esp-idf/components/esp_adc/test_apps/adc/main/test_adc_driver.c

350 wiersze
13 KiB
C

/*
* SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "unity.h"
#include "esp_log.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gptimer.h"
#include "esp_rom_sys.h"
#include "esp_adc/adc_oneshot.h"
#include "test_common_adc.h"
#include "esp_adc/adc_continuous.h"
#include "esp_adc/adc_filter.h"
const __attribute__((unused)) static char *TAG = "TEST_ADC";
/*---------------------------------------------------------------
ADC General Macros
---------------------------------------------------------------*/
//ADC Channels
#if CONFIG_IDF_TARGET_ESP32
#define ADC1_TEST_CHAN0 ADC_CHANNEL_4
#else
#define ADC1_TEST_CHAN0 ADC_CHANNEL_2
#endif
/*---------------------------------------------------------------
ADC work with ISR
---------------------------------------------------------------*/
typedef struct {
TaskHandle_t task_handle; //Task handle
adc_oneshot_unit_handle_t oneshot_handle; //oneshot handle
adc_continuous_handle_t continuous_handle; //continuous handle
bool level; //ADC level
} test_adc_isr_ctx_t;
static bool IRAM_ATTR s_alarm_callback(gptimer_handle_t timer, const gptimer_alarm_event_data_t *edata, void *user_data)
{
test_adc_isr_ctx_t *test_ctx = (test_adc_isr_ctx_t *)user_data;
BaseType_t high_task_wakeup;
int adc_raw = 0;
/**
* This test won't disable the cache, so having some code on Flash is OK.
* If you copy this test callback with cache disabled, do remeber to put all code in internal RAM.
*/
esp_rom_printf("alarm isr count=%llu\r\n", edata->count_value);
TEST_ESP_OK(adc_oneshot_read_isr(test_ctx->oneshot_handle, ADC1_TEST_CHAN0, &adc_raw));
esp_rom_printf("adc raw: %d\r\n", adc_raw);
if (test_ctx->level) {
TEST_ASSERT_INT_WITHIN(ADC_TEST_HIGH_THRESH, ADC_TEST_HIGH_VAL, adc_raw);
} else {
TEST_ASSERT_INT_WITHIN(ADC_TEST_LOW_THRESH, ADC_TEST_LOW_VAL, adc_raw);
}
// check the count value at alarm event
vTaskNotifyGiveFromISR(test_ctx->task_handle, &high_task_wakeup);
return high_task_wakeup == pdTRUE;
}
TEST_CASE("ADC oneshot fast work with ISR", "[adc_oneshot]")
{
static test_adc_isr_ctx_t isr_test_ctx = {};
isr_test_ctx.oneshot_handle = NULL;
isr_test_ctx.task_handle = xTaskGetCurrentTaskHandle();
//-------------ADC1 Init---------------//
adc_oneshot_unit_init_cfg_t init_config1 = {
.unit_id = ADC_UNIT_1,
.ulp_mode = ADC_ULP_MODE_DISABLE,
};
TEST_ESP_OK(adc_oneshot_new_unit(&init_config1, &isr_test_ctx.oneshot_handle));
//-------------ADC1 TEST Channel 0 Config---------------//
adc_oneshot_chan_cfg_t config = {
.bitwidth = ADC_BITWIDTH_DEFAULT,
.atten = ADC_ATTEN_DB_12,
};
TEST_ESP_OK(adc_oneshot_config_channel(isr_test_ctx.oneshot_handle, ADC1_TEST_CHAN0, &config));
//-------------GPTimer Init & Config---------------//
gptimer_handle_t timer = NULL;
gptimer_config_t timer_config = {
.resolution_hz = 1 * 1000 * 1000,
.clk_src = GPTIMER_CLK_SRC_DEFAULT,
.direction = GPTIMER_COUNT_UP,
};
TEST_ESP_OK(gptimer_new_timer(&timer_config, &timer));
gptimer_event_callbacks_t cbs = {
.on_alarm = s_alarm_callback,
};
gptimer_alarm_config_t alarm_config = {
.reload_count = 0,
.alarm_count = 100000, // 100ms
};
TEST_ESP_OK(gptimer_set_alarm_action(timer, &alarm_config));
TEST_ESP_OK(gptimer_register_event_callbacks(timer, &cbs, &isr_test_ctx));
//ADC IO tile low
test_adc_set_io_level(ADC_UNIT_1, ADC1_TEST_CHAN0, 0);
isr_test_ctx.level = 0;
printf("start timer\r\n");
TEST_ESP_OK(gptimer_enable(timer));
TEST_ESP_OK(gptimer_start(timer));
TEST_ASSERT_NOT_EQUAL(0, ulTaskNotifyTake(pdFALSE, pdMS_TO_TICKS(1000)));
TEST_ESP_OK(gptimer_stop(timer));
//ADC IO tile high
test_adc_set_io_level(ADC_UNIT_1, ADC1_TEST_CHAN0, 1);
isr_test_ctx.level = 1;
//Reset counter value to zero
TEST_ESP_OK(gptimer_set_raw_count(timer, 0));
printf("start timer\r\n");
TEST_ESP_OK(gptimer_start(timer));
TEST_ASSERT_NOT_EQUAL(0, ulTaskNotifyTake(pdFALSE, pdMS_TO_TICKS(1000)));
TEST_ESP_OK(gptimer_stop(timer));
//Tear Down
TEST_ESP_OK(gptimer_disable(timer));
TEST_ESP_OK(gptimer_del_timer(timer));
TEST_ESP_OK(adc_oneshot_del_unit(isr_test_ctx.oneshot_handle));
}
#if SOC_ADC_DMA_SUPPORTED
#if (SOC_ADC_DIGI_RESULT_BYTES == 2)
#define ADC_DRIVER_TEST_OUTPUT_TYPE ADC_DIGI_OUTPUT_FORMAT_TYPE1
#define ADC_DRIVER_TEST_GET_CHANNEL(p_data) ((p_data)->type1.channel)
#define ADC_DRIVER_TEST_GET_DATA(p_data) ((p_data)->type1.data)
#else
#define ADC_DRIVER_TEST_OUTPUT_TYPE ADC_DIGI_OUTPUT_FORMAT_TYPE2
#define ADC_DRIVER_TEST_GET_CHANNEL(p_data) ((p_data)->type2.channel)
#define ADC_DRIVER_TEST_GET_DATA(p_data) ((p_data)->type2.data)
#endif
#define ADC_FRAME_TEST_SIZE 8192
static bool IRAM_ATTR NOINLINE_ATTR s_conv_done_cb_frame_size_test(adc_continuous_handle_t handle, const adc_continuous_evt_data_t *edata, void *user_data)
{
test_adc_isr_ctx_t *test_ctx = (test_adc_isr_ctx_t *)user_data;
BaseType_t high_task_wakeup;
vTaskNotifyGiveFromISR(test_ctx->task_handle, &high_task_wakeup);
return high_task_wakeup == pdTRUE;
}
TEST_CASE("ADC continuous big conv_frame_size test", "[adc_continuous]")
{
static test_adc_isr_ctx_t isr_test_ctx = {};
isr_test_ctx.continuous_handle = NULL;
isr_test_ctx.task_handle = xTaskGetCurrentTaskHandle();
adc_continuous_handle_t handle = NULL;
adc_continuous_handle_cfg_t adc_config = {
.max_store_buf_size = ADC_FRAME_TEST_SIZE,
.conv_frame_size = ADC_FRAME_TEST_SIZE,
};
TEST_ESP_OK(adc_continuous_new_handle(&adc_config, &handle));
isr_test_ctx.continuous_handle = handle;
adc_continuous_config_t dig_cfg = {
.sample_freq_hz = 50 * 1000,
.conv_mode = ADC_CONV_SINGLE_UNIT_1,
.format = ADC_DRIVER_TEST_OUTPUT_TYPE,
};
adc_digi_pattern_config_t adc_pattern[SOC_ADC_PATT_LEN_MAX] = {0};
adc_pattern[0].atten = ADC_ATTEN_DB_12;
adc_pattern[0].channel = ADC1_TEST_CHAN0;
adc_pattern[0].unit = ADC_UNIT_1;
adc_pattern[0].bit_width = SOC_ADC_DIGI_MAX_BITWIDTH;
dig_cfg.adc_pattern = adc_pattern;
dig_cfg.pattern_num = 1;
TEST_ESP_OK(adc_continuous_config(handle, &dig_cfg));
adc_continuous_evt_cbs_t cbs = {
.on_conv_done = s_conv_done_cb_frame_size_test,
};
TEST_ESP_OK(adc_continuous_register_event_callbacks(handle, &cbs, &isr_test_ctx));
uint8_t* result = malloc(ADC_FRAME_TEST_SIZE);
TEST_ASSERT(result);
test_adc_set_io_level(ADC_UNIT_1, ADC1_TEST_CHAN0, 0);
TEST_ESP_OK(adc_continuous_start(handle));
for (int i = 0; i < 5; i++) {
uint32_t ret_num = 0;
uint32_t sum = 0;
uint32_t cnt = 0;
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
TEST_ESP_OK(adc_continuous_read(handle, result, ADC_FRAME_TEST_SIZE, &ret_num, ADC_MAX_DELAY));
esp_rom_printf("ret_num: %" PRIu32 "\n", ret_num);
for (int i = 0; i < ret_num; i += SOC_ADC_DIGI_RESULT_BYTES) {
adc_digi_output_data_t *p = (adc_digi_output_data_t*)&result[i];
sum += ADC_DRIVER_TEST_GET_DATA(p);
cnt++;
}
esp_rom_printf("avg: %" PRIu32 "\n", sum / cnt);
TEST_ASSERT_INT_WITHIN(ADC_TEST_LOW_THRESH, ADC_TEST_LOW_VAL, sum / cnt);
}
TEST_ESP_OK(adc_continuous_stop(handle));
TEST_ESP_OK(adc_continuous_deinit(handle));
free(result);
}
#define ADC_FLUSH_TEST_SIZE 64
TEST_CASE("ADC continuous flush internal pool", "[adc_continuous][mannual][ignore]")
{
adc_continuous_handle_t handle = NULL;
adc_continuous_handle_cfg_t adc_config = {
.max_store_buf_size = ADC_FLUSH_TEST_SIZE,
.conv_frame_size = ADC_FLUSH_TEST_SIZE,
.flags.flush_pool = true,
};
TEST_ESP_OK(adc_continuous_new_handle(&adc_config, &handle));
adc_continuous_config_t dig_cfg = {
.sample_freq_hz = 50 * 1000,
.conv_mode = ADC_CONV_SINGLE_UNIT_1,
.format = ADC_DRIVER_TEST_OUTPUT_TYPE,
};
adc_digi_pattern_config_t adc_pattern[SOC_ADC_PATT_LEN_MAX] = {0};
adc_pattern[0].atten = ADC_ATTEN_DB_12;
adc_pattern[0].channel = ADC1_TEST_CHAN0;
adc_pattern[0].unit = ADC_UNIT_1;
adc_pattern[0].bit_width = SOC_ADC_DIGI_MAX_BITWIDTH;
dig_cfg.adc_pattern = adc_pattern;
dig_cfg.pattern_num = 1;
TEST_ESP_OK(adc_continuous_config(handle, &dig_cfg));
uint8_t result[ADC_FLUSH_TEST_SIZE] = {0};
uint32_t ret_num = 0;
TEST_ESP_OK(adc_continuous_start(handle));
while (1) {
TEST_ESP_OK(adc_continuous_read(handle, result, ADC_FLUSH_TEST_SIZE, &ret_num, ADC_MAX_DELAY));
printf("ret_num: 0d%"PRIu32" bytes\n", ret_num);
TEST_ASSERT(ret_num == ADC_FLUSH_TEST_SIZE);
for (int i = 0; i < ret_num; i += SOC_ADC_DIGI_RESULT_BYTES) {
adc_digi_output_data_t *p = (void*)&result[i];
#if (SOC_ADC_DIGI_RESULT_BYTES == 2)
printf("ADC1, Channel: %d, Value: %d\n", p->type1.channel, p->type1.data);
#else
printf("ADC1, Channel: %d, Value: %d\n", p->type2.channel, p->type2.data);
#endif
}
/**
* With this delay, check the read out data to be the newest data
*/
vTaskDelay(2000);
}
TEST_ESP_OK(adc_continuous_stop(handle));
TEST_ESP_OK(adc_continuous_deinit(handle));
}
#define ADC_RESTART_TEST_SIZE 4096
#define ADC_READ_TEST_COUNT 100
TEST_CASE("ADC continuous test after restarting", "[adc_continuous]")
{
adc_continuous_handle_t handle = NULL;
adc_continuous_handle_cfg_t adc_config = {
.max_store_buf_size = ADC_RESTART_TEST_SIZE,
.conv_frame_size = ADC_RESTART_TEST_SIZE,
};
TEST_ESP_OK(adc_continuous_new_handle(&adc_config, &handle));
adc_continuous_config_t dig_cfg = {
.sample_freq_hz = 50 * 1000,
.conv_mode = ADC_CONV_SINGLE_UNIT_1,
.format = ADC_DRIVER_TEST_OUTPUT_TYPE,
};
adc_digi_pattern_config_t adc_pattern[SOC_ADC_PATT_LEN_MAX] = {0};
adc_pattern[0].atten = ADC_ATTEN_DB_12;
adc_pattern[0].channel = ADC1_TEST_CHAN0;
adc_pattern[0].unit = ADC_UNIT_1;
adc_pattern[0].bit_width = SOC_ADC_DIGI_MAX_BITWIDTH;
dig_cfg.adc_pattern = adc_pattern;
dig_cfg.pattern_num = 1;
TEST_ESP_OK(adc_continuous_config(handle, &dig_cfg));
uint8_t* result = malloc(ADC_RESTART_TEST_SIZE);
TEST_ASSERT(result);
test_adc_set_io_level(ADC_UNIT_1, ADC1_TEST_CHAN0, 0);
for (int i = 0; i < ADC_READ_TEST_COUNT; i++) {
uint32_t ret_num = 0;
TEST_ESP_OK(adc_continuous_start(handle));
TEST_ESP_OK(adc_continuous_read(handle, result, ADC_RESTART_TEST_SIZE, &ret_num, ADC_MAX_DELAY));
TEST_ASSERT_EQUAL(ADC_RESTART_TEST_SIZE, ret_num);
for (int i = 0; i < ret_num; i += SOC_ADC_DIGI_RESULT_BYTES) {
adc_digi_output_data_t *p = (void*)&result[i];
uint32_t chan_num = ADC_DRIVER_TEST_GET_CHANNEL(p);
TEST_ASSERT(chan_num < SOC_ADC_CHANNEL_NUM(ADC_UNIT_1));
}
TEST_ESP_OK(adc_continuous_stop(handle));
}
TEST_ESP_OK(adc_continuous_deinit(handle));
free(result);
}
#if SOC_ADC_DIG_IIR_FILTER_SUPPORTED
TEST_CASE("ADC filter exhausted allocation", "[adc_continuous]")
{
adc_continuous_handle_t handle = NULL;
adc_continuous_handle_cfg_t adc_config = {
.max_store_buf_size = 1024,
.conv_frame_size = 1024,
};
TEST_ESP_OK(adc_continuous_new_handle(&adc_config, &handle));
adc_iir_filter_handle_t filter_hdl[SOC_ADC_DIGI_IIR_FILTER_NUM + 1] = {};
adc_continuous_iir_filter_config_t filter_config = {
.unit = ADC_UNIT_1,
.channel = ADC_CHANNEL_0,
.coeff = ADC_DIGI_IIR_FILTER_COEFF_2,
};
for (int i = 0; i < SOC_ADC_DIGI_IIR_FILTER_NUM; i++) {
#if SOC_ADC_DIG_IIR_FILTER_UNIT_BINDED
//On these chips, the unit and the filter_id should be the same
filter_config.unit = i;
#endif
TEST_ESP_OK(adc_new_continuous_iir_filter(handle, &filter_config, &filter_hdl[i]));
}
filter_config.unit = ADC_UNIT_1;
TEST_ASSERT(adc_new_continuous_iir_filter(handle, &filter_config, &filter_hdl[SOC_ADC_DIGI_IIR_FILTER_NUM]) == ESP_ERR_NOT_FOUND);
for (int i = 0; i < SOC_ADC_DIGI_IIR_FILTER_NUM; i++) {
TEST_ESP_OK(adc_del_continuous_iir_filter(filter_hdl[i]));
}
TEST_ESP_OK(adc_continuous_deinit(handle));
}
#endif //#if SOC_ADC_DIG_IIR_FILTER_SUPPORTED
#endif //#if SOC_ADC_DMA_SUPPORTED