esp-idf/components/bootloader_support/src/flash_encryption/flash_encrypt.c

476 wiersze
16 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <strings.h>
#include "bootloader_flash_priv.h"
#include "bootloader_random.h"
#include "esp_image_format.h"
#include "esp_flash_encrypt.h"
#include "esp_flash_partitions.h"
#include "esp_secure_boot.h"
#include "esp_efuse.h"
#include "esp_efuse_table.h"
#include "esp_log.h"
#include "hal/wdt_hal.h"
#if SOC_KEY_MANAGER_SUPPORTED
#include "hal/key_mgr_hal.h"
#endif
#ifdef CONFIG_SOC_EFUSE_CONSISTS_OF_ONE_KEY_BLOCK
#include "soc/sensitive_reg.h"
#endif
#ifdef CONFIG_SECURE_FLASH_ENC_ENABLED
#if CONFIG_IDF_TARGET_ESP32
#define CRYPT_CNT ESP_EFUSE_FLASH_CRYPT_CNT
#define WR_DIS_CRYPT_CNT ESP_EFUSE_WR_DIS_FLASH_CRYPT_CNT
#else
#define CRYPT_CNT ESP_EFUSE_SPI_BOOT_CRYPT_CNT
#define WR_DIS_CRYPT_CNT ESP_EFUSE_WR_DIS_SPI_BOOT_CRYPT_CNT
#endif
#define FLASH_ENC_CNT_MAX (CRYPT_CNT[0]->bit_count)
/* This file implements FLASH ENCRYPTION related APIs to perform
* various operations such as programming necessary flash encryption
* eFuses, detect whether flash encryption is enabled (by reading eFuse)
* and if required encrypt the partitions in flash memory
*/
static const char *TAG = "flash_encrypt";
/* Static functions for stages of flash encryption */
static esp_err_t encrypt_bootloader(void);
static esp_err_t encrypt_and_load_partition_table(esp_partition_info_t *partition_table, int *num_partitions);
static esp_err_t encrypt_partition(int index, const esp_partition_info_t *partition);
static size_t get_flash_encrypt_cnt_value(void);
static size_t get_flash_encrypt_cnt_value(void)
{
size_t flash_crypt_cnt = 0;
esp_efuse_read_field_cnt(CRYPT_CNT, &flash_crypt_cnt);
return flash_crypt_cnt;
}
bool esp_flash_encrypt_initialized_once(void)
{
return get_flash_encrypt_cnt_value() != 0;
}
bool esp_flash_encrypt_is_write_protected(bool print_error)
{
if (esp_efuse_read_field_bit(WR_DIS_CRYPT_CNT)) {
if (print_error) {
ESP_LOGE(TAG, "Flash Encryption cannot be enabled (CRYPT_CNT (%d) is write protected)", get_flash_encrypt_cnt_value());
}
return true;
}
return false;
}
bool esp_flash_encrypt_state(void)
{
size_t flash_crypt_cnt = get_flash_encrypt_cnt_value();
bool flash_crypt_wr_dis = esp_flash_encrypt_is_write_protected(false);
ESP_LOGV(TAG, "CRYPT_CNT %d, write protection %d", flash_crypt_cnt, flash_crypt_wr_dis);
if (flash_crypt_cnt % 2 == 1) {
/* Flash is already encrypted */
int left = (FLASH_ENC_CNT_MAX - flash_crypt_cnt) / 2;
if (flash_crypt_wr_dis) {
left = 0; /* can't update FLASH_CRYPT_CNT, no more flashes */
}
ESP_LOGI(TAG, "flash encryption is enabled (%d plaintext flashes left)", left);
return true;
}
return false;
}
esp_err_t esp_flash_encrypt_check_and_update(void)
{
bool flash_encryption_enabled = esp_flash_encrypt_state();
if (!flash_encryption_enabled) {
#ifndef CONFIG_SECURE_FLASH_REQUIRE_ALREADY_ENABLED
if (esp_flash_encrypt_is_write_protected(true)) {
return ESP_FAIL;
}
esp_err_t err = esp_flash_encrypt_init();
if (err != ESP_OK) {
ESP_LOGE(TAG, "Initialization of Flash encryption key failed (%d)", err);
return err;
}
err = esp_flash_encrypt_contents();
if (err != ESP_OK) {
ESP_LOGE(TAG, "Encryption flash contents failed (%d)", err);
return err;
}
err = esp_flash_encrypt_enable();
if (err != ESP_OK) {
ESP_LOGE(TAG, "Enabling of Flash encryption failed (%d)", err);
return err;
}
#else
ESP_LOGE(TAG, "flash encryption is not enabled, and SECURE_FLASH_REQUIRE_ALREADY_ENABLED "
"is set, refusing to boot.");
return ESP_ERR_INVALID_STATE;
#endif // CONFIG_SECURE_FLASH_REQUIRE_ALREADY_ENABLED
}
return ESP_OK;
}
static esp_err_t check_and_generate_encryption_keys(void)
{
size_t key_size = 32;
#ifdef CONFIG_IDF_TARGET_ESP32
enum { BLOCKS_NEEDED = 1 };
esp_efuse_purpose_t purposes[BLOCKS_NEEDED] = {
ESP_EFUSE_KEY_PURPOSE_FLASH_ENCRYPTION,
};
esp_efuse_coding_scheme_t coding_scheme = esp_efuse_get_coding_scheme(EFUSE_BLK_ENCRYPT_FLASH);
if (coding_scheme != EFUSE_CODING_SCHEME_NONE && coding_scheme != EFUSE_CODING_SCHEME_3_4) {
ESP_LOGE(TAG, "Unknown/unsupported CODING_SCHEME value 0x%x", coding_scheme);
return ESP_ERR_NOT_SUPPORTED;
}
if (coding_scheme == EFUSE_CODING_SCHEME_3_4) {
key_size = 24;
}
#else
#ifdef CONFIG_SECURE_FLASH_ENCRYPTION_AES256
enum { BLOCKS_NEEDED = 2 };
esp_efuse_purpose_t purposes[BLOCKS_NEEDED] = {
ESP_EFUSE_KEY_PURPOSE_XTS_AES_256_KEY_1,
ESP_EFUSE_KEY_PURPOSE_XTS_AES_256_KEY_2,
};
if (esp_efuse_find_purpose(ESP_EFUSE_KEY_PURPOSE_XTS_AES_128_KEY, NULL)) {
ESP_LOGE(TAG, "XTS_AES_128_KEY is already in use, XTS_AES_256_KEY_1/2 can not be used");
return ESP_ERR_INVALID_STATE;
}
#else
#ifdef CONFIG_SECURE_FLASH_ENCRYPTION_AES128_DERIVED
enum { BLOCKS_NEEDED = 1 };
esp_efuse_purpose_t purposes[BLOCKS_NEEDED] = {
ESP_EFUSE_KEY_PURPOSE_XTS_AES_128_KEY_DERIVED_FROM_128_EFUSE_BITS,
};
key_size = 16;
#else
enum { BLOCKS_NEEDED = 1 };
esp_efuse_purpose_t purposes[BLOCKS_NEEDED] = {
ESP_EFUSE_KEY_PURPOSE_XTS_AES_128_KEY,
};
#endif // CONFIG_SECURE_FLASH_ENCRYPTION_AES128_DERIVED
#endif // CONFIG_SECURE_FLASH_ENCRYPTION_AES256
#endif // CONFIG_IDF_TARGET_ESP32
/* Initialize all efuse block entries to invalid (max) value */
esp_efuse_block_t blocks[BLOCKS_NEEDED] = {[0 ... BLOCKS_NEEDED-1] = EFUSE_BLK_KEY_MAX};
bool has_key = true;
for (unsigned i = 0; i < BLOCKS_NEEDED; i++) {
bool tmp_has_key = esp_efuse_find_purpose(purposes[i], &blocks[i]);
if (tmp_has_key) { // For ESP32: esp_efuse_find_purpose() always returns True, need to check whether the key block is used or not.
tmp_has_key &= !esp_efuse_key_block_unused(blocks[i]);
}
if (i == 1 && tmp_has_key != has_key) {
ESP_LOGE(TAG, "Invalid efuse key blocks: Both AES-256 key blocks must be set.");
return ESP_ERR_INVALID_STATE;
}
has_key &= tmp_has_key;
}
if (!has_key) {
/* Generate key */
uint8_t keys[BLOCKS_NEEDED][32] = { 0 };
ESP_LOGI(TAG, "Generating new flash encryption key...");
for (unsigned i = 0; i < BLOCKS_NEEDED; ++i) {
bootloader_fill_random(keys[i], key_size);
}
ESP_LOGD(TAG, "Key generation complete");
esp_err_t err = esp_efuse_write_keys(purposes, keys, BLOCKS_NEEDED);
if (err != ESP_OK) {
if (err == ESP_ERR_NOT_ENOUGH_UNUSED_KEY_BLOCKS) {
ESP_LOGE(TAG, "Not enough free efuse key blocks (need %d) to continue", BLOCKS_NEEDED);
} else {
ESP_LOGE(TAG, "Failed to write efuse block with purpose (err=0x%x). Can't continue.", err);
}
return err;
}
} else {
for (unsigned i = 0; i < BLOCKS_NEEDED; i++) {
if (!esp_efuse_get_key_dis_write(blocks[i])
|| !esp_efuse_get_key_dis_read(blocks[i])
|| !esp_efuse_get_keypurpose_dis_write(blocks[i])) { // For ESP32: no keypurpose, it returns always True.
ESP_LOGE(TAG, "Invalid key state, check read&write protection for key and keypurpose(if exists)");
return ESP_ERR_INVALID_STATE;
}
}
ESP_LOGI(TAG, "Using pre-loaded flash encryption key in efuse");
}
return ESP_OK;
}
esp_err_t esp_flash_encrypt_init(void)
{
if (esp_flash_encryption_enabled() || esp_flash_encrypt_initialized_once()) {
return ESP_OK;
}
/* Very first flash encryption pass: generate keys, etc. */
esp_efuse_batch_write_begin(); /* Batch all efuse writes at the end of this function */
/* Before first flash encryption pass, need to initialise key & crypto config */
esp_err_t err = check_and_generate_encryption_keys();
if (err != ESP_OK) {
esp_efuse_batch_write_cancel();
return err;
}
err = esp_flash_encryption_enable_secure_features();
if (err != ESP_OK) {
esp_efuse_batch_write_cancel();
return err;
}
err = esp_efuse_batch_write_commit();
if (err != ESP_OK) {
ESP_LOGE(TAG, "Error programming security eFuses (err=0x%x).", err);
return err;
}
return ESP_OK;
}
/* Encrypt all flash data that should be encrypted */
esp_err_t esp_flash_encrypt_contents(void)
{
esp_err_t err;
esp_partition_info_t partition_table[ESP_PARTITION_TABLE_MAX_ENTRIES];
int num_partitions;
#ifdef CONFIG_SOC_EFUSE_CONSISTS_OF_ONE_KEY_BLOCK
REG_WRITE(SENSITIVE_XTS_AES_KEY_UPDATE_REG, 1);
#endif
err = encrypt_bootloader();
if (err != ESP_OK) {
return err;
}
err = encrypt_and_load_partition_table(partition_table, &num_partitions);
if (err != ESP_OK) {
return err;
}
/* Now iterate the just-loaded partition table, looking for entries to encrypt
*/
/* Go through each partition and encrypt if necessary */
for (int i = 0; i < num_partitions; i++) {
err = encrypt_partition(i, &partition_table[i]);
if (err != ESP_OK) {
return err;
}
}
ESP_LOGD(TAG, "All flash regions checked for encryption pass");
return ESP_OK;
}
esp_err_t esp_flash_encrypt_enable(void)
{
esp_err_t err = ESP_OK;
if (!esp_flash_encryption_enabled()) {
if (esp_flash_encrypt_is_write_protected(true)) {
return ESP_FAIL;
}
size_t flash_crypt_cnt = get_flash_encrypt_cnt_value();
#ifdef CONFIG_SECURE_FLASH_ENCRYPTION_MODE_RELEASE
// Go straight to max, permanently enabled
ESP_LOGI(TAG, "Setting CRYPT_CNT for permanent encryption");
size_t new_flash_crypt_cnt = FLASH_ENC_CNT_MAX - flash_crypt_cnt;
#else
/* Set least significant 0-bit in flash_crypt_cnt */
size_t new_flash_crypt_cnt = 1;
#endif
ESP_LOGD(TAG, "CRYPT_CNT %d -> %d", flash_crypt_cnt, new_flash_crypt_cnt);
err = esp_efuse_write_field_cnt(CRYPT_CNT, new_flash_crypt_cnt);
#if defined(CONFIG_SECURE_FLASH_ENCRYPTION_MODE_RELEASE) && defined(CONFIG_SOC_FLASH_ENCRYPTION_XTS_AES_128_DERIVED)
// For AES128_DERIVED, FE key is 16 bytes and XTS_KEY_LENGTH_256 is 0.
// It is important to protect XTS_KEY_LENGTH_256 from further changing it to 1. Set write protection for this bit.
// Burning WR_DIS_CRYPT_CNT, blocks further changing of eFuses: DOWNLOAD_DIS_MANUAL_ENCRYPT, SPI_BOOT_CRYPT_CNT, [XTS_KEY_LENGTH_256], SECURE_BOOT_EN.
esp_efuse_write_field_bit(WR_DIS_CRYPT_CNT);
#endif
}
ESP_LOGI(TAG, "Flash encryption completed");
#ifdef CONFIG_EFUSE_VIRTUAL
ESP_LOGW(TAG, "Flash encryption not really completed. Must disable virtual efuses");
#endif
return err;
}
static esp_err_t encrypt_bootloader(void)
{
esp_err_t err;
uint32_t image_length;
/* Check for plaintext bootloader (verification will fail if it's already encrypted) */
if (esp_image_verify_bootloader(&image_length) == ESP_OK) {
ESP_LOGD(TAG, "bootloader is plaintext. Encrypting...");
#if CONFIG_SECURE_BOOT_V2_ENABLED
/* The image length obtained from esp_image_verify_bootloader includes the sector boundary padding and the signature block lengths */
if (ESP_BOOTLOADER_OFFSET + image_length > ESP_PARTITION_TABLE_OFFSET) {
ESP_LOGE(TAG, "Bootloader is too large to fit Secure Boot V2 signature sector and partition table (configured offset 0x%x)", ESP_PARTITION_TABLE_OFFSET);
return ESP_ERR_INVALID_SIZE;
}
#endif // CONFIG_SECURE_BOOT_V2_ENABLED
err = esp_flash_encrypt_region(ESP_BOOTLOADER_OFFSET, image_length);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to encrypt bootloader in place: 0x%x", err);
return err;
}
#ifdef CONFIG_SECURE_BOOT_V1_ENABLED
/* If secure boot is enabled and bootloader was plaintext, also
* need to encrypt secure boot IV+digest.
*/
ESP_LOGD(TAG, "Encrypting secure bootloader IV & digest...");
err = esp_flash_encrypt_region(FLASH_OFFS_SECURE_BOOT_IV_DIGEST, FLASH_SECTOR_SIZE);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to encrypt bootloader IV & digest in place: 0x%x", err);
return err;
}
#endif
ESP_LOGI(TAG, "bootloader encrypted successfully");
} else {
ESP_LOGW(TAG, "no valid bootloader was found");
return ESP_ERR_NOT_FOUND;
}
return ESP_OK;
}
static esp_err_t encrypt_and_load_partition_table(esp_partition_info_t *partition_table, int *num_partitions)
{
esp_err_t err;
/* Check for plaintext partition table */
err = bootloader_flash_read(ESP_PARTITION_TABLE_OFFSET, partition_table, ESP_PARTITION_TABLE_MAX_LEN, false);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to read partition table data");
return err;
}
if (esp_partition_table_verify(partition_table, false, num_partitions) == ESP_OK) {
ESP_LOGD(TAG, "partition table is plaintext. Encrypting...");
esp_err_t err = esp_flash_encrypt_region(ESP_PARTITION_TABLE_OFFSET,
FLASH_SECTOR_SIZE);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to encrypt partition table in place. %x", err);
return err;
}
} else {
ESP_LOGE(TAG, "Failed to read partition table data - not plaintext?");
return ESP_ERR_INVALID_STATE;
}
/* Valid partition table loaded */
ESP_LOGI(TAG, "partition table encrypted and loaded successfully");
return ESP_OK;
}
static esp_err_t encrypt_partition(int index, const esp_partition_info_t *partition)
{
esp_err_t err;
bool should_encrypt = (partition->flags & PART_FLAG_ENCRYPTED);
uint32_t size = partition->pos.size;
if (partition->type == PART_TYPE_APP) {
/* check if the partition holds a valid unencrypted app */
esp_image_metadata_t image_data = {};
err = esp_image_verify(ESP_IMAGE_VERIFY,
&partition->pos,
&image_data);
should_encrypt = (err == ESP_OK);
#ifdef SECURE_FLASH_ENCRYPT_ONLY_IMAGE_LEN_IN_APP_PART
if (should_encrypt) {
// Encrypt only the app image instead of encrypting the whole partition
size = image_data.image_len;
}
#endif
} else if ((partition->type == PART_TYPE_DATA && partition->subtype == PART_SUBTYPE_DATA_OTA)
|| (partition->type == PART_TYPE_DATA && partition->subtype == PART_SUBTYPE_DATA_NVS_KEYS)) {
/* check if we have ota data partition and the partition should be encrypted unconditionally */
should_encrypt = true;
}
if (!should_encrypt) {
return ESP_OK;
} else {
/* should_encrypt */
ESP_LOGI(TAG, "Encrypting partition %d at offset 0x%" PRIx32 " (length 0x%" PRIx32 ")...", index, partition->pos.offset, size);
err = esp_flash_encrypt_region(partition->pos.offset, size);
ESP_LOGI(TAG, "Done encrypting");
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to encrypt partition %d", index);
}
return err;
}
}
esp_err_t esp_flash_encrypt_region(uint32_t src_addr, size_t data_length)
{
esp_err_t err;
uint32_t buf[FLASH_SECTOR_SIZE / sizeof(uint32_t)];
if (src_addr % FLASH_SECTOR_SIZE != 0) {
ESP_LOGE(TAG, "esp_flash_encrypt_region bad src_addr 0x%" PRIx32, src_addr);
return ESP_FAIL;
}
wdt_hal_context_t rtc_wdt_ctx = RWDT_HAL_CONTEXT_DEFAULT();
for (size_t i = 0; i < data_length; i += FLASH_SECTOR_SIZE) {
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_feed(&rtc_wdt_ctx);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
uint32_t sec_start = i + src_addr;
err = bootloader_flash_read(sec_start, buf, FLASH_SECTOR_SIZE, false);
if (err != ESP_OK) {
goto flash_failed;
}
err = bootloader_flash_erase_sector(sec_start / FLASH_SECTOR_SIZE);
if (err != ESP_OK) {
goto flash_failed;
}
err = bootloader_flash_write(sec_start, buf, FLASH_SECTOR_SIZE, true);
if (err != ESP_OK) {
goto flash_failed;
}
}
return ESP_OK;
flash_failed:
ESP_LOGE(TAG, "flash operation failed: 0x%x", err);
return err;
}
#endif // CONFIG_SECURE_FLASH_ENC_ENABLED