_ENTER_QMODE 0x35
#define PSRAM_EXIT_QMODE 0xF5
#define PSRAM_RESET_EN 0x66
#define PSRAM_RESET 0x99
#define PSRAM_SET_BURST_LEN 0xC0
#define PSRAM_DEVICE_ID 0x9F
#define PSRAM_FAST_READ_DUMMY 4
#define PSRAM_FAST_READ_QUAD_DUMMY 6
// ID
#define PSRAM_ID_KGD_M 0xff
#define PSRAM_ID_KGD_S 8
#define PSRAM_ID_KGD 0x5d
#define PSRAM_ID_EID_M 0xff
#define PSRAM_ID_EID_S 16
// Use the [7:5](bit7~bit5) of EID to distinguish the psram size:
//
// BIT7 | BIT6 | BIT5 | SIZE(MBIT)
// -------------------------------------
// 0 | 0 | 0 | 16
// 0 | 0 | 1 | 32
// 0 | 1 | 0 | 64
#define PSRAM_EID_SIZE_M 0x07
#define PSRAM_EID_SIZE_S 5
#define PSRAM_KGD(id) (((id) >> PSRAM_ID_KGD_S) & PSRAM_ID_KGD_M)
#define PSRAM_EID(id) (((id) >> PSRAM_ID_EID_S) & PSRAM_ID_EID_M)
#define PSRAM_SIZE_ID(id) ((PSRAM_EID(id) >> PSRAM_EID_SIZE_S) & PSRAM_EID_SIZE_M)
#define PSRAM_IS_VALID(id) (PSRAM_KGD(id) == PSRAM_ID_KGD)
#define PSRAM_IS_64MBIT_TRIAL(id) (PSRAM_EID(id) == 0x26)
// IO-pins for PSRAM.
// WARNING: PSRAM shares all but the CS and CLK pins with the flash, so these defines
// hardcode the flash pins as well, making this code incompatible with either a setup
// that has the flash on non-standard pins or ESP32s with built-in flash.
#define FLASH_CLK_IO SPI_CLK_GPIO_NUM
#define FLASH_CS_IO SPI_CS0_GPIO_NUM
// PSRAM clock and cs IO should be configured based on hardware design.
#define PSRAM_CLK_IO SPI_CLK_GPIO_NUM
#define PSRAM_CS_IO SPI_CS1_GPIO_NUM
#define PSRAM_SPIQ_SD0_IO SPI_Q_GPIO_NUM
#define PSRAM_SPID_SD1_IO SPI_D_GPIO_NUM
#define PSRAM_SPIWP_SD3_IO SPI_WP_GPIO_NUM
#define PSRAM_SPIHD_SD2_IO SPI_HD_GPIO_NUM
#define CS_PSRAM_SEL SPI_MEM_CS1_DIS_M
#define CS_FLASH_SEL SPI_MEM_CS0_DIS_M
#define SPI1_NUM 1
#define SPI0_NUM 0
typedef enum {
PSRAM_CMD_QPI,
PSRAM_CMD_SPI,
} psram_cmd_mode_t;
typedef esp_rom_spi_cmd_t psram_cmd_t;
static uint32_t s_psram_id = 0;
static uint32_t s_psram_size = 0; //this stands for physical psram size in bytes
static void config_psram_spi_phases(void);
extern void esp_rom_spi_set_op_mode(int spi_num, esp_rom_spiflash_read_mode_t mode);
static uint8_t s_psram_cs_io = (uint8_t) -1;
uint8_t esp_psram_impl_get_cs_io(void)
{
return s_psram_cs_io;
}
static void psram_set_op_mode(int spi_num, psram_cmd_mode_t mode)
{
if (mode == PSRAM_CMD_QPI) {
esp_rom_spi_set_op_mode(spi_num, ESP_ROM_SPIFLASH_QIO_MODE);
SET_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FCMD_QUAD_M);
} else if (mode == PSRAM_CMD_SPI) {
esp_rom_spi_set_op_mode(spi_num, ESP_ROM_SPIFLASH_SLOWRD_MODE);
}
}
static void _psram_exec_cmd(int spi_num,
uint32_t cmd, int cmd_bit_len,
uint32_t addr, int addr_bit_len,
int dummy_bits,
uint8_t* mosi_data, int mosi_bit_len,
uint8_t* miso_data, int miso_bit_len)
{
esp_rom_spi_cmd_t conf;
uint32_t _addr = addr;
conf.addr = &_addr;
conf.addrBitLen = addr_bit_len;
conf.cmd = cmd;
conf.cmdBitLen = cmd_bit_len;
conf.dummyBitLen = dummy_bits; // There is a hardware approach on chip723
conf.txData = (uint32_t*) mosi_data;
conf.txDataBitLen = mosi_bit_len;
conf.rxData = (uint32_t*) miso_data;
conf.rxDataBitLen = miso_bit_len;
esp_rom_spi_cmd_config(spi_num, &conf);
}
void psram_exec_cmd(int spi_num, psram_cmd_mode_t mode,
uint32_t cmd, int cmd_bit_len,
uint32_t addr, int addr_bit_len,
int dummy_bits,
uint8_t* mosi_data, int mosi_bit_len,
uint8_t* miso_data, int miso_bit_len,
uint32_t cs_mask,
bool is_write_erase_operation)
{
uint32_t backup_usr = READ_PERI_REG(SPI_MEM_USER_REG(spi_num));
uint32_t backup_usr1 = READ_PERI_REG(SPI_MEM_USER1_REG(spi_num));
uint32_t backup_usr2 = READ_PERI_REG(SPI_MEM_USER2_REG(spi_num));
uint32_t backup_ctrl = READ_PERI_REG(SPI_MEM_CTRL_REG(spi_num));
psram_set_op_mode(spi_num, mode);
_psram_exec_cmd(spi_num, cmd, cmd_bit_len, addr, addr_bit_len,
dummy_bits, mosi_data, mosi_bit_len, miso_data, miso_bit_len);
esp_rom_spi_cmd_start(spi_num, miso_data, miso_bit_len / 8, cs_mask, is_write_erase_operation);
WRITE_PERI_REG(SPI_MEM_USER_REG(spi_num), backup_usr);
WRITE_PERI_REG(SPI_MEM_USER1_REG(spi_num), backup_usr1);
WRITE_PERI_REG(SPI_MEM_USER2_REG(spi_num), backup_usr2);
WRITE_PERI_REG(SPI_MEM_CTRL_REG(spi_num), backup_ctrl);
}
//exit QPI mode(set back to SPI mode)
static void psram_disable_qio_mode(int spi_num)
{
psram_exec_cmd(spi_num, PSRAM_CMD_QPI,
PSRAM_EXIT_QMODE, 8, /* command and command bit len*/
0, 0, /* address and address bit len*/
0, /* dummy bit len */
NULL, 0, /* tx data and tx bit len*/
NULL, 0, /* rx data and rx bit len*/
CS_PSRAM_SEL, /* cs bit mask*/
false); /* whether is program/erase operation */
}
//TODO IDF-4307
//switch psram burst length(32 bytes or 1024 bytes)
//datasheet says it should be 1024 bytes by default
static void psram_set_wrap_burst_length(int spi_num, psram_cmd_mode_t mode)
{
psram_exec_cmd(spi_num, mode,
PSRAM_SET_BURST_LEN, 8, /* command and command bit len*/
0, 0, /* address and address bit len*/
0, /* dummy bit len */
NULL, 0, /* tx data and tx bit len*/
NULL, 0, /* rx data and rx bit len*/
CS_PSRAM_SEL, /* cs bit mask*/
false); /* whether is program/erase operation */
}
//send reset command to psram, in spi mode
static void psram_reset_mode(int spi_num)
{
psram_exec_cmd(spi_num, PSRAM_CMD_SPI,
PSRAM_RESET_EN, 8, /* command and command bit len*/
0, 0, /* address and address bit len*/
0, /* dummy bit len */
NULL, 0, /* tx data and tx bit len*/
NULL, 0, /* rx data and rx bit len*/
CS_PSRAM_SEL, /* cs bit mask*/
false); /* whether is program/erase operation */
psram_exec_cmd(spi_num, PSRAM_CMD_SPI,
PSRAM_RESET, 8, /* command and command bit len*/
0, 0, /* address and address bit len*/
0, /* dummy bit len */
NULL, 0, /* tx data and tx bit len*/
NULL, 0, /* rx data and rx bit len*/
CS_PSRAM_SEL, /* cs bit mask*/
false); /* whether is program/erase operation */
}
esp_err_t psram_enable_wrap(uint32_t wrap_size)
{
//TODO: IDF-4307
static uint32_t current_wrap_size = 0;
if (current_wrap_size == wrap_size) {
return ESP_OK;
}
switch (wrap_size) {
case 32:
case 0:
psram_set_wrap_burst_length(1, PSRAM_CMD_QPI);
current_wrap_size = wrap_size;
return ESP_OK;
case 16:
case 64:
default:
return ESP_FAIL;
}
}
bool psram_support_wrap_size(uint32_t wrap_size)
{
switch (wrap_size) {
case 0:
case 32:
return true;
case 16:
case 64:
default:
return false;
}
}
//Read ID operation only supports SPI CMD and mode, should issue `psram_disable_qio_mode` before calling this
static void psram_read_id(int spi_num, uint32_t* dev_id)
{
psram_exec_cmd(spi_num, PSRAM_CMD_SPI,
PSRAM_DEVICE_ID, 8, /* command and command bit len*/
0, 24, /* address and address bit len*/
0, /* dummy bit len */
NULL, 0, /* tx data and tx bit len*/
(uint8_t*) dev_id, 24, /* rx data and rx bit len*/
CS_PSRAM_SEL, /* cs bit mask*/
false); /* whether is program/erase operation */
}
//enter QPI mode
static void psram_enable_qio_mode(int spi_num)
{
psram_exec_cmd(spi_num, PSRAM_CMD_SPI,
PSRAM_ENTER_QMODE, 8, /* command and command bit len*/
0, 0, /* address and address bit len*/
0, /* dummy bit len */
NULL, 0, /* tx data and tx bit len*/
NULL, 0, /* rx data and rx bit len*/
CS_PSRAM_SEL, /* cs bit mask*/
false); /* whether is program/erase operation */
}
static void psram_set_cs_timing(void)
{
//SPI0/1 share the cs_hold / cs_setup, cd_hold_time / cd_setup_time registers for PSRAM, so we only need to set SPI0 related registers here
SET_PERI_REG_BITS(SPI_MEM_SPI_SMEM_AC_REG(0), SPI_MEM_SPI_SMEM_CS_HOLD_TIME_V, 0, SPI_MEM_SPI_SMEM_CS_HOLD_TIME_S);
SET_PERI_REG_BITS(SPI_MEM_SPI_SMEM_AC_REG(0), SPI_MEM_SPI_SMEM_CS_SETUP_TIME_V, 0, SPI_MEM_SPI_SMEM_CS_SETUP_TIME_S);
SET_PERI_REG_MASK(SPI_MEM_SPI_SMEM_AC_REG(0), SPI_MEM_SPI_SMEM_CS_HOLD_M | SPI_MEM_SPI_SMEM_CS_SETUP_M);
}
static void psram_gpio_config(void)
{
//CS1
uint8_t cs1_io = PSRAM_CS_IO;
if (cs1_io == SPI_CS1_GPIO_NUM) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[cs1_io], FUNC_SPICS1_SPICS1);
} else {
esp_rom_gpio_connect_out_signal(cs1_io, SPICS1_OUT_IDX, 0, 0);
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[cs1_io], PIN_FUNC_GPIO);
}
s_psram_cs_io = cs1_io;
//WP HD
uint8_t wp_io = PSRAM_SPIWP_SD3_IO;
const uint32_t spiconfig = esp_rom_efuse_get_flash_gpio_info();
if (spiconfig == ESP_ROM_EFUSE_FLASH_DEFAULT_SPI) {
// MSPI pins (except wp / hd) are all configured via IO_MUX in 1st bootloader.
} else {
// MSPI pins (except wp / hd) are all configured via GPIO matrix in 1st bootloader.
wp_io = esp_rom_efuse_get_flash_wp_gpio();
}
//This ROM function will init both WP and HD pins.
esp_rom_spiflash_select_qio_pins(wp_io, spiconfig);
// Reserve psram pins
esp_gpio_reserve(BIT64(cs1_io) | BIT64(wp_io));
}
esp_err_t esp_psram_impl_enable(void) //psram init
{
psram_gpio_config();
psram_set_cs_timing();
//enter MSPI slow mode to init PSRAM device registers
mspi_timing_enter_low_speed_mode(true);
//We use SPI1 to init PSRAM
psram_disable_qio_mode(SPI1_NUM);
psram_read_id(SPI1_NUM, &s_psram_id);
if (!PSRAM_IS_VALID(s_psram_id)) {
/* 16Mbit psram ID read error workaround:
* treat the first read id as a dummy one as the pre-condition,
* Send Read ID command again
*/
psram_read_id(SPI1_NUM, &s_psram_id);
if (!PSRAM_IS_VALID(s_psram_id)) {
ESP_EARLY_LOGE(TAG, "PSRAM ID read error: 0x%08" PRIx32 ", PSRAM chip not found or not supported, or wrong PSRAM line mode", (uint32_t)s_psram_id);
return ESP_ERR_NOT_SUPPORTED;
}
}
if (PSRAM_IS_64MBIT_TRIAL(s_psram_id)) {
s_psram_size = PSRAM_SIZE_8MB;
} else {
uint8_t density = PSRAM_SIZE_ID(s_psram_id);
s_psram_size = density == 0x0 ? PSRAM_SIZE_2MB :
density == 0x1 ? PSRAM_SIZE_4MB :
density == 0x2 ? PSRAM_SIZE_8MB : 0;
}
//SPI1: send psram reset command
psram_reset_mode(SPI1_NUM);
//SPI1: send QPI enable command
psram_enable_qio_mode(SPI1_NUM);
//Do PSRAM timing tuning, we use SPI1 to do the tuning, and set the SPI0 PSRAM timing related registers accordingly
mspi_timing_psram_tuning();
//Configure SPI0 PSRAM related SPI Phases
config_psram_spi_phases();
//Back to the high speed mode. Flash/PSRAM clocks are set to the clock that user selected. SPI0/1 registers are all set correctly
mspi_timing_enter_high_speed_mode(true);
return ESP_OK;
}
//Configure PSRAM SPI0 phase related registers here according to the PSRAM chip requirement
static void config_psram_spi_phases(void)
{
//Config CMD phase
CLEAR_PERI_REG_MASK(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_USR_SRAM_DIO_M); //disable dio mode for cache command
SET_PERI_REG_MASK(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_USR_SRAM_QIO_M); //enable qio mode for cache command
SET_PERI_REG_MASK(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_CACHE_SRAM_USR_RCMD_M); //enable cache read command
SET_PERI_REG_MASK(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_CACHE_SRAM_USR_WCMD_M); //enable cache write command
SET_PERI_REG_BITS(SPI_MEM_SRAM_DWR_CMD_REG(0), SPI_MEM_CACHE_SRAM_USR_WR_CMD_BITLEN, 7, SPI_MEM_CACHE_SRAM_USR_WR_CMD_BITLEN_S);
SET_PERI_REG_BITS(SPI_MEM_SRAM_DWR_CMD_REG(0), SPI_MEM_CACHE_SRAM_USR_WR_CMD_VALUE, PSRAM_QUAD_WRITE, SPI_MEM_CACHE_SRAM_USR_WR_CMD_VALUE_S); //0x38
SET_PERI_REG_BITS(SPI_MEM_SRAM_DRD_CMD_REG(0), SPI_MEM_CACHE_SRAM_USR_RD_CMD_BITLEN_V, 7, SPI_MEM_CACHE_SRAM_USR_RD_CMD_BITLEN_S);
SET_PERI_REG_BITS(SPI_MEM_SRAM_DRD_CMD_REG(0), SPI_MEM_CACHE_SRAM_USR_RD_CMD_VALUE_V, PSRAM_FAST_READ_QUAD, SPI_MEM_CACHE_SRAM_USR_RD_CMD_VALUE_S); //0xEB
//Config ADDR phase
SET_PERI_REG_BITS(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_SRAM_ADDR_BITLEN_V, 23, SPI_MEM_SRAM_ADDR_BITLEN_S);
//Dummy
/**
* We set the PSRAM chip required dummy here. If timing tuning is needed,
* the dummy length will be updated in `mspi_timing_enter_high_speed_mode()`
*/
SET_PERI_REG_MASK(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_USR_RD_SRAM_DUMMY_M); //enable cache read dummy
SET_PERI_REG_BITS(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_SRAM_RDUMMY_CYCLELEN_V, (PSRAM_FAST_READ_QUAD_DUMMY - 1), SPI_MEM_SRAM_RDUMMY_CYCLELEN_S); //dummy
CLEAR_PERI_REG_MASK(SPI_MEM_MISC_REG(0), SPI_MEM_CS1_DIS_M); //ENABLE SPI0 CS1 TO PSRAM(CS0--FLASH; CS1--SRAM)
}
/*---------------------------------------------------------------------------------
* Following APIs are not required to be IRAM-Safe
*
* Consider moving these to another file if this kind of APIs grows dramatically
*-------------------------------------------------------------------------------*/
esp_err_t esp_psram_impl_get_physical_size(uint32_t *out_size_bytes)
{
if (!out_size_bytes) {
return ESP_ERR_INVALID_ARG;
}
*out_size_bytes = s_psram_size;
return (s_psram_size ? ESP_OK : ESP_ERR_INVALID_STATE);
}
/**
* This function is to get the available physical psram size in bytes.
*
* When ECC is enabled, the available size will be reduced.
* On S3 Quad PSRAM, ECC is not enabled for now.
*/
esp_err_t esp_psram_impl_get_available_size(uint32_t *out_size_bytes)
{
if (!out_size_bytes) {
return ESP_ERR_INVALID_ARG;
}
*out_size_bytes = s_psram_size;
return (s_psram_size ? ESP_OK : ESP_ERR_INVALID_STATE);
}