esp-idf/components/bootloader_support/bootloader_flash/src/bootloader_flash.c

874 wiersze
29 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stddef.h>
#include <bootloader_flash_priv.h>
#include <esp_log.h>
#include <esp_flash_encrypt.h>
#include "sdkconfig.h"
#include "soc/soc_caps.h"
#include "hal/efuse_ll.h"
#include "hal/efuse_hal.h"
#include "hal/spi_flash_ll.h"
#include "rom/spi_flash.h"
#if CONFIG_IDF_TARGET_ESP32
# include "soc/spi_struct.h"
# include "soc/spi_reg.h"
/* SPI flash controller */
# define SPIFLASH SPI1
# define SPI0 SPI0
#else
# include "hal/spimem_flash_ll.h"
# include "soc/spi_mem_struct.h"
# include "soc/spi_mem_reg.h"
/* SPI flash controller */
# define SPIFLASH SPIMEM1
# define SPI0 SPIMEM0
#endif
// This dependency will be removed in the future. IDF-5025
#include "esp_flash.h"
#include "esp_rom_spiflash.h"
#ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
#define ENCRYPTION_IS_VIRTUAL (!efuse_hal_flash_encryption_enabled())
#else
#define ENCRYPTION_IS_VIRTUAL 0
#endif
#define BYTESHIFT(VAR, IDX) (((VAR) >> ((IDX) * 8)) & 0xFF)
#define ISSI_ID 0x9D
#define MXIC_ID 0xC2
#define GD_Q_ID_HIGH 0xC8
#define GD_Q_ID_MID 0x40
#define GD_Q_ID_LOW 0x16
#define ESP_BOOTLOADER_SPIFLASH_BP_MASK_ISSI (BIT7 | BIT5 | BIT4 | BIT3 | BIT2)
#define ESP_BOOTLOADER_SPIFLASH_QE_GD_SR2 BIT1 // QE position when you write 8 bits(for SR2) at one time.
#define ESP_BOOTLOADER_SPIFLASH_QE_SR1_2BYTE BIT9 // QE position when you write 16 bits at one time.
#ifndef BOOTLOADER_BUILD
/* Normal app version maps to spi_flash_mmap.h operations...
*/
static const char *TAG = "bootloader_mmap";
static spi_flash_mmap_handle_t map;
uint32_t bootloader_mmap_get_free_pages(void)
{
return spi_flash_mmap_get_free_pages(SPI_FLASH_MMAP_DATA);
}
const void *bootloader_mmap(uint32_t src_addr, uint32_t size)
{
if (map) {
ESP_EARLY_LOGE(TAG, "tried to bootloader_mmap twice");
return NULL; /* existing mapping in use... */
}
const void *result = NULL;
uint32_t src_page = src_addr & ~(SPI_FLASH_MMU_PAGE_SIZE - 1);
size += (src_addr - src_page);
esp_err_t err = spi_flash_mmap(src_page, size, SPI_FLASH_MMAP_DATA, &result, &map);
if (err != ESP_OK) {
ESP_EARLY_LOGE(TAG, "spi_flash_mmap failed: 0x%x", err);
return NULL;
}
return (void *)((intptr_t)result + (src_addr - src_page));
}
void bootloader_munmap(const void *mapping)
{
if (mapping && map) {
spi_flash_munmap(map);
}
map = 0;
}
esp_err_t bootloader_flash_read(size_t src, void *dest, size_t size, bool allow_decrypt)
{
if (allow_decrypt && esp_flash_encryption_enabled()) {
return esp_flash_read_encrypted(NULL, src, dest, size);
} else {
return esp_flash_read(NULL, dest, src, size);
}
}
esp_err_t bootloader_flash_write(size_t dest_addr, void *src, size_t size, bool write_encrypted)
{
if (write_encrypted && !ENCRYPTION_IS_VIRTUAL) {
return esp_flash_write_encrypted(NULL, dest_addr, src, size);
} else {
return esp_flash_write(NULL, src, dest_addr, size);
}
}
esp_err_t bootloader_flash_erase_sector(size_t sector)
{
// Will de-dependency IDF-5025
return esp_flash_erase_region(NULL, sector * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
}
esp_err_t bootloader_flash_erase_range(uint32_t start_addr, uint32_t size)
{
// Will de-dependency IDF-5025
return esp_flash_erase_region(NULL, start_addr, size);
}
#else //BOOTLOADER_BUILD
/* Bootloader version, uses ROM functions only */
#if CONFIG_IDF_TARGET_ESP32
#include "esp32/rom/cache.h"
#endif
#include "esp_rom_spiflash.h"
#include "esp_rom_sys.h"
#include "hal/mmu_hal.h"
#include "hal/mmu_ll.h"
#include "hal/cache_hal.h"
#include "hal/cache_ll.h"
#if CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/rom/opi_flash.h"
#endif
static const char *TAG = "bootloader_flash";
#if CONFIG_IDF_TARGET_ESP32
/* Use first 50 blocks in MMU for bootloader_mmap,
50th block for bootloader_flash_read
*/
#define MMU_BLOCK0_VADDR SOC_DROM_LOW
#define MMAP_MMU_SIZE (0x320000)
#define MMU_BLOCK50_VADDR (MMU_BLOCK0_VADDR + MMAP_MMU_SIZE)
#define FLASH_READ_VADDR MMU_BLOCK50_VADDR
#else // !CONFIG_IDF_TARGET_ESP32
/* Use first 63 blocks in MMU for bootloader_mmap,
63th block for bootloader_flash_read
*/
#define MMU_BLOCK0_VADDR SOC_DROM_LOW
#if CONFIG_IDF_TARGET_ESP32S2
/**
* On ESP32S2 we use `(SOC_DRAM0_CACHE_ADDRESS_HIGH - SOC_DRAM0_CACHE_ADDRESS_LOW)`.
* As this code is in bootloader, we keep this on ESP32S2
*/
#define MMAP_MMU_SIZE (SOC_DRAM0_CACHE_ADDRESS_HIGH - SOC_DRAM0_CACHE_ADDRESS_LOW) // This mmu size means that the mmu size to be mapped
#else
#define MMAP_MMU_SIZE (SOC_DRAM_FLASH_ADDRESS_HIGH - SOC_DRAM_FLASH_ADDRESS_LOW) // This mmu size means that the mmu size to be mapped
#endif
#define MMU_BLOCK63_VADDR (MMU_BLOCK0_VADDR + MMAP_MMU_SIZE - SPI_FLASH_MMU_PAGE_SIZE)
#define FLASH_READ_VADDR MMU_BLOCK63_VADDR
#endif
#define MMU_FREE_PAGES (MMAP_MMU_SIZE / CONFIG_MMU_PAGE_SIZE)
static bool mapped;
// Current bootloader mapping (ab)used for bootloader_read()
static uint32_t current_read_mapping = UINT32_MAX;
uint32_t bootloader_mmap_get_free_pages(void)
{
/**
* Allow mapping up to 50 of the 51 available MMU blocks (last one used for reads)
* Since, bootloader_mmap function below assumes it to be 0x320000 (50 pages), we can safely do this.
*/
return MMU_FREE_PAGES;
}
const void *bootloader_mmap(uint32_t src_paddr, uint32_t size)
{
if (mapped) {
ESP_EARLY_LOGE(TAG, "tried to bootloader_mmap twice");
return NULL; /* can't map twice */
}
if (size > MMAP_MMU_SIZE) {
ESP_EARLY_LOGE(TAG, "bootloader_mmap excess size %" PRIx32, size);
return NULL;
}
uint32_t src_paddr_aligned = src_paddr & MMU_FLASH_MASK;
//The addr is aligned, so we add the mask off length to the size, to make sure the corresponding buses are enabled.
uint32_t size_after_paddr_aligned = (src_paddr - src_paddr_aligned) + size;
/**
* @note 1
* Will add here a check to make sure the vaddr is on read-only and executable buses, since we use others for psram
* Now simply check if it's valid vaddr, didn't check if it's readable, writable or executable.
* TODO: IDF-4710
*/
if (mmu_ll_check_valid_ext_vaddr_region(0, MMU_BLOCK0_VADDR, size_after_paddr_aligned, MMU_VADDR_DATA | MMU_VADDR_INSTRUCTION) == 0) {
ESP_EARLY_LOGE(TAG, "vaddr not valid");
return NULL;
}
//-------------stop cache to do the MMU mapping--------------
#if CONFIG_IDF_TARGET_ESP32
Cache_Read_Disable(0);
Cache_Flush(0);
#else
cache_hal_disable(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_ALL);
#endif
//---------------Do mapping------------------------
ESP_EARLY_LOGD(TAG, "rodata starts from paddr=0x%08" PRIx32 ", size=0x%" PRIx32 ", will be mapped to vaddr=0x%08" PRIx32, src_paddr, size, (uint32_t)MMU_BLOCK0_VADDR);
#if CONFIG_IDF_TARGET_ESP32
uint32_t count = GET_REQUIRED_MMU_PAGES(size, src_paddr);
int e = cache_flash_mmu_set(0, 0, MMU_BLOCK0_VADDR, src_paddr_aligned, 64, count);
ESP_EARLY_LOGV(TAG, "after mapping, starting from paddr=0x%08" PRIx32 " and vaddr=0x%08" PRIx32 ", 0x%" PRIx32 " bytes are mapped", src_paddr_aligned, (uint32_t)MMU_BLOCK0_VADDR, count * SPI_FLASH_MMU_PAGE_SIZE);
if (e != 0) {
ESP_EARLY_LOGE(TAG, "cache_flash_mmu_set failed: %d", e);
Cache_Read_Enable(0);
return NULL;
}
#else
/**
* This hal won't return error, it assumes the inputs are valid. The related check should be done in `bootloader_mmap()`.
* See above comments (note 1) about IDF-4710
*/
uint32_t actual_mapped_len = 0;
mmu_hal_map_region(0, MMU_TARGET_FLASH0, MMU_BLOCK0_VADDR, src_paddr_aligned, size_after_paddr_aligned, &actual_mapped_len);
ESP_EARLY_LOGV(TAG, "after mapping, starting from paddr=0x%08" PRIx32 " and vaddr=0x%08" PRIx32 ", 0x%" PRIx32 " bytes are mapped", src_paddr_aligned, (uint32_t)MMU_BLOCK0_VADDR, actual_mapped_len);
#endif
/**
* If after mapping, your code stucks, it possibly means that some of the buses are not enabled, check `cache_ll_l1_enable_bus()`
* For now, keep this unchanged.
*/
//-------------enable cache--------------
#if CONFIG_IDF_TARGET_ESP32
Cache_Read_Enable(0);
#else
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
cache_ll_invalidate_addr(CACHE_LL_LEVEL_ALL, CACHE_TYPE_ALL, CACHE_LL_ID_ALL, MMU_BLOCK0_VADDR, actual_mapped_len);
#endif
cache_hal_enable(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_ALL);
#endif
mapped = true;
return (void *)(MMU_BLOCK0_VADDR + (src_paddr - src_paddr_aligned));
}
void bootloader_munmap(const void *mapping)
{
if (mapped) {
#if CONFIG_IDF_TARGET_ESP32
/* Full MMU reset */
Cache_Read_Disable(0);
Cache_Flush(0);
mmu_init(0);
#else
cache_hal_disable(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_ALL);
mmu_hal_unmap_all();
#endif
mapped = false;
current_read_mapping = UINT32_MAX;
}
}
static esp_err_t spi_to_esp_err(esp_rom_spiflash_result_t r)
{
switch (r) {
case ESP_ROM_SPIFLASH_RESULT_OK:
return ESP_OK;
case ESP_ROM_SPIFLASH_RESULT_ERR:
return ESP_ERR_FLASH_OP_FAIL;
case ESP_ROM_SPIFLASH_RESULT_TIMEOUT:
return ESP_ERR_FLASH_OP_TIMEOUT;
default:
return ESP_FAIL;
}
}
static esp_err_t bootloader_flash_read_no_decrypt(size_t src_addr, void *dest, size_t size)
{
#if CONFIG_IDF_TARGET_ESP32
Cache_Read_Disable(0);
Cache_Flush(0);
#else
cache_hal_disable(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_ALL);
#endif
esp_rom_spiflash_result_t r = esp_rom_spiflash_read(src_addr, dest, size);
#if CONFIG_IDF_TARGET_ESP32
Cache_Read_Enable(0);
#else
cache_hal_enable(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_ALL);
#endif
return spi_to_esp_err(r);
}
static esp_err_t bootloader_flash_read_allow_decrypt(size_t src_addr, void *dest, size_t size)
{
uint32_t *dest_words = (uint32_t *)dest;
for (size_t word = 0; word < size / 4; word++) {
uint32_t word_src = src_addr + word * 4; /* Read this offset from flash */
uint32_t map_at = word_src & MMU_FLASH_MASK; /* Map this 64KB block from flash */
uint32_t *map_ptr;
/* Move the 64KB mmu mapping window to fit map_at */
if (map_at != current_read_mapping) {
//----------Stop cache for mapping----------------
#if CONFIG_IDF_TARGET_ESP32
Cache_Read_Disable(0);
Cache_Flush(0);
#else
cache_hal_disable(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_ALL);
#endif
//---------------Do mapping------------------------
ESP_EARLY_LOGD(TAG, "mmu set block paddr=0x%08" PRIx32 " (was 0x%08" PRIx32 ")", map_at, current_read_mapping);
#if CONFIG_IDF_TARGET_ESP32
//Should never fail if we only map a SPI_FLASH_MMU_PAGE_SIZE to the vaddr starting from FLASH_READ_VADDR
int e = cache_flash_mmu_set(0, 0, FLASH_READ_VADDR, map_at, 64, 1);
assert(e == 0);
#else
uint32_t actual_mapped_len = 0;
mmu_hal_map_region(0, MMU_TARGET_FLASH0, FLASH_READ_VADDR, map_at, SPI_FLASH_MMU_PAGE_SIZE - 1, &actual_mapped_len);
#endif
current_read_mapping = map_at;
//-------------enable cache-------------------------
#if CONFIG_IDF_TARGET_ESP32
Cache_Read_Enable(0);
#else
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
cache_ll_invalidate_addr(CACHE_LL_LEVEL_ALL, CACHE_TYPE_ALL, CACHE_LL_ID_ALL, MMU_BLOCK0_VADDR, actual_mapped_len);
#endif
cache_hal_enable(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_ALL);
#endif
}
map_ptr = (uint32_t *)(FLASH_READ_VADDR + (word_src - map_at));
dest_words[word] = *map_ptr;
}
return ESP_OK;
}
esp_err_t bootloader_flash_read(size_t src_addr, void *dest, size_t size, bool allow_decrypt)
{
if (src_addr & 3) {
ESP_EARLY_LOGE(TAG, "bootloader_flash_read src_addr 0x%x not 4-byte aligned", src_addr);
return ESP_FAIL;
}
if (size & 3) {
ESP_EARLY_LOGE(TAG, "bootloader_flash_read size 0x%x not 4-byte aligned", size);
return ESP_FAIL;
}
if ((intptr_t)dest & 3) {
ESP_EARLY_LOGE(TAG, "bootloader_flash_read dest 0x%x not 4-byte aligned", (intptr_t)dest);
return ESP_FAIL;
}
if (allow_decrypt) {
return bootloader_flash_read_allow_decrypt(src_addr, dest, size);
} else {
return bootloader_flash_read_no_decrypt(src_addr, dest, size);
}
}
esp_err_t bootloader_flash_write(size_t dest_addr, void *src, size_t size, bool write_encrypted)
{
esp_err_t err;
size_t alignment = write_encrypted ? 32 : 4;
if ((dest_addr % alignment) != 0) {
ESP_EARLY_LOGE(TAG, "bootloader_flash_write dest_addr 0x%x not %d-byte aligned", dest_addr, alignment);
return ESP_FAIL;
}
if ((size % alignment) != 0) {
ESP_EARLY_LOGE(TAG, "bootloader_flash_write size 0x%x not %d-byte aligned", size, alignment);
return ESP_FAIL;
}
if (((intptr_t)src % 4) != 0) {
ESP_EARLY_LOGE(TAG, "bootloader_flash_write src 0x%x not 4 byte aligned", (intptr_t)src);
return ESP_FAIL;
}
err = bootloader_flash_unlock();
if (err != ESP_OK) {
return err;
}
if (write_encrypted && !ENCRYPTION_IS_VIRTUAL) {
return spi_to_esp_err(esp_rom_spiflash_write_encrypted(dest_addr, src, size));
} else {
return spi_to_esp_err(esp_rom_spiflash_write(dest_addr, src, size));
}
}
esp_err_t bootloader_flash_erase_sector(size_t sector)
{
return spi_to_esp_err(esp_rom_spiflash_erase_sector(sector));
}
esp_err_t bootloader_flash_erase_range(uint32_t start_addr, uint32_t size)
{
if (start_addr % FLASH_SECTOR_SIZE != 0) {
return ESP_ERR_INVALID_ARG;
}
if (size % FLASH_SECTOR_SIZE != 0) {
return ESP_ERR_INVALID_SIZE;
}
size_t start = start_addr / FLASH_SECTOR_SIZE;
size_t end = start + size / FLASH_SECTOR_SIZE;
const size_t sectors_per_block = FLASH_BLOCK_SIZE / FLASH_SECTOR_SIZE;
esp_rom_spiflash_result_t rc = ESP_ROM_SPIFLASH_RESULT_OK;
for (size_t sector = start; sector != end && rc == ESP_ROM_SPIFLASH_RESULT_OK; ) {
if (sector % sectors_per_block == 0 && end - sector >= sectors_per_block) {
rc = esp_rom_spiflash_erase_block(sector / sectors_per_block);
sector += sectors_per_block;
} else {
rc = esp_rom_spiflash_erase_sector(sector);
++sector;
}
}
return spi_to_esp_err(rc);
}
#if CONFIG_BOOTLOADER_CACHE_32BIT_ADDR_QUAD_FLASH || CONFIG_BOOTLOADER_CACHE_32BIT_ADDR_OCTAL_FLASH
void bootloader_flash_32bits_address_map_enable(esp_rom_spiflash_read_mode_t flash_mode)
{
esp_rom_opiflash_spi0rd_t cache_rd = {};
switch (flash_mode) {
case ESP_ROM_SPIFLASH_DOUT_MODE:
cache_rd.addr_bit_len = 32;
cache_rd.dummy_bit_len = 8;
cache_rd.cmd = CMD_FASTRD_DUAL_4B;
cache_rd.cmd_bit_len = 8;
break;
case ESP_ROM_SPIFLASH_DIO_MODE:
cache_rd.addr_bit_len = 32;
cache_rd.dummy_bit_len = 4;
cache_rd.cmd = CMD_FASTRD_DIO_4B;
cache_rd.cmd_bit_len = 8;
break;
case ESP_ROM_SPIFLASH_QOUT_MODE:
cache_rd.addr_bit_len = 32;
cache_rd.dummy_bit_len = 8;
cache_rd.cmd = CMD_FASTRD_QUAD_4B;
cache_rd.cmd_bit_len = 8;
break;
case ESP_ROM_SPIFLASH_QIO_MODE:
cache_rd.addr_bit_len = 32;
cache_rd.dummy_bit_len = 6;
cache_rd.cmd = CMD_FASTRD_QIO_4B;
cache_rd.cmd_bit_len = 8;
break;
case ESP_ROM_SPIFLASH_FASTRD_MODE:
cache_rd.addr_bit_len = 32;
cache_rd.dummy_bit_len = 8;
cache_rd.cmd = CMD_FASTRD_4B;
cache_rd.cmd_bit_len = 8;
break;
case ESP_ROM_SPIFLASH_SLOWRD_MODE:
cache_rd.addr_bit_len = 32;
cache_rd.dummy_bit_len = 0;
cache_rd.cmd = CMD_SLOWRD_4B;
cache_rd.cmd_bit_len = 8;
break;
default:
assert(false);
break;
}
cache_hal_disable(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_ALL);
esp_rom_opiflash_cache_mode_config(flash_mode, &cache_rd);
cache_hal_enable(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_ALL);
}
#endif
#endif // BOOTLOADER_BUILD
FORCE_INLINE_ATTR bool is_issi_chip(const esp_rom_spiflash_chip_t* chip)
{
return BYTESHIFT(chip->device_id, 2) == ISSI_ID;
}
// For GD25Q32, GD25Q64, GD25Q127C, GD25Q128, which use single command to read/write different SR.
FORCE_INLINE_ATTR bool is_gd_q_chip(const esp_rom_spiflash_chip_t* chip)
{
return BYTESHIFT(chip->device_id, 2) == GD_Q_ID_HIGH && BYTESHIFT(chip->device_id, 1) == GD_Q_ID_MID && BYTESHIFT(chip->device_id, 0) >= GD_Q_ID_LOW;
}
FORCE_INLINE_ATTR bool is_mxic_chip(const esp_rom_spiflash_chip_t* chip)
{
return BYTESHIFT(chip->device_id, 2) == MXIC_ID;
}
esp_err_t IRAM_ATTR __attribute__((weak)) bootloader_flash_unlock(void)
{
// At the beginning status == new_status == status_sr2 == new_status_sr2 == 0.
// If the register doesn't need to be updated, keep them the same (0), so that no command will be actually sent.
uint16_t status = 0; // status for SR1 or SR1+SR2 if writing SR with 01H + 2Bytes.
uint16_t new_status = 0;
uint8_t status_sr2 = 0; // status_sr2 for SR2.
uint8_t new_status_sr2 = 0;
uint8_t sr1_bit_num = 0;
esp_err_t err = ESP_OK;
esp_rom_spiflash_wait_idle(&g_rom_flashchip);
if (is_issi_chip(&g_rom_flashchip) || is_mxic_chip(&g_rom_flashchip)) {
// Currently ISSI & MXIC share the same command and register layout, which is different from the default model.
// If any code here needs to be modified, check both chips.
status = bootloader_execute_flash_command(CMD_RDSR, 0, 0, 8);
/* Clear all bits in the mask.
(This is different from ROM esp_rom_spiflash_unlock, which keeps all bits as-is.)
*/
sr1_bit_num = 8;
new_status = status & (~ESP_BOOTLOADER_SPIFLASH_BP_MASK_ISSI);
} else if (is_gd_q_chip(&g_rom_flashchip)) {
/* The GD chips behaviour is to clear all bits in SR1 and clear bits in SR2 except QE bit.
Use 01H to write SR1 and 31H to write SR2.
*/
status = bootloader_execute_flash_command(CMD_RDSR, 0, 0, 8);
sr1_bit_num = 8;
new_status = 0;
status_sr2 = bootloader_execute_flash_command(CMD_RDSR2, 0, 0, 8);
new_status_sr2 = status_sr2 & ESP_BOOTLOADER_SPIFLASH_QE_GD_SR2;
} else {
/* For common behaviour, like XMC chips, Use 01H+2Bytes to write both SR1 and SR2*/
status = bootloader_execute_flash_command(CMD_RDSR, 0, 0, 8) | (bootloader_execute_flash_command(CMD_RDSR2, 0, 0, 8) << 8);
/* Clear all bits except QE, if it is set.
(This is different from ROM esp_rom_spiflash_unlock, which keeps all bits as-is.)
*/
sr1_bit_num = 16;
new_status = status & ESP_BOOTLOADER_SPIFLASH_QE_SR1_2BYTE;
}
// When SR is written, set to true to indicate that WRDI need to be sent to ensure the protection is ON before return.
bool status_written = false;
// Skip if nothing needs to be changed. Meaningless writing to SR increases the risk during write and wastes time.
if (status != new_status) {
esp_rom_spiflash_wait_idle(&g_rom_flashchip);
bootloader_execute_flash_command(CMD_WREN, 0, 0, 0);
bootloader_execute_flash_command(CMD_WRSR, new_status, sr1_bit_num, 0);
status_written = true;
}
if (status_sr2 != new_status_sr2) {
esp_rom_spiflash_wait_idle(&g_rom_flashchip);
bootloader_execute_flash_command(CMD_WREN, 0, 0, 0);
bootloader_execute_flash_command(CMD_WRSR2, new_status_sr2, 8, 0);
status_written = true;
}
if (status_written) {
//Call esp_rom_spiflash_wait_idle to make sure previous WRSR is completed.
esp_rom_spiflash_wait_idle(&g_rom_flashchip);
bootloader_execute_flash_command(CMD_WRDI, 0, 0, 0);
}
return err;
}
IRAM_ATTR uint32_t bootloader_flash_execute_command_common(
uint8_t command,
uint32_t addr_len, uint32_t address,
uint8_t dummy_len,
uint8_t mosi_len, uint32_t mosi_data,
uint8_t miso_len)
{
assert(mosi_len <= 32);
assert(miso_len <= 32);
uint32_t old_ctrl_reg = SPIFLASH.ctrl.val;
uint32_t old_user_reg = SPIFLASH.user.val;
uint32_t old_user1_reg = SPIFLASH.user1.val;
uint32_t old_user2_reg = SPIFLASH.user2.val;
// Clear ctrl regs.
SPIFLASH.ctrl.val = 0;
#if CONFIG_IDF_TARGET_ESP32
spi_flash_ll_set_wp_level(&SPIFLASH, true);
#else
spimem_flash_ll_set_wp_level(&SPIFLASH, true);
#endif
//command phase
SPIFLASH.user.usr_command = 1;
SPIFLASH.user2.usr_command_bitlen = 7;
SPIFLASH.user2.usr_command_value = command;
//addr phase
SPIFLASH.user.usr_addr = addr_len > 0;
SPIFLASH.user1.usr_addr_bitlen = addr_len - 1;
#if CONFIG_IDF_TARGET_ESP32
SPIFLASH.addr = (addr_len > 0)? (address << (32-addr_len)) : 0;
#else
SPIFLASH.addr = address;
#endif
//dummy phase
uint32_t total_dummy = dummy_len;
if (miso_len > 0) {
total_dummy += g_rom_spiflash_dummy_len_plus[1];
}
SPIFLASH.user.usr_dummy = total_dummy > 0;
SPIFLASH.user1.usr_dummy_cyclelen = total_dummy - 1;
//output data
SPIFLASH.user.usr_mosi = mosi_len > 0;
#if CONFIG_IDF_TARGET_ESP32
SPIFLASH.mosi_dlen.usr_mosi_dbitlen = mosi_len ? (mosi_len - 1) : 0;
#else
SPIFLASH.mosi_dlen.usr_mosi_bit_len = mosi_len ? (mosi_len - 1) : 0;
#endif
SPIFLASH.data_buf[0] = mosi_data;
//input data
SPIFLASH.user.usr_miso = miso_len > 0;
#if CONFIG_IDF_TARGET_ESP32
SPIFLASH.miso_dlen.usr_miso_dbitlen = miso_len ? (miso_len - 1) : 0;
#else
SPIFLASH.miso_dlen.usr_miso_bit_len = miso_len ? (miso_len - 1) : 0;
#endif
SPIFLASH.cmd.usr = 1;
while (SPIFLASH.cmd.usr != 0) {
}
SPIFLASH.ctrl.val = old_ctrl_reg;
SPIFLASH.user.val = old_user_reg;
SPIFLASH.user1.val = old_user1_reg;
SPIFLASH.user2.val = old_user2_reg;
uint32_t ret = SPIFLASH.data_buf[0];
if (miso_len < 32) {
//set unused bits to 0
ret &= ~(UINT32_MAX << miso_len);
}
return ret;
}
uint32_t IRAM_ATTR bootloader_execute_flash_command(uint8_t command, uint32_t mosi_data, uint8_t mosi_len, uint8_t miso_len)
{
const uint8_t addr_len = 0;
const uint8_t address = 0;
const uint8_t dummy_len = 0;
return bootloader_flash_execute_command_common(command, addr_len, address,
dummy_len, mosi_len, mosi_data, miso_len);
}
// cmd(0x5A) + 24bit address + 8 cycles dummy
uint32_t IRAM_ATTR bootloader_flash_read_sfdp(uint32_t sfdp_addr, unsigned int miso_byte_num)
{
assert(miso_byte_num <= 4);
const uint8_t command = CMD_RDSFDP;
const uint8_t addr_len = 24;
const uint8_t dummy_len = 8;
const uint8_t mosi_len = 0;
const uint32_t mosi_data = 0;
const uint8_t miso_len = miso_byte_num * 8;
return bootloader_flash_execute_command_common(command, addr_len, sfdp_addr,
dummy_len, mosi_len, mosi_data, miso_len);
}
void bootloader_enable_wp(void)
{
bootloader_execute_flash_command(CMD_WRDI, 0, 0, 0); /* Exit OTP mode */
}
uint32_t IRAM_ATTR bootloader_read_flash_id(void)
{
uint32_t id = bootloader_execute_flash_command(CMD_RDID, 0, 0, 24);
id = ((id & 0xff) << 16) | ((id >> 16) & 0xff) | (id & 0xff00);
return id;
}
void bootloader_spi_flash_reset(void)
{
bootloader_execute_flash_command(CMD_RESETEN, 0, 0, 0);
bootloader_execute_flash_command(CMD_RESET, 0, 0, 0);
}
/*******************************************************************************
* XMC startup flow
******************************************************************************/
#define XMC_SUPPORT CONFIG_BOOTLOADER_FLASH_XMC_SUPPORT
#define XMC_VENDOR_ID 0x20
#if BOOTLOADER_BUILD
#define BOOTLOADER_FLASH_LOG(level, ...) ESP_EARLY_LOG##level(TAG, ##__VA_ARGS__)
#else
static DRAM_ATTR char bootloader_flash_tag[] = "bootloader_flash";
#define BOOTLOADER_FLASH_LOG(level, ...) ESP_DRAM_LOG##level(bootloader_flash_tag, ##__VA_ARGS__)
#endif
#if XMC_SUPPORT
//strictly check the model
static IRAM_ATTR bool is_xmc_chip_strict(uint32_t rdid)
{
uint32_t vendor_id = BYTESHIFT(rdid, 2);
uint32_t mfid = BYTESHIFT(rdid, 1);
uint32_t cpid = BYTESHIFT(rdid, 0);
if (vendor_id != XMC_VENDOR_ID) {
return false;
}
bool matched = false;
if (mfid == 0x40) {
if (cpid >= 0x13 && cpid <= 0x20) {
matched = true;
}
} else if (mfid == 0x41) {
if (cpid >= 0x17 && cpid <= 0x20) {
matched = true;
}
} else if (mfid == 0x50) {
if (cpid >= 0x15 && cpid <= 0x16) {
matched = true;
}
}
return matched;
}
esp_err_t IRAM_ATTR bootloader_flash_xmc_startup(void)
{
// If the RDID value is a valid XMC one, may skip the flow
const bool fast_check = true;
if (fast_check && is_xmc_chip_strict(g_rom_flashchip.device_id)) {
BOOTLOADER_FLASH_LOG(D, "XMC chip detected by RDID (%08" PRIX32 "), skip.", g_rom_flashchip.device_id);
return ESP_OK;
}
// Check the Manufacturer ID in SFDP registers (JEDEC standard). If not XMC chip, no need to run the flow
const int sfdp_mfid_addr = 0x10;
uint8_t mf_id = (bootloader_flash_read_sfdp(sfdp_mfid_addr, 1) & 0xff);
if (mf_id != XMC_VENDOR_ID) {
BOOTLOADER_FLASH_LOG(D, "non-XMC chip detected by SFDP Read (%02X), skip.", mf_id);
return ESP_OK;
}
BOOTLOADER_FLASH_LOG(I, "XM25QHxxC startup flow");
// Enter DPD
bootloader_execute_flash_command(0xB9, 0, 0, 0);
// Enter UDPD
bootloader_execute_flash_command(0x79, 0, 0, 0);
// Exit UDPD
bootloader_execute_flash_command(0xFF, 0, 0, 0);
// Delay tXUDPD
esp_rom_delay_us(2000);
// Release Power-down
bootloader_execute_flash_command(0xAB, 0, 0, 0);
esp_rom_delay_us(20);
// Read flash ID and check again
g_rom_flashchip.device_id = bootloader_read_flash_id();
if (!is_xmc_chip_strict(g_rom_flashchip.device_id)) {
BOOTLOADER_FLASH_LOG(E, "XMC flash startup fail");
return ESP_FAIL;
}
return ESP_OK;
}
#else
//only compare the vendor id
static IRAM_ATTR bool is_xmc_chip(uint32_t rdid)
{
uint32_t vendor_id = (rdid >> 16) & 0xFF;
return (vendor_id == XMC_VENDOR_ID);
}
esp_err_t IRAM_ATTR bootloader_flash_xmc_startup(void)
{
if (is_xmc_chip(g_rom_flashchip.device_id)) {
BOOTLOADER_FLASH_LOG(E, "XMC chip detected (%08X) while support disabled.", g_rom_flashchip.device_id);
return ESP_FAIL;
}
return ESP_OK;
}
#endif //XMC_SUPPORT
FORCE_INLINE_ATTR void bootloader_mspi_reset(void)
{
#if CONFIG_IDF_TARGET_ESP32
SPI1.slave.sync_reset = 0;
SPI0.slave.sync_reset = 0;
SPI1.slave.sync_reset = 1;
SPI0.slave.sync_reset = 1;
SPI1.slave.sync_reset = 0;
SPI0.slave.sync_reset = 0;
#else
SPIMEM1.ctrl2.sync_reset = 0;
SPIMEM0.ctrl2.sync_reset = 0;
SPIMEM1.ctrl2.sync_reset = 1;
SPIMEM0.ctrl2.sync_reset = 1;
SPIMEM1.ctrl2.sync_reset = 0;
SPIMEM0.ctrl2.sync_reset = 0;
#endif
}
esp_err_t IRAM_ATTR bootloader_flash_reset_chip(void)
{
bootloader_mspi_reset();
// Seems that sync_reset cannot make host totally idle.'
// Sending an extra(useless) command to make the host idle in order to send reset command.
bootloader_execute_flash_command(0x05, 0, 0, 0);
#if CONFIG_IDF_TARGET_ESP32
if (SPI1.ext2.st != 0)
#else
if (!spimem_flash_ll_host_idle(&SPIMEM1))
#endif
{
return ESP_FAIL;
}
bootloader_execute_flash_command(0x66, 0, 0, 0);
bootloader_execute_flash_command(0x99, 0, 0, 0);
return ESP_OK;
}
bool IRAM_ATTR bootloader_flash_is_octal_mode_enabled(void)
{
#if SOC_SPI_MEM_SUPPORT_OPI_MODE
return efuse_ll_get_flash_type();
#else
return false;
#endif
}
esp_rom_spiflash_read_mode_t bootloader_flash_get_spi_mode(void)
{
esp_rom_spiflash_read_mode_t spi_mode = ESP_ROM_SPIFLASH_FASTRD_MODE;
uint32_t spi_ctrl = spi_flash_ll_get_ctrl_val(&SPI0);
#if CONFIG_IDF_TARGET_ESP32
if (spi_ctrl & SPI_FREAD_QIO) {
spi_mode = ESP_ROM_SPIFLASH_QIO_MODE;
} else if (spi_ctrl & SPI_FREAD_QUAD) {
spi_mode = ESP_ROM_SPIFLASH_QOUT_MODE;
} else if (spi_ctrl & SPI_FREAD_DIO) {
spi_mode = ESP_ROM_SPIFLASH_DIO_MODE;
} else if (spi_ctrl & SPI_FREAD_DUAL) {
spi_mode = ESP_ROM_SPIFLASH_DOUT_MODE;
} else if (spi_ctrl & SPI_FASTRD_MODE) {
spi_mode = ESP_ROM_SPIFLASH_FASTRD_MODE;
} else {
spi_mode = ESP_ROM_SPIFLASH_SLOWRD_MODE;
}
#else
if (spi_ctrl & SPI_MEM_FREAD_QIO) {
spi_mode = ESP_ROM_SPIFLASH_QIO_MODE;
} else if (spi_ctrl & SPI_MEM_FREAD_QUAD) {
spi_mode = ESP_ROM_SPIFLASH_QOUT_MODE;
} else if (spi_ctrl & SPI_MEM_FREAD_DIO) {
spi_mode = ESP_ROM_SPIFLASH_DIO_MODE;
} else if (spi_ctrl & SPI_MEM_FREAD_DUAL) {
spi_mode = ESP_ROM_SPIFLASH_DOUT_MODE;
} else if (spi_ctrl & SPI_MEM_FASTRD_MODE) {
spi_mode = ESP_ROM_SPIFLASH_FASTRD_MODE;
} else {
spi_mode = ESP_ROM_SPIFLASH_SLOWRD_MODE;
}
#endif
return spi_mode;
}