esp-idf/components/esp_driver_ledc/src/ledc.c

1581 wiersze
71 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <string.h>
#include <sys/param.h>
#include "esp_types.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/idf_additions.h"
#include "esp_log.h"
#include "esp_check.h"
#include "soc/gpio_periph.h"
#include "soc/ledc_periph.h"
#include "esp_clk_tree.h"
#include "soc/soc_caps.h"
#include "hal/ledc_hal.h"
#include "hal/gpio_hal.h"
#include "driver/ledc.h"
#include "esp_rom_gpio.h"
#include "esp_rom_sys.h"
#include "clk_ctrl_os.h"
#include "esp_private/periph_ctrl.h"
#include "esp_memory_utils.h"
static __attribute__((unused)) const char *LEDC_TAG = "ledc";
#define LEDC_CHECK(a, str, ret_val) ESP_RETURN_ON_FALSE(a, ret_val, LEDC_TAG, "%s", str)
#define LEDC_ARG_CHECK(a, param) ESP_RETURN_ON_FALSE(a, ESP_ERR_INVALID_ARG, LEDC_TAG, param " argument is invalid")
#define LEDC_CHECK_ISR(a, str, ret_val) ESP_RETURN_ON_FALSE_ISR(a, ret_val, LEDC_TAG, "%s", str)
#define LEDC_ARG_CHECK_ISR(a, param) ESP_RETURN_ON_FALSE_ISR(a, ESP_ERR_INVALID_ARG, LEDC_TAG, param " argument is invalid")
#define LEDC_CLK_NOT_FOUND 0
#define LEDC_SLOW_CLK_UNINIT -1
#define LEDC_TIMER_SPECIFIC_CLK_UNINIT -1
// Precision degree only affects RC_FAST, other clock sources' frequences are fixed values
// For targets that do not support RC_FAST calibration, can only use its approx. value. Precision degree other than
// APPROX will trigger LOGW during the call to `esp_clk_tree_src_get_freq_hz`.
#if SOC_CLK_RC_FAST_SUPPORT_CALIBRATION
#define LEDC_CLK_SRC_FREQ_PRECISION ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED
#else
#define LEDC_CLK_SRC_FREQ_PRECISION ESP_CLK_TREE_SRC_FREQ_PRECISION_APPROX
#endif
#if !SOC_RCC_IS_INDEPENDENT
#define LEDC_BUS_CLOCK_ATOMIC() PERIPH_RCC_ATOMIC()
#else
#define LEDC_BUS_CLOCK_ATOMIC()
#endif
#if SOC_PERIPH_CLK_CTRL_SHARED
#define LEDC_FUNC_CLOCK_ATOMIC() PERIPH_RCC_ATOMIC()
#else
#define LEDC_FUNC_CLOCK_ATOMIC()
#endif
typedef enum {
LEDC_FSM_IDLE,
LEDC_FSM_HW_FADE,
LEDC_FSM_ISR_CAL,
LEDC_FSM_KILLED_PENDING,
} ledc_fade_fsm_t;
typedef struct {
ledc_mode_t speed_mode;
ledc_duty_direction_t direction;
uint32_t target_duty;
int cycle_num;
int scale;
ledc_fade_mode_t mode;
SemaphoreHandle_t ledc_fade_sem;
SemaphoreHandle_t ledc_fade_mux;
ledc_cb_t ledc_fade_callback;
void *cb_user_arg;
volatile ledc_fade_fsm_t fsm;
} ledc_fade_t;
typedef struct {
ledc_hal_context_t ledc_hal; /*!< LEDC hal context */
ledc_slow_clk_sel_t glb_clk; /*!< LEDC global clock selection */
bool timer_is_stopped[LEDC_TIMER_MAX]; /*!< Indicates whether each timer has been stopped */
bool glb_clk_is_acquired[LEDC_TIMER_MAX]; /*!< Tracks whether the global clock is being acquired by each timer */
#if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
ledc_clk_src_t timer_specific_clk[LEDC_TIMER_MAX]; /*!< Tracks the timer-specific clock selection for each timer */
#endif
} ledc_obj_t;
static ledc_obj_t *p_ledc_obj[LEDC_SPEED_MODE_MAX] = {0};
static ledc_fade_t *s_ledc_fade_rec[LEDC_SPEED_MODE_MAX][LEDC_CHANNEL_MAX];
static ledc_isr_handle_t s_ledc_fade_isr_handle = NULL;
static portMUX_TYPE ledc_spinlock = portMUX_INITIALIZER_UNLOCKED;
static _lock_t s_ledc_mutex[LEDC_SPEED_MODE_MAX];
#define LEDC_VAL_NO_CHANGE (-1)
#define LEDC_DUTY_NUM_MAX LEDC_LL_DUTY_NUM_MAX // Maximum steps per hardware fade
#define LEDC_DUTY_DECIMAL_BIT_NUM (4)
#define LEDC_TIMER_DIV_NUM_MAX (0x3FFFF)
#define LEDC_FADE_TOO_SLOW_STR "LEDC FADE TOO SLOW"
#define LEDC_FADE_TOO_FAST_STR "LEDC FADE TOO FAST"
#define DIM(array) (sizeof(array)/sizeof(*array))
#define LEDC_IS_DIV_INVALID(div) ((div) <= LEDC_LL_FRACTIONAL_MAX || (div) > LEDC_TIMER_DIV_NUM_MAX)
static __attribute__((unused)) const char *LEDC_NOT_INIT = "LEDC is not initialized";
static __attribute__((unused)) const char *LEDC_FADE_SERVICE_ERR_STR = "LEDC fade service not installed";
static __attribute__((unused)) const char *LEDC_FADE_INIT_ERROR_STR = "LEDC fade channel init error, not enough memory or service not installed";
//This value will be calibrated when in use.
static uint32_t s_ledc_slow_clk_rc_fast_freq = 0;
static const ledc_slow_clk_sel_t s_glb_clks[] = LEDC_LL_GLOBAL_CLOCKS;
#if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
static const ledc_clk_src_t s_timer_specific_clks[] = LEDC_LL_TIMER_SPECIFIC_CLOCKS;
#endif
static void ledc_ls_timer_update(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
{
if (speed_mode == LEDC_LOW_SPEED_MODE) {
ledc_hal_ls_timer_update(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
}
}
static IRAM_ATTR void ledc_ls_channel_update(ledc_mode_t speed_mode, ledc_channel_t channel)
{
if (speed_mode == LEDC_LOW_SPEED_MODE) {
ledc_hal_ls_channel_update(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
}
}
//We know that RC_FAST is about 8M/20M, but don't know the actual value. So we need to do a calibration.
static bool ledc_slow_clk_calibrate(void)
{
if (periph_rtc_dig_clk8m_enable()) {
s_ledc_slow_clk_rc_fast_freq = periph_rtc_dig_clk8m_get_freq();
#if !SOC_CLK_RC_FAST_SUPPORT_CALIBRATION
/* Workaround: RC_FAST calibration cannot be performed, we can only use its theoretic freq */
ESP_LOGD(LEDC_TAG, "Calibration cannot be performed, approximate RC_FAST_CLK : %"PRIu32" Hz", s_ledc_slow_clk_rc_fast_freq);
#else
ESP_LOGD(LEDC_TAG, "Calibrate RC_FAST_CLK : %"PRIu32" Hz", s_ledc_slow_clk_rc_fast_freq);
#endif
return true;
}
ESP_LOGE(LEDC_TAG, "Calibrate RC_FAST_CLK failed");
return false;
}
static esp_err_t ledc_enable_intr_type(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_intr_type_t type)
{
if (type == LEDC_INTR_FADE_END) {
ledc_hal_set_fade_end_intr(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
} else {
ledc_hal_set_fade_end_intr(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
}
return ESP_OK;
}
static void _ledc_fade_hw_acquire(ledc_mode_t mode, ledc_channel_t channel)
{
ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
if (fade) {
xSemaphoreTake(fade->ledc_fade_sem, portMAX_DELAY);
portENTER_CRITICAL(&ledc_spinlock);
ledc_enable_intr_type(mode, channel, LEDC_INTR_DISABLE);
portEXIT_CRITICAL(&ledc_spinlock);
}
}
static void _ledc_fade_hw_release(ledc_mode_t mode, ledc_channel_t channel)
{
ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
if (fade) {
xSemaphoreGive(fade->ledc_fade_sem);
}
}
static void _ledc_op_lock_acquire(ledc_mode_t mode, ledc_channel_t channel)
{
ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
if (fade) {
xSemaphoreTake(fade->ledc_fade_mux, portMAX_DELAY);
}
}
static void _ledc_op_lock_release(ledc_mode_t mode, ledc_channel_t channel)
{
ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
if (fade) {
xSemaphoreGive(fade->ledc_fade_mux);
}
}
static uint32_t ledc_get_max_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
{
// The arguments are checked before internally calling this function.
ledc_timer_t timer_sel;
ledc_hal_get_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &timer_sel);
uint32_t max_duty;
ledc_hal_get_max_duty(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, &max_duty);
return max_duty;
}
esp_err_t ledc_timer_set(ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t clock_divider, uint32_t duty_resolution,
ledc_clk_src_t clk_src)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
portENTER_CRITICAL(&ledc_spinlock);
ledc_hal_set_clock_divider(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, clock_divider);
#if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
/* Clock source can only be configured on targets which support timer-specific source clock. */
ledc_hal_set_clock_source(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, clk_src);
// TODO: acquire clk_src, and release old clk_src if initialized and different than new one [clk_tree]
p_ledc_obj[speed_mode]->timer_specific_clk[timer_sel] = clk_src;
#endif
ledc_hal_set_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, duty_resolution);
ledc_ls_timer_update(speed_mode, timer_sel);
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
static IRAM_ATTR esp_err_t ledc_duty_config(ledc_mode_t speed_mode, ledc_channel_t channel, int hpoint_val,
int duty_val, ledc_duty_direction_t duty_direction, uint32_t duty_num, uint32_t duty_cycle, uint32_t duty_scale)
{
if (hpoint_val >= 0) {
ledc_hal_set_hpoint(&(p_ledc_obj[speed_mode]->ledc_hal), channel, hpoint_val);
}
if (duty_val >= 0) {
ledc_hal_set_duty_int_part(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_val);
}
ledc_hal_set_fade_param(&(p_ledc_obj[speed_mode]->ledc_hal), channel, 0, duty_direction, duty_cycle, duty_scale, duty_num);
#if SOC_LEDC_GAMMA_CURVE_FADE_SUPPORTED
ledc_hal_set_range_number(&(p_ledc_obj[speed_mode]->ledc_hal), channel, 1);
#endif
return ESP_OK;
}
esp_err_t ledc_bind_channel_timer(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_timer_t timer_sel)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
portENTER_CRITICAL(&ledc_spinlock);
ledc_hal_bind_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, timer_sel);
ledc_ls_channel_update(speed_mode, channel);
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_timer_rst(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
portENTER_CRITICAL(&ledc_spinlock);
ledc_hal_timer_rst(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_timer_pause(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
portENTER_CRITICAL(&ledc_spinlock);
p_ledc_obj[speed_mode]->timer_is_stopped[timer_sel] = true;
ledc_hal_timer_pause(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_timer_resume(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
portENTER_CRITICAL(&ledc_spinlock);
p_ledc_obj[speed_mode]->timer_is_stopped[timer_sel] = false;
ledc_hal_timer_resume(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags, ledc_isr_handle_t *handle)
{
esp_err_t ret;
LEDC_ARG_CHECK(fn, "fn");
portENTER_CRITICAL(&ledc_spinlock);
ret = esp_intr_alloc(ETS_LEDC_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
portEXIT_CRITICAL(&ledc_spinlock);
return ret;
}
static bool ledc_speed_mode_ctx_create(ledc_mode_t speed_mode)
{
bool new_ctx = false;
// Prevent p_ledc_obj malloc concurrently
_lock_acquire(&s_ledc_mutex[speed_mode]);
if (!p_ledc_obj[speed_mode]) {
ledc_obj_t *ledc_new_mode_obj = (ledc_obj_t *) heap_caps_calloc(1, sizeof(ledc_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
if (ledc_new_mode_obj) {
new_ctx = true;
ledc_hal_init(&(ledc_new_mode_obj->ledc_hal), speed_mode);
ledc_new_mode_obj->glb_clk = LEDC_SLOW_CLK_UNINIT;
#if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
memset(ledc_new_mode_obj->timer_specific_clk, LEDC_TIMER_SPECIFIC_CLK_UNINIT, sizeof(ledc_clk_src_t) * LEDC_TIMER_MAX);
#endif
p_ledc_obj[speed_mode] = ledc_new_mode_obj;
LEDC_BUS_CLOCK_ATOMIC() {
ledc_ll_enable_bus_clock(true);
ledc_ll_enable_reset_reg(false);
}
}
}
_lock_release(&s_ledc_mutex[speed_mode]);
return new_ctx;
}
static inline uint32_t ledc_calculate_divisor(uint32_t src_clk_freq, int freq_hz, uint32_t precision)
{
/**
* In order to find the right divisor, we need to divide the source clock
* frequency by the desired frequency. However, two things to note here:
* - The lowest LEDC_LL_FRACTIONAL_BITS bits of the result are the FRACTIONAL
* part. The higher bits represent the integer part, this is why we need
* to right shift the source frequency.
* - The `precision` parameter represents the granularity of the clock. It
* **must** be a power of 2. It means that the resulted divisor is
* a multiplier of `precision`.
*
* Let's take a concrete example, we need to generate a 5KHz clock out of
* a 80MHz clock (APB).
* If the precision is 1024 (10 bits), the resulted multiplier is:
* (80000000 << 8) / (5000 * 1024) = 4000 (0xfa0)
* Let's ignore the fractional part to simplify the explanation, so we get
* a result of 15 (0xf).
* This can be interpreted as: every 15 "precision" ticks, the resulted
* clock will go high, where one precision tick is made out of 1024 source
* clock ticks.
* Thus, every `15 * 1024` source clock ticks, the resulted clock will go
* high.
*
* NOTE: We are also going to round up the value when necessary, thanks to:
* (freq_hz * precision / 2)
*/
return (((uint64_t) src_clk_freq << LEDC_LL_FRACTIONAL_BITS) + freq_hz * precision / 2)
/ (freq_hz * precision);
}
static inline uint32_t ledc_auto_global_clk_divisor(int freq_hz, uint32_t precision, ledc_slow_clk_sel_t *clk_target)
{
uint32_t ret = LEDC_CLK_NOT_FOUND;
uint32_t clk_freq = 0;
/* This function will go through all the following clock sources to look
* for a valid divisor which generates the requested frequency. */
for (int i = 0; i < DIM(s_glb_clks); i++) {
/* Before calculating the divisor, we need to have the RC_FAST frequency.
* If it hasn't been measured yet, try calibrating it now. */
if (s_glb_clks[i] == LEDC_SLOW_CLK_RC_FAST && s_ledc_slow_clk_rc_fast_freq == 0 && !ledc_slow_clk_calibrate()) {
ESP_LOGD(LEDC_TAG, "Unable to retrieve RC_FAST clock frequency, skipping it");
continue;
}
esp_clk_tree_src_get_freq_hz((soc_module_clk_t)s_glb_clks[i], LEDC_CLK_SRC_FREQ_PRECISION, &clk_freq);
uint32_t div_param = ledc_calculate_divisor(clk_freq, freq_hz, precision);
/* If the divisor is valid, we can return this value. */
if (!LEDC_IS_DIV_INVALID(div_param)) {
*clk_target = s_glb_clks[i];
ret = div_param;
break;
}
}
return ret;
}
#if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
static inline uint32_t ledc_auto_timer_specific_clk_divisor(ledc_mode_t speed_mode, int freq_hz, uint32_t precision,
ledc_clk_src_t *clk_source)
{
uint32_t ret = LEDC_CLK_NOT_FOUND;
uint32_t clk_freq = 0;
for (int i = 0; i < DIM(s_timer_specific_clks); i++) {
esp_clk_tree_src_get_freq_hz((soc_module_clk_t)s_timer_specific_clks[i], LEDC_CLK_SRC_FREQ_PRECISION, &clk_freq);
uint32_t div_param = ledc_calculate_divisor(clk_freq, freq_hz, precision);
/* If the divisor is valid, we can return this value. */
if (!LEDC_IS_DIV_INVALID(div_param)) {
*clk_source = s_timer_specific_clks[i];
ret = div_param;
break;
}
}
#if SOC_LEDC_SUPPORT_HS_MODE
/* On board that support LEDC high-speed mode, APB clock becomes a timer-
* specific clock when in high speed mode. Check if it is necessary here
* to test APB. */
if (speed_mode == LEDC_HIGH_SPEED_MODE && ret == LEDC_CLK_NOT_FOUND) {
/* No divider was found yet, try with APB! */
esp_clk_tree_src_get_freq_hz((soc_module_clk_t)LEDC_APB_CLK, LEDC_CLK_SRC_FREQ_PRECISION, &clk_freq);
uint32_t div_param = ledc_calculate_divisor(clk_freq, freq_hz, precision);
if (!LEDC_IS_DIV_INVALID(div_param)) {
*clk_source = LEDC_APB_CLK;
ret = div_param;
}
}
#endif
return ret;
}
#endif
/**
* @brief Try to find the clock with its divisor giving the frequency requested
* by the caller.
*/
static uint32_t ledc_auto_clk_divisor(ledc_mode_t speed_mode, int freq_hz, uint32_t precision,
ledc_clk_src_t *clk_source, ledc_slow_clk_sel_t *clk_target)
{
uint32_t ret = LEDC_CLK_NOT_FOUND;
#if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
/* If the SoC presents timer-specific clock(s), try to achieve the given frequency
* thanks to it/them.
* clk_source parameter will returned by this function. */
uint32_t div_param_timer = ledc_auto_timer_specific_clk_divisor(speed_mode, freq_hz, precision, clk_source);
if (div_param_timer != LEDC_CLK_NOT_FOUND) {
/* The dividor is valid, no need try any other clock, return directly. */
ret = div_param_timer;
}
#endif
/* On ESP32, only low speed channel can use the global clocks. For other
* chips, there are no high speed channels. */
if (ret == LEDC_CLK_NOT_FOUND && speed_mode == LEDC_LOW_SPEED_MODE) {
uint32_t div_param_global = ledc_auto_global_clk_divisor(freq_hz, precision, clk_target);
if (div_param_global != LEDC_CLK_NOT_FOUND) {
*clk_source = LEDC_SCLK;
ret = div_param_global;
}
}
return ret;
}
/**
* @brief Function setting the LEDC timer divisor with the given source clock,
* frequency and resolution. If the clock configuration passed is
* LEDC_AUTO_CLK, the clock will be determined automatically (if possible).
*/
static esp_err_t ledc_set_timer_div(ledc_mode_t speed_mode, ledc_timer_t timer_num, ledc_clk_cfg_t clk_cfg, int freq_hz, int duty_resolution)
{
uint32_t div_param = 0;
const uint32_t precision = (0x1 << duty_resolution);
/* The clock sources are not initialized on purpose. To produce compiler warning if used but the selector functions
* don't set them properly. */
/* Timer-specific mux. Set to timer-specific clock or LEDC_SCLK if a global clock is used. */
ledc_clk_src_t timer_clk_src;
/* Global clock mux. Should be set when LEDC_SCLK is used in LOW_SPEED_MODE. Otherwise left uninitialized. */
ledc_slow_clk_sel_t glb_clk = LEDC_SLOW_CLK_UNINIT;
if (clk_cfg == LEDC_AUTO_CLK) {
/* User hasn't specified the speed, we should try to guess it. */
div_param = ledc_auto_clk_divisor(speed_mode, freq_hz, precision, &timer_clk_src, &glb_clk);
} else if (clk_cfg == LEDC_USE_RC_FAST_CLK) {
/* User specified source clock(RC_FAST_CLK) for low speed channel.
* Make sure the speed mode is correct. */
ESP_RETURN_ON_FALSE((speed_mode == LEDC_LOW_SPEED_MODE), ESP_ERR_INVALID_ARG, LEDC_TAG, "RC_FAST clock can only be used in low speed mode");
/* Before calculating the divisor, we need to have the RC_FAST frequency.
* If it hasn't been measured yet, try calibrating it now. */
if (s_ledc_slow_clk_rc_fast_freq == 0 && ledc_slow_clk_calibrate() == false) {
goto error;
}
/* Set the global clock source */
timer_clk_src = LEDC_SCLK;
glb_clk = LEDC_SLOW_CLK_RC_FAST;
/* We have the RC_FAST clock frequency now. */
div_param = ledc_calculate_divisor(s_ledc_slow_clk_rc_fast_freq, freq_hz, precision);
if (LEDC_IS_DIV_INVALID(div_param)) {
div_param = LEDC_CLK_NOT_FOUND;
}
} else {
#if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
if (LEDC_LL_IS_TIMER_SPECIFIC_CLOCK(speed_mode, clk_cfg)) {
/* Currently we can convert a timer-specific clock to a source clock that
* easily because their values are identical in the enumerations (on purpose)
* If we decide to change the values in the future, we should consider defining
* a macro/function to convert timer-specific clock to clock source .*/
timer_clk_src = (ledc_clk_src_t) clk_cfg;
} else
#endif
{
timer_clk_src = LEDC_SCLK;
#if SOC_LEDC_SUPPORT_REF_TICK
assert(clk_cfg != LEDC_USE_REF_TICK); // REF_TICK is NOT a global clock, it is a timer-specific clock
#endif
glb_clk = (ledc_slow_clk_sel_t)clk_cfg;
}
uint32_t src_clk_freq = 0;
esp_clk_tree_src_get_freq_hz((soc_module_clk_t)clk_cfg, LEDC_CLK_SRC_FREQ_PRECISION, &src_clk_freq);
div_param = ledc_calculate_divisor(src_clk_freq, freq_hz, precision);
if (LEDC_IS_DIV_INVALID(div_param)) {
div_param = LEDC_CLK_NOT_FOUND;
}
}
if (div_param == LEDC_CLK_NOT_FOUND) {
goto error;
}
/* The following debug message makes more sense for AUTO mode. */
ESP_LOGD(LEDC_TAG, "Using clock source %d (in %s mode), divisor: 0x%"PRIx32,
timer_clk_src, (speed_mode == LEDC_LOW_SPEED_MODE ? "slow" : "fast"), div_param);
/* The following block configures the global clock.
* Thus, in theory, this only makes sense when configuring the LOW_SPEED timer and the source clock is LEDC_SCLK (as
* HIGH_SPEED timers won't be clocked by the global clock). However, there are some limitations due to HW design.
*/
if (speed_mode == LEDC_LOW_SPEED_MODE) {
#if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
/* On ESP32 and ESP32-S2, when the source clock of LOW_SPEED timer is a timer-specific one (i.e. REF_TICK), the
* global clock MUST be set to APB_CLK. For HIGH_SPEED timers, this is not necessary.
*/
if (timer_clk_src != LEDC_SCLK) {
glb_clk = LEDC_SLOW_CLK_APB;
}
#else
/* On later chips, there is only one type of timer/channel (referred as LOW_SPEED in the code), which can only be
* clocked by the global clock. So there's no limitation on the global clock, except that it must be set.
*/
assert(timer_clk_src == LEDC_SCLK);
#endif
// Arriving here, variable glb_clk must have been assigned to one of the ledc_slow_clk_sel_t enum values
assert(glb_clk != LEDC_SLOW_CLK_UNINIT);
portENTER_CRITICAL(&ledc_spinlock);
if (p_ledc_obj[speed_mode]->glb_clk != LEDC_SLOW_CLK_UNINIT && p_ledc_obj[speed_mode]->glb_clk != glb_clk) {
for (int i = 0; i < LEDC_TIMER_MAX; i++) {
if (i != timer_num && p_ledc_obj[speed_mode]->glb_clk_is_acquired[i]) {
portEXIT_CRITICAL(&ledc_spinlock);
ESP_RETURN_ON_FALSE(false, ESP_FAIL, LEDC_TAG,
"timer clock conflict, already is %d but attempt to %d", p_ledc_obj[speed_mode]->glb_clk, glb_clk);
}
}
}
p_ledc_obj[speed_mode]->glb_clk_is_acquired[timer_num] = true;
if (p_ledc_obj[speed_mode]->glb_clk != glb_clk) {
// TODO: release old glb_clk (if not UNINIT), and acquire new glb_clk [clk_tree]
p_ledc_obj[speed_mode]->glb_clk = glb_clk;
LEDC_FUNC_CLOCK_ATOMIC() {
ledc_ll_enable_clock(p_ledc_obj[speed_mode]->ledc_hal.dev, true);
ledc_hal_set_slow_clk_sel(&(p_ledc_obj[speed_mode]->ledc_hal), glb_clk);
}
}
portEXIT_CRITICAL(&ledc_spinlock);
ESP_LOGD(LEDC_TAG, "In slow speed mode, global clk set: %d", glb_clk);
/* keep ESP_PD_DOMAIN_RC_FAST on during light sleep */
extern void esp_sleep_periph_use_8m(bool use_or_not);
esp_sleep_periph_use_8m(glb_clk == LEDC_SLOW_CLK_RC_FAST);
}
/* The divisor is correct, we can write in the hardware. */
ledc_timer_set(speed_mode, timer_num, div_param, duty_resolution, timer_clk_src);
return ESP_OK;
error:
ESP_LOGE(LEDC_TAG, "requested frequency %d and duty resolution %d can not be achieved, try reducing freq_hz or duty_resolution. div_param=%"PRIu32, freq_hz, duty_resolution, div_param);
return ESP_FAIL;
}
static esp_err_t ledc_timer_del(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
{
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
bool is_configured = true;
bool is_deleted = false;
portENTER_CRITICAL(&ledc_spinlock);
#if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
if (p_ledc_obj[speed_mode]->glb_clk_is_acquired[timer_sel] == false && p_ledc_obj[speed_mode]->timer_specific_clk[timer_sel] == LEDC_TIMER_SPECIFIC_CLK_UNINIT)
#else
if (p_ledc_obj[speed_mode]->glb_clk_is_acquired[timer_sel] == false)
#endif
{
is_configured = false;
} else if (p_ledc_obj[speed_mode]->timer_is_stopped[timer_sel] == true) {
is_deleted = true;
p_ledc_obj[speed_mode]->glb_clk_is_acquired[timer_sel] = false;
// TODO: release timer specific clk and global clk if possible [clk_tree]
}
portEXIT_CRITICAL(&ledc_spinlock);
ESP_RETURN_ON_FALSE(is_configured && is_deleted, ESP_ERR_INVALID_STATE, LEDC_TAG, "timer hasn't been configured, or it is still running, please stop it with ledc_timer_pause first");
return ESP_OK;
}
esp_err_t ledc_timer_config(const ledc_timer_config_t *timer_conf)
{
LEDC_ARG_CHECK(timer_conf != NULL, "timer_conf");
uint32_t freq_hz = timer_conf->freq_hz;
uint32_t duty_resolution = timer_conf->duty_resolution;
uint32_t timer_num = timer_conf->timer_num;
uint32_t speed_mode = timer_conf->speed_mode;
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num");
if (timer_conf->deconfigure) {
return ledc_timer_del(speed_mode, timer_num);
}
LEDC_ARG_CHECK(!((timer_conf->clk_cfg == LEDC_USE_RC_FAST_CLK) && (speed_mode != LEDC_LOW_SPEED_MODE)), "Only low speed channel support RC_FAST_CLK");
if (freq_hz == 0 || duty_resolution == 0 || duty_resolution >= LEDC_TIMER_BIT_MAX) {
ESP_LOGE(LEDC_TAG, "freq_hz=%"PRIu32" duty_resolution=%"PRIu32, freq_hz, duty_resolution);
return ESP_ERR_INVALID_ARG;
}
if (!ledc_speed_mode_ctx_create(speed_mode) && !p_ledc_obj[speed_mode]) {
return ESP_ERR_NO_MEM;
}
esp_err_t ret = ledc_set_timer_div(speed_mode, timer_num, timer_conf->clk_cfg, freq_hz, duty_resolution);
if (ret == ESP_OK) {
/* Make sure timer is running and reset the timer. */
ledc_timer_resume(speed_mode, timer_num);
ledc_timer_rst(speed_mode, timer_num);
}
return ret;
}
esp_err_t ledc_set_pin(int gpio_num, ledc_mode_t speed_mode, ledc_channel_t ledc_channel)
{
LEDC_ARG_CHECK(ledc_channel < LEDC_CHANNEL_MAX, "ledc_channel");
LEDC_ARG_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "gpio_num");
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(gpio_num, ledc_periph_signal[speed_mode].sig_out0_idx + ledc_channel, 0, 0);
return ESP_OK;
}
esp_err_t ledc_channel_config(const ledc_channel_config_t *ledc_conf)
{
LEDC_ARG_CHECK(ledc_conf, "ledc_conf");
uint32_t speed_mode = ledc_conf->speed_mode;
int gpio_num = ledc_conf->gpio_num;
uint32_t ledc_channel = ledc_conf->channel;
uint32_t timer_select = ledc_conf->timer_sel;
uint32_t intr_type = ledc_conf->intr_type;
uint32_t duty = ledc_conf->duty;
uint32_t hpoint = ledc_conf->hpoint;
bool output_invert = ledc_conf->flags.output_invert;
LEDC_ARG_CHECK(ledc_channel < LEDC_CHANNEL_MAX, "ledc_channel");
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "gpio_num");
LEDC_ARG_CHECK(timer_select < LEDC_TIMER_MAX, "timer_select");
LEDC_ARG_CHECK(intr_type < LEDC_INTR_MAX, "intr_type");
esp_err_t ret = ESP_OK;
bool new_speed_mode_ctx_created = ledc_speed_mode_ctx_create(speed_mode);
if (!new_speed_mode_ctx_created && !p_ledc_obj[speed_mode]) {
return ESP_ERR_NO_MEM;
}
#if !(CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32H2 || CONFIG_IDF_TARGET_ESP32P4)
// On such targets, the default ledc core(global) clock does not connect to any clock source
// Set channel configurations and update bits before core clock is on could lead to error
// Therefore, we should connect the core clock to a real clock source to make it on before any ledc register operation
// It can be switched to the other desired clock sources to meet the output pwm freq requirement later at timer configuration
// So we consider the glb_clk still as LEDC_SLOW_CLK_UNINIT
else if (new_speed_mode_ctx_created) {
portENTER_CRITICAL(&ledc_spinlock);
if (p_ledc_obj[speed_mode]->glb_clk == LEDC_SLOW_CLK_UNINIT) {
ledc_hal_set_slow_clk_sel(&(p_ledc_obj[speed_mode]->ledc_hal), LEDC_LL_GLOBAL_CLK_DEFAULT);
}
portEXIT_CRITICAL(&ledc_spinlock);
}
#endif
/*set channel parameters*/
/* channel parameters decide how the waveform looks like in one period */
/* set channel duty and hpoint value, duty range is [0, (2**duty_res)], hpoint range is [0, (2**duty_res)-1] */
/* Note: On ESP32, ESP32S2, ESP32S3, ESP32C3, ESP32C2, ESP32C6, ESP32H2, ESP32P4, due to a hardware bug,
* 100% duty cycle (i.e. 2**duty_res) is not reachable when the binded timer selects the maximum duty
* resolution. For example, the max duty resolution on ESP32C3 is 14-bit width, then set duty to (2**14)
* will mess up the duty calculation in hardware.
*/
ledc_set_duty_with_hpoint(speed_mode, ledc_channel, duty, hpoint);
/*update duty settings*/
ledc_update_duty(speed_mode, ledc_channel);
/*bind the channel with the timer*/
ledc_bind_channel_timer(speed_mode, ledc_channel, timer_select);
/*set interrupt type*/
portENTER_CRITICAL(&ledc_spinlock);
ledc_enable_intr_type(speed_mode, ledc_channel, intr_type);
portEXIT_CRITICAL(&ledc_spinlock);
ESP_LOGD(LEDC_TAG, "LEDC_PWM CHANNEL %"PRIu32"|GPIO %02u|Duty %04"PRIu32"|Time %"PRIu32,
ledc_channel, gpio_num, duty, timer_select);
/*set LEDC signal in gpio matrix*/
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
gpio_set_level(gpio_num, output_invert);
gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(gpio_num, ledc_periph_signal[speed_mode].sig_out0_idx + ledc_channel, output_invert, 0);
return ret;
}
static void _ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
{
ledc_hal_set_sig_out_en(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
ledc_ls_channel_update(speed_mode, channel);
}
esp_err_t ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
{
LEDC_ARG_CHECK_ISR(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK_ISR(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_CHECK_ISR(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
portENTER_CRITICAL_SAFE(&ledc_spinlock);
_ledc_update_duty(speed_mode, channel);
portEXIT_CRITICAL_SAFE(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_stop(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t idle_level)
{
LEDC_ARG_CHECK_ISR(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK_ISR(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_CHECK_ISR(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
portENTER_CRITICAL_SAFE(&ledc_spinlock);
ledc_hal_set_idle_level(&(p_ledc_obj[speed_mode]->ledc_hal), channel, idle_level);
ledc_hal_set_sig_out_en(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
ledc_ls_channel_update(speed_mode, channel);
portEXIT_CRITICAL_SAFE(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_set_fade(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, ledc_duty_direction_t fade_direction,
uint32_t step_num, uint32_t duty_cyle_num, uint32_t duty_scale)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_ARG_CHECK(fade_direction < LEDC_DUTY_DIR_MAX, "fade_direction");
LEDC_ARG_CHECK(step_num <= LEDC_LL_DUTY_NUM_MAX, "step_num");
LEDC_ARG_CHECK(duty_cyle_num <= LEDC_LL_DUTY_CYCLE_MAX, "duty_cycle_num");
LEDC_ARG_CHECK(duty_scale <= LEDC_LL_DUTY_SCALE_MAX, "duty_scale");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
_ledc_fade_hw_acquire(speed_mode, channel);
portENTER_CRITICAL(&ledc_spinlock);
ledc_duty_config(speed_mode,
channel, //uint32_t chan_num,
LEDC_VAL_NO_CHANGE,
duty, //uint32_t duty_val,
fade_direction, //uint32_t increase,
step_num, //uint32_t duty_num,
duty_cyle_num, //uint32_t duty_cycle,
duty_scale //uint32_t duty_scale
);
portEXIT_CRITICAL(&ledc_spinlock);
_ledc_fade_hw_release(speed_mode, channel);
return ESP_OK;
}
esp_err_t ledc_set_duty_with_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, uint32_t hpoint)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_ARG_CHECK(hpoint <= LEDC_LL_HPOINT_VAL_MAX, "hpoint");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
/* The channel configuration should not be changed before the fade operation is done. */
_ledc_fade_hw_acquire(speed_mode, channel);
portENTER_CRITICAL(&ledc_spinlock);
ledc_duty_config(speed_mode,
channel, //uint32_t chan_num,
hpoint, //uint32_t hpoint_val,
duty, //uint32_t duty_val,
1, //uint32_t increase,
1, //uint32_t duty_num,
1, //uint32_t duty_cycle,
0 //uint32_t duty_scale
);
portEXIT_CRITICAL(&ledc_spinlock);
_ledc_fade_hw_release(speed_mode, channel);
return ESP_OK;
}
esp_err_t ledc_set_duty(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
/* The channel configuration should not be changed before the fade operation is done. */
_ledc_fade_hw_acquire(speed_mode, channel);
portENTER_CRITICAL(&ledc_spinlock);
ledc_duty_config(speed_mode,
channel, //uint32_t chan_num,
LEDC_VAL_NO_CHANGE,
duty, //uint32_t duty_val,
1, //uint32_t increase,
1, //uint32_t duty_num,
1, //uint32_t duty_cycle,
0 //uint32_t duty_scale
);
portEXIT_CRITICAL(&ledc_spinlock);
_ledc_fade_hw_release(speed_mode, channel);
return ESP_OK;
}
uint32_t ledc_get_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
uint32_t duty = 0;
ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty);
return duty;
}
int ledc_get_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel)
{
LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode argument is invalid", LEDC_ERR_VAL);
LEDC_CHECK(channel < LEDC_CHANNEL_MAX, "channel argument is invalid", LEDC_ERR_VAL);
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
uint32_t hpoint = 0;
ledc_hal_get_hpoint(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &hpoint);
return hpoint;
}
esp_err_t ledc_set_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num, uint32_t freq_hz)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
ledc_clk_cfg_t clk_cfg = LEDC_AUTO_CLK;
uint32_t duty_resolution = 0;
ledc_hal_get_clk_cfg(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clk_cfg);
ledc_hal_get_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &duty_resolution);
return ledc_set_timer_div(speed_mode, timer_num, clk_cfg, freq_hz, duty_resolution);
}
uint32_t ledc_get_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
portENTER_CRITICAL(&ledc_spinlock);
uint32_t clock_divider = 0;
uint32_t duty_resolution = 0;
ledc_clk_cfg_t clk_cfg = LEDC_AUTO_CLK;
ledc_hal_get_clock_divider(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clock_divider);
ledc_hal_get_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &duty_resolution);
ledc_hal_get_clk_cfg(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clk_cfg);
uint32_t precision = (0x1 << duty_resolution);
uint32_t src_clk_freq = 0;
esp_clk_tree_src_get_freq_hz((soc_module_clk_t)clk_cfg, LEDC_CLK_SRC_FREQ_PRECISION, &src_clk_freq);
portEXIT_CRITICAL(&ledc_spinlock);
if (clock_divider == 0) {
ESP_LOGW(LEDC_TAG, "LEDC timer not configured, call ledc_timer_config to set timer frequency");
return 0;
}
return (((uint64_t) src_clk_freq << LEDC_LL_FRACTIONAL_BITS) + precision * clock_divider / 2) / (precision * clock_divider);
}
static inline uint32_t ilog2(uint32_t i)
{
assert(i > 0);
uint32_t log = 0;
while (i >>= 1) {
++log;
}
return log;
}
// https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf#ledpwm
uint32_t ledc_find_suitable_duty_resolution(uint32_t src_clk_freq, uint32_t timer_freq)
{
// Highest resolution is calculated when LEDC_CLK_DIV = 1 (i.e. div_param = 1 << LEDC_LL_FRACTIONAL_BITS)
uint32_t div = (src_clk_freq + timer_freq / 2) / timer_freq; // rounded
uint32_t duty_resolution = MIN(ilog2(div), SOC_LEDC_TIMER_BIT_WIDTH);
uint32_t div_param = ledc_calculate_divisor(src_clk_freq, timer_freq, 1 << duty_resolution);
if (LEDC_IS_DIV_INVALID(div_param)) {
div = src_clk_freq / timer_freq; // truncated
duty_resolution = MIN(ilog2(div), SOC_LEDC_TIMER_BIT_WIDTH);
div_param = ledc_calculate_divisor(src_clk_freq, timer_freq, 1 << duty_resolution);
if (LEDC_IS_DIV_INVALID(div_param)) {
duty_resolution = 0;
}
}
return duty_resolution;
}
static inline void IRAM_ATTR ledc_calc_fade_end_channel(uint32_t *fade_end_status, uint32_t *channel)
{
uint32_t i = __builtin_ffs((*fade_end_status)) - 1;
(*fade_end_status) &= ~(1 << i);
*channel = i;
}
static void IRAM_ATTR ledc_fade_isr(void *arg)
{
bool cb_yield = false;
BaseType_t HPTaskAwoken = pdFALSE;
uint32_t speed_mode = 0;
uint32_t channel = 0;
uint32_t intr_status = 0;
ledc_fade_fsm_t state;
for (speed_mode = 0; speed_mode < LEDC_SPEED_MODE_MAX; speed_mode++) {
if (p_ledc_obj[speed_mode] == NULL) {
continue;
}
ledc_hal_get_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), &intr_status);
while (intr_status) {
ledc_calc_fade_end_channel(&intr_status, &channel);
// clear interrupt
ledc_hal_clear_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
//fade object not initialized yet.
continue;
}
// Switch fade state to ISR_CAL if current state is HW_FADE
bool already_stopped = false;
portENTER_CRITICAL_ISR(&ledc_spinlock);
state = s_ledc_fade_rec[speed_mode][channel]->fsm;
assert(state != LEDC_FSM_ISR_CAL && state != LEDC_FSM_KILLED_PENDING);
if (state == LEDC_FSM_HW_FADE) {
s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_ISR_CAL;
} else if (state == LEDC_FSM_IDLE) {
// interrupt seen, but has already been stopped by task
already_stopped = true;
}
portEXIT_CRITICAL_ISR(&ledc_spinlock);
if (already_stopped) {
continue;
}
bool set_to_idle = false;
int cycle = 0;
int delta = 0;
int step = 0;
int next_duty = 0;
uint32_t duty_cur = 0;
ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
uint32_t duty_tar = s_ledc_fade_rec[speed_mode][channel]->target_duty;
#if SOC_LEDC_GAMMA_CURVE_FADE_SUPPORTED
// If a multi-fade is done, check that target duty computed in sw is equal to the duty at the end of the fade
uint32_t range_num;
ledc_hal_get_range_number(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &range_num);
if (range_num > 1) {
assert(duty_cur == duty_tar);
}
#endif
int scale = s_ledc_fade_rec[speed_mode][channel]->scale;
if (duty_cur == duty_tar || scale == 0) {
// Target duty has reached
set_to_idle = true;
} else {
// Calculate new duty config parameters
delta = (s_ledc_fade_rec[speed_mode][channel]->direction == LEDC_DUTY_DIR_DECREASE) ?
(duty_cur - duty_tar) : (duty_tar - duty_cur);
if (delta > scale) {
next_duty = duty_cur;
step = (delta / scale > LEDC_DUTY_NUM_MAX) ? LEDC_DUTY_NUM_MAX : (delta / scale);
cycle = s_ledc_fade_rec[speed_mode][channel]->cycle_num;
} else {
next_duty = duty_tar;
step = 1;
cycle = 1;
scale = 0;
}
}
bool finished = false;
portENTER_CRITICAL_ISR(&ledc_spinlock);
state = s_ledc_fade_rec[speed_mode][channel]->fsm;
assert(state != LEDC_FSM_IDLE && state != LEDC_FSM_HW_FADE);
if (set_to_idle || state == LEDC_FSM_KILLED_PENDING) {
// Either fade has completed or has been killed, skip HW duty config
finished = true;
s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_IDLE;
} else if (state == LEDC_FSM_ISR_CAL) {
// Loading new fade to start
ledc_duty_config(speed_mode,
channel,
LEDC_VAL_NO_CHANGE,
next_duty,
s_ledc_fade_rec[speed_mode][channel]->direction,
step,
cycle,
scale);
s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_HW_FADE;
ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
ledc_ls_channel_update(speed_mode, channel);
}
portEXIT_CRITICAL_ISR(&ledc_spinlock);
if (finished) {
xSemaphoreGiveFromISR(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem, &HPTaskAwoken);
ledc_cb_t fade_cb = s_ledc_fade_rec[speed_mode][channel]->ledc_fade_callback;
if (fade_cb) {
ledc_cb_param_t param = {
.event = LEDC_FADE_END_EVT,
.speed_mode = speed_mode,
.channel = channel,
.duty = duty_cur
};
cb_yield |= fade_cb(&param, s_ledc_fade_rec[speed_mode][channel]->cb_user_arg);
}
}
}
}
if (HPTaskAwoken == pdTRUE || cb_yield) {
portYIELD_FROM_ISR();
}
}
static esp_err_t ledc_fade_channel_deinit(ledc_mode_t speed_mode, ledc_channel_t channel)
{
if (s_ledc_fade_rec[speed_mode][channel]) {
if (s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux) {
vSemaphoreDelete(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux);
s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux = NULL;
}
if (s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem) {
vSemaphoreDeleteWithCaps(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem);
s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = NULL;
}
free(s_ledc_fade_rec[speed_mode][channel]);
s_ledc_fade_rec[speed_mode][channel] = NULL;
}
return ESP_OK;
}
static esp_err_t ledc_fade_channel_init_check(ledc_mode_t speed_mode, ledc_channel_t channel)
{
if (s_ledc_fade_isr_handle == NULL) {
ESP_LOGE(LEDC_TAG, "Fade service not installed, call ledc_fade_func_install");
return ESP_FAIL;
}
if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
// Always malloc internally since LEDC ISR is always placed in IRAM
s_ledc_fade_rec[speed_mode][channel] = (ledc_fade_t *) heap_caps_calloc(1, sizeof(ledc_fade_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
ledc_fade_channel_deinit(speed_mode, channel);
return ESP_ERR_NO_MEM;
}
s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = xSemaphoreCreateBinaryWithCaps(MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux = xSemaphoreCreateMutex();
xSemaphoreGive(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem);
s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_IDLE;
}
if (s_ledc_fade_rec[speed_mode][channel]
&& s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux
&& s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem) {
return ESP_OK;
} else {
ledc_fade_channel_deinit(speed_mode, channel);
return ESP_FAIL;
}
}
static esp_err_t _ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int scale, int cycle_num)
{
portENTER_CRITICAL(&ledc_spinlock);
uint32_t duty_cur = 0;
ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
// When duty == max_duty, meanwhile, if scale == 1 and fade_down == 1, counter would overflow.
if (duty_cur == ledc_get_max_duty(speed_mode, channel)) {
duty_cur -= 1;
}
s_ledc_fade_rec[speed_mode][channel]->speed_mode = speed_mode;
s_ledc_fade_rec[speed_mode][channel]->target_duty = target_duty;
s_ledc_fade_rec[speed_mode][channel]->cycle_num = cycle_num;
s_ledc_fade_rec[speed_mode][channel]->scale = scale;
int step_num = 0;
int dir = LEDC_DUTY_DIR_DECREASE;
if (scale > 0) {
if (duty_cur > target_duty) {
s_ledc_fade_rec[speed_mode][channel]->direction = LEDC_DUTY_DIR_DECREASE;
step_num = (duty_cur - target_duty) / scale;
step_num = step_num > LEDC_DUTY_NUM_MAX ? LEDC_DUTY_NUM_MAX : step_num;
} else {
s_ledc_fade_rec[speed_mode][channel]->direction = LEDC_DUTY_DIR_INCREASE;
dir = LEDC_DUTY_DIR_INCREASE;
step_num = (target_duty - duty_cur) / scale;
step_num = step_num > LEDC_DUTY_NUM_MAX ? LEDC_DUTY_NUM_MAX : step_num;
}
}
portEXIT_CRITICAL(&ledc_spinlock);
if (scale > 0 && step_num > 0) {
portENTER_CRITICAL(&ledc_spinlock);
ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, duty_cur, dir, step_num, cycle_num, scale);
portEXIT_CRITICAL(&ledc_spinlock);
ESP_LOGD(LEDC_TAG, "cur duty: %"PRIu32"; target: %"PRIu32", step: %d, cycle: %d; scale: %d; dir: %d",
duty_cur, target_duty, step_num, cycle_num, scale, dir);
} else {
// Directly set duty to the target, does not care on the dir
portENTER_CRITICAL(&ledc_spinlock);
ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, target_duty, 1, 1, 1, 0);
portEXIT_CRITICAL(&ledc_spinlock);
ESP_LOGD(LEDC_TAG, "Set to target duty: %"PRIu32, target_duty);
}
return ESP_OK;
}
static esp_err_t _ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int max_fade_time_ms)
{
ledc_timer_t timer_sel;
uint32_t duty_cur = 0;
ledc_hal_get_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &timer_sel);
ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
uint32_t freq = ledc_get_freq(speed_mode, timer_sel);
uint32_t duty_delta = target_duty > duty_cur ? target_duty - duty_cur : duty_cur - target_duty;
if (duty_delta == 0) {
return _ledc_set_fade_with_step(speed_mode, channel, target_duty, 0, 0);
}
uint32_t total_cycles = max_fade_time_ms * freq / 1000;
if (total_cycles == 0) {
ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
return _ledc_set_fade_with_step(speed_mode, channel, target_duty, 0, 0);
}
int scale, cycle_num;
if (total_cycles > duty_delta) {
scale = 1;
cycle_num = total_cycles / duty_delta;
if (cycle_num > LEDC_LL_DUTY_CYCLE_MAX) {
ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_SLOW_STR);
cycle_num = LEDC_LL_DUTY_CYCLE_MAX;
}
} else {
cycle_num = 1;
scale = duty_delta / total_cycles;
if (scale > LEDC_LL_DUTY_SCALE_MAX) {
ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
scale = LEDC_LL_DUTY_SCALE_MAX;
}
}
return _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
}
static void _ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t fade_mode)
{
ledc_fade_t *fade = s_ledc_fade_rec[speed_mode][channel];
fade->mode = fade_mode;
// Clear interrupt status of channel
ledc_hal_clear_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
// Enable interrupt for channel
portENTER_CRITICAL(&ledc_spinlock);
ledc_enable_intr_type(speed_mode, channel, LEDC_INTR_FADE_END);
// Set fade state to HW_FADE state for starting the fade
assert(fade->fsm == LEDC_FSM_IDLE);
fade->fsm = LEDC_FSM_HW_FADE;
portEXIT_CRITICAL(&ledc_spinlock);
// Trigger the fade
ledc_update_duty(speed_mode, channel);
if (fade_mode == LEDC_FADE_WAIT_DONE) {
// Waiting for fade done
_ledc_fade_hw_acquire(speed_mode, channel);
// Release hardware to support next time fade configure
_ledc_fade_hw_release(speed_mode, channel);
}
}
esp_err_t ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int max_fade_time_ms)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
_ledc_fade_hw_acquire(speed_mode, channel);
_ledc_set_fade_with_time(speed_mode, channel, target_duty, max_fade_time_ms);
_ledc_fade_hw_release(speed_mode, channel);
return ESP_OK;
}
esp_err_t ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t scale, uint32_t cycle_num)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_ARG_CHECK((scale > 0) && (scale <= LEDC_LL_DUTY_SCALE_MAX), "fade scale");
LEDC_ARG_CHECK((cycle_num > 0) && (cycle_num <= LEDC_LL_DUTY_CYCLE_MAX), "cycle_num");
LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
_ledc_fade_hw_acquire(speed_mode, channel);
_ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
_ledc_fade_hw_release(speed_mode, channel);
return ESP_OK;
}
esp_err_t ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t fade_mode)
{
LEDC_CHECK(s_ledc_fade_rec[speed_mode][channel] != NULL, LEDC_FADE_SERVICE_ERR_STR, ESP_ERR_INVALID_STATE);
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
_ledc_fade_hw_acquire(speed_mode, channel);
_ledc_fade_start(speed_mode, channel, fade_mode);
return ESP_OK;
}
// ESP32 does not support this functionality, fade cannot be overwritten with new duty config
#if SOC_LEDC_SUPPORT_FADE_STOP
esp_err_t ledc_fade_stop(ledc_mode_t speed_mode, ledc_channel_t channel)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
ledc_fade_t *fade = s_ledc_fade_rec[speed_mode][channel];
ledc_fade_fsm_t state = fade->fsm;
bool wait_for_idle = false;
assert(state != LEDC_FSM_KILLED_PENDING);
if (state == LEDC_FSM_IDLE) {
// if there is no fade going on, do nothing
return ESP_OK;
}
// Fade state is either HW_FADE or ISR_CAL (there is a fade in process)
portENTER_CRITICAL(&ledc_spinlock);
// Disable ledc channel interrupt first
ledc_enable_intr_type(speed_mode, channel, LEDC_INTR_DISABLE);
// Config duty to the duty cycle at this moment
uint32_t duty_cur = ledc_get_duty(speed_mode, channel);
ledc_duty_config(speed_mode,
channel, //uint32_t chan_num,
LEDC_VAL_NO_CHANGE,
duty_cur, //uint32_t duty_val,
1, //uint32_t increase,
1, //uint32_t duty_num,
1, //uint32_t duty_cycle,
0 //uint32_t duty_scale
);
_ledc_update_duty(speed_mode, channel);
state = fade->fsm;
assert(state != LEDC_FSM_IDLE && state != LEDC_FSM_KILLED_PENDING);
if (state == LEDC_FSM_HW_FADE) {
fade->fsm = LEDC_FSM_IDLE;
} else if (state == LEDC_FSM_ISR_CAL) {
fade->fsm = LEDC_FSM_KILLED_PENDING;
wait_for_idle = true;
}
portEXIT_CRITICAL(&ledc_spinlock);
if (wait_for_idle) {
// Wait for ISR return, which gives the semaphore and switchs state to IDLE
_ledc_fade_hw_acquire(speed_mode, channel);
assert(fade->fsm == LEDC_FSM_IDLE);
}
_ledc_fade_hw_release(speed_mode, channel);
return ESP_OK;
}
#endif
esp_err_t ledc_fade_func_install(int intr_alloc_flags)
{
LEDC_CHECK(s_ledc_fade_isr_handle == NULL, "fade function already installed", ESP_ERR_INVALID_STATE);
//OR intr_alloc_flags with ESP_INTR_FLAG_IRAM because the fade isr is in IRAM
return ledc_isr_register(ledc_fade_isr, NULL, intr_alloc_flags | ESP_INTR_FLAG_IRAM, &s_ledc_fade_isr_handle);
}
void ledc_fade_func_uninstall(void)
{
if (s_ledc_fade_isr_handle) {
esp_intr_free(s_ledc_fade_isr_handle);
s_ledc_fade_isr_handle = NULL;
}
int channel, mode;
for (mode = 0; mode < LEDC_SPEED_MODE_MAX; mode++) {
for (channel = 0; channel < LEDC_CHANNEL_MAX; channel++) {
ledc_fade_channel_deinit(mode, channel);
}
}
return;
}
esp_err_t ledc_cb_register(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_cbs_t *cbs, void *user_arg)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_ARG_CHECK(cbs, "callback");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
if (cbs->fade_cb && !esp_ptr_in_iram(cbs->fade_cb)) {
ESP_LOGW(LEDC_TAG, "fade callback not in IRAM");
}
if (user_arg && !esp_ptr_internal(user_arg)) {
ESP_LOGW(LEDC_TAG, "user context not in internal RAM");
}
s_ledc_fade_rec[speed_mode][channel]->ledc_fade_callback = cbs->fade_cb;
s_ledc_fade_rec[speed_mode][channel]->cb_user_arg = user_arg;
return ESP_OK;
}
/*
* The functions below are thread-safe version of APIs for duty and fade control.
* These APIs can be called from different tasks.
*/
esp_err_t ledc_set_duty_and_update(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, uint32_t hpoint)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_ARG_CHECK(duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
LEDC_ARG_CHECK(hpoint <= LEDC_LL_HPOINT_VAL_MAX, "hpoint");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
_ledc_fade_hw_acquire(speed_mode, channel);
portENTER_CRITICAL(&ledc_spinlock);
ledc_duty_config(speed_mode, channel, hpoint, duty, 1, 1, 1, 0);
_ledc_update_duty(speed_mode, channel);
portEXIT_CRITICAL(&ledc_spinlock);
_ledc_fade_hw_release(speed_mode, channel);
return ESP_OK;
}
esp_err_t ledc_set_fade_time_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t max_fade_time_ms, ledc_fade_mode_t fade_mode)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
_ledc_op_lock_acquire(speed_mode, channel);
_ledc_fade_hw_acquire(speed_mode, channel);
_ledc_set_fade_with_time(speed_mode, channel, target_duty, max_fade_time_ms);
_ledc_fade_start(speed_mode, channel, fade_mode);
_ledc_op_lock_release(speed_mode, channel);
return ESP_OK;
}
esp_err_t ledc_set_fade_step_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t scale, uint32_t cycle_num, ledc_fade_mode_t fade_mode)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
LEDC_ARG_CHECK((scale > 0) && (scale <= LEDC_LL_DUTY_SCALE_MAX), "fade scale");
LEDC_ARG_CHECK((cycle_num > 0) && (cycle_num <= LEDC_LL_DUTY_CYCLE_MAX), "cycle_num");
LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
_ledc_op_lock_acquire(speed_mode, channel);
_ledc_fade_hw_acquire(speed_mode, channel);
_ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
_ledc_fade_start(speed_mode, channel, fade_mode);
_ledc_op_lock_release(speed_mode, channel);
return ESP_OK;
}
#if SOC_LEDC_GAMMA_CURVE_FADE_SUPPORTED
static esp_err_t _ledc_set_multi_fade(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t start_duty, const ledc_fade_param_config_t *fade_params_list, uint32_t list_len)
{
uint32_t max_duty = ledc_get_max_duty(speed_mode, channel);
LEDC_ARG_CHECK(start_duty <= max_duty, "start_duty");
portENTER_CRITICAL(&ledc_spinlock);
ledc_hal_set_duty_int_part(&(p_ledc_obj[speed_mode]->ledc_hal), channel, start_duty);
for (int i = 0; i < list_len; i++) {
ledc_fade_param_config_t fade_param = fade_params_list[i];
ledc_hal_set_fade_param(&(p_ledc_obj[speed_mode]->ledc_hal), channel, i, fade_param.dir, fade_param.cycle_num, fade_param.scale, fade_param.step_num);
}
ledc_hal_set_range_number(&(p_ledc_obj[speed_mode]->ledc_hal), channel, list_len);
portEXIT_CRITICAL(&ledc_spinlock);
// Calculate target duty, and take account for overflow
uint32_t target_duty = start_duty;
for (int i = 0; i < list_len; i++) {
uint32_t delta_duty = (fade_params_list[i].step_num * fade_params_list[i].scale) % (max_duty + 1);
if (fade_params_list[i].dir == LEDC_DUTY_DIR_INCREASE) {
target_duty += delta_duty;
if (target_duty > max_duty) {
target_duty -= max_duty + 1;
}
} else {
if (delta_duty > target_duty) {
target_duty += max_duty + 1;
}
target_duty -= delta_duty;
}
}
// Set interrupt exit criteria
s_ledc_fade_rec[speed_mode][channel]->target_duty = target_duty;
s_ledc_fade_rec[speed_mode][channel]->scale = fade_params_list[list_len - 1].scale;
return ESP_OK;
}
esp_err_t ledc_set_multi_fade(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t start_duty, const ledc_fade_param_config_t *fade_params_list, uint32_t list_len)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_ARG_CHECK(list_len <= SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX, "list_len");
LEDC_ARG_CHECK(fade_params_list, "fade_params_list");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
_ledc_fade_hw_acquire(speed_mode, channel);
esp_err_t ret = _ledc_set_multi_fade(speed_mode, channel, start_duty, fade_params_list, list_len);
_ledc_fade_hw_release(speed_mode, channel);
return ret;
}
esp_err_t ledc_set_multi_fade_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t start_duty, const ledc_fade_param_config_t *fade_params_list, uint32_t list_len, ledc_fade_mode_t fade_mode)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_ARG_CHECK(list_len <= SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX, "list_len");
LEDC_ARG_CHECK(fade_params_list, "fade_params_list");
LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
_ledc_op_lock_acquire(speed_mode, channel);
_ledc_fade_hw_acquire(speed_mode, channel);
esp_err_t ret = _ledc_set_multi_fade(speed_mode, channel, start_duty, fade_params_list, list_len);
if (ret != ESP_OK) {
_ledc_fade_hw_release(speed_mode, channel);
} else {
_ledc_fade_start(speed_mode, channel, fade_mode);
}
_ledc_op_lock_release(speed_mode, channel);
return ret;
}
esp_err_t ledc_fill_multi_fade_param_list(ledc_mode_t speed_mode, ledc_channel_t channel,
uint32_t start_duty, uint32_t end_duty,
uint32_t linear_phase_num, uint32_t max_fade_time_ms,
uint32_t (* gamma_correction_operator)(uint32_t),
uint32_t fade_params_list_size,
ledc_fade_param_config_t *fade_params_list, uint32_t *hw_fade_range_num)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_ARG_CHECK(linear_phase_num > 0 && linear_phase_num <= SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX, "linear_phase_num");
LEDC_ARG_CHECK(gamma_correction_operator, "gamma_correction_operator");
LEDC_ARG_CHECK(fade_params_list_size <= SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX, "fade_params_list_size");
LEDC_ARG_CHECK(fade_params_list, "fade_params_list");
LEDC_ARG_CHECK(hw_fade_range_num, "hw_fade_range_num");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
uint32_t max_duty = ledc_get_max_duty(speed_mode, channel);
LEDC_ARG_CHECK(start_duty <= max_duty && end_duty <= max_duty, "duty");
esp_err_t ret = ESP_OK;
ledc_timer_t timer_sel;
ledc_hal_get_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &timer_sel);
uint32_t freq = ledc_get_freq(speed_mode, timer_sel);
uint32_t dir = (end_duty > start_duty) ? LEDC_DUTY_DIR_INCREASE : LEDC_DUTY_DIR_DECREASE;
uint32_t total_cycles = max_fade_time_ms * freq / 1000;
// If no duty change is need, then simplify the case
if (start_duty == end_duty) {
total_cycles = 1;
linear_phase_num = 1;
}
uint32_t avg_cycles_per_phase = total_cycles / linear_phase_num;
if (avg_cycles_per_phase == 0) {
ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
avg_cycles_per_phase = 1;
}
int sgn = (dir == LEDC_DUTY_DIR_INCREASE) ? 1 : (-1);
int32_t delta_brightness_per_phase = sgn * ((sgn * (end_duty - start_duty)) / linear_phase_num);
// First phase start and end values
uint32_t gamma_corrected_phase_head = gamma_correction_operator(start_duty);
uint32_t gamma_corrected_phase_tail = 0;
int32_t phase_tail = start_duty + delta_brightness_per_phase;
// Compute raw fade parameters for each linear phase
uint32_t total_fade_range = 0; // To record the required hw fade ranges
uint32_t surplus_cycles_last_phase = 0;
for (int i = 0; i < linear_phase_num; i++) {
uint32_t cycle, scale, step;
gamma_corrected_phase_tail = gamma_correction_operator(phase_tail);
uint32_t duty_delta = (dir == LEDC_DUTY_DIR_INCREASE) ? (gamma_corrected_phase_tail - gamma_corrected_phase_head) :
(gamma_corrected_phase_head - gamma_corrected_phase_tail);
uint32_t cycles_per_phase = avg_cycles_per_phase + surplus_cycles_last_phase;
if (duty_delta == 0) {
scale = 0;
cycle = (cycles_per_phase > LEDC_LL_DUTY_CYCLE_MAX) ? LEDC_LL_DUTY_CYCLE_MAX : cycles_per_phase;
step = 1;
} else if (cycles_per_phase > duty_delta) {
scale = 1;
step = duty_delta;
cycle = cycles_per_phase / duty_delta;
if (cycle > LEDC_LL_DUTY_CYCLE_MAX) {
ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_SLOW_STR);
cycle = LEDC_LL_DUTY_CYCLE_MAX;
}
} else {
cycle = 1;
scale = duty_delta / cycles_per_phase;
if (scale > LEDC_LL_DUTY_SCALE_MAX) {
ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
scale = LEDC_LL_DUTY_SCALE_MAX;
}
step = duty_delta / scale;
}
// Prepare for next phase calculation
phase_tail = phase_tail + delta_brightness_per_phase;
if (dir == LEDC_DUTY_DIR_INCREASE) {
gamma_corrected_phase_head += step * scale;
} else {
gamma_corrected_phase_head -= step * scale;
}
surplus_cycles_last_phase = cycles_per_phase - step * cycle;
// If next phase is the last one, then account for all remaining duty and cycles
if (i == linear_phase_num - 2) {
phase_tail = end_duty;
surplus_cycles_last_phase += total_cycles - avg_cycles_per_phase * linear_phase_num;
}
// Fill into the fade parameter list
// One linear phase might need multiple hardware fade ranges
do {
if (total_fade_range >= fade_params_list_size) {
ret = ESP_FAIL;
break;
}
fade_params_list[total_fade_range].dir = dir;
fade_params_list[total_fade_range].cycle_num = cycle;
fade_params_list[total_fade_range].scale = scale;
fade_params_list[total_fade_range].step_num = (step > LEDC_LL_DUTY_NUM_MAX) ? LEDC_LL_DUTY_NUM_MAX : step;
step -= fade_params_list[total_fade_range].step_num;
total_fade_range += 1;
} while (step > 0);
if (ret != ESP_OK) {
break;
}
}
uint32_t remaining_duty_delta = (dir == LEDC_DUTY_DIR_INCREASE) ? (gamma_corrected_phase_tail - gamma_corrected_phase_head) :
(gamma_corrected_phase_head - gamma_corrected_phase_tail);
if (remaining_duty_delta) {
total_fade_range += 1;
}
ESP_RETURN_ON_FALSE(total_fade_range <= fade_params_list_size, ESP_FAIL, LEDC_TAG,
"hw fade ranges required exceeds the space offered to fill the fade params."
" Please allocate more space, or split into smaller multi-fades, or reduce linear_phase_num");
if (remaining_duty_delta) {
fade_params_list[total_fade_range].dir = dir;
fade_params_list[total_fade_range].step_num = 1;
fade_params_list[total_fade_range].cycle_num = 1;
fade_params_list[total_fade_range].scale = remaining_duty_delta;
}
*hw_fade_range_num = total_fade_range;
return ret;
}
esp_err_t ledc_read_fade_param(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t range, uint32_t *dir, uint32_t *cycle, uint32_t *scale, uint32_t *step)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_ARG_CHECK(range < SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX, "range");
LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
ledc_hal_get_fade_param(&(p_ledc_obj[speed_mode]->ledc_hal), channel, range, dir, cycle, scale, step);
return ESP_OK;
}
#endif // SOC_LEDC_GAMMA_CURVE_FADE_SUPPORTED