esp-idf/components/usb/hcd_dwc.c

2664 wiersze
102 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include <string.h>
#include <sys/queue.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "esp_heap_caps.h"
#include "esp_dma_utils.h"
#include "esp_intr_alloc.h"
#include "soc/interrupts.h" // For interrupt index
#include "esp_err.h"
#include "esp_log.h"
#include "hal/usb_dwc_hal.h"
#include "hal/usb_dwc_types.h"
#include "hcd.h"
#include "usb_private.h"
#include "usb/usb_types_ch9.h"
#include "soc/soc_caps.h"
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
#include "esp_cache.h"
#include "esp_private/esp_cache_private.h"
#endif // SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
// ----------------------------------------------------- Macros --------------------------------------------------------
// ------------------ Target specific ----------------------
// TODO: Remove target specific section after support for multiple USB peripherals is implemented
#include "sdkconfig.h"
#if (CONFIG_IDF_TARGET_ESP32P4)
#define USB_INTR ETS_USB_OTG_INTR_SOURCE
#else
#define USB_INTR ETS_USB_INTR_SOURCE
#endif
// --------------------- Constants -------------------------
#define INIT_DELAY_MS 30 // A delay of at least 25ms to enter Host mode. Make it 30ms to be safe
#define DEBOUNCE_DELAY_MS CONFIG_USB_HOST_DEBOUNCE_DELAY_MS
#define RESET_HOLD_MS CONFIG_USB_HOST_RESET_HOLD_MS
#define RESET_RECOVERY_MS CONFIG_USB_HOST_RESET_RECOVERY_MS
#define RESUME_HOLD_MS 30 // Spec requires at least 20ms, Make it 30ms to be safe
#define RESUME_RECOVERY_MS 20 // Resume recovery of at least 10ms. Make it 20 ms to be safe. This will include the 3 LS bit times of the EOP
#define CTRL_EP_MAX_MPS_LS 8 // Largest Maximum Packet Size for Low Speed control endpoints
#define CTRL_EP_MAX_MPS_HSFS 64 // Largest Maximum Packet Size for High & Full Speed control endpoints
#define NUM_PORTS 1 // The controller only has one port.
// ----------------------- Configs -------------------------
#define FRAME_LIST_LEN USB_HAL_FRAME_LIST_LEN_32
#define NUM_BUFFERS 2
#define XFER_LIST_LEN_CTRL 3 // One descriptor for each stage
#define XFER_LIST_LEN_BULK 2 // One descriptor for transfer, one to support an extra zero length packet
// Same length as the frame list makes it easier to schedule. Must be power of 2
// FS: Must be 2-64. HS: Must be 8-256. See USB-OTG databook Table 5-47
#define XFER_LIST_LEN_INTR FRAME_LIST_LEN
#define XFER_LIST_LEN_ISOC FRAME_LIST_LEN
// ------------------------ Flags --------------------------
/**
* @brief Bit masks for the HCD to use in the URBs reserved_flags field
*
* The URB object has a reserved_flags member for host stack's internal use. The following flags will be set in
* reserved_flags in order to keep track of state of an URB within the HCD.
*/
#define URB_HCD_STATE_IDLE 0 // The URB is not enqueued in an HCD pipe
#define URB_HCD_STATE_PENDING 1 // The URB is enqueued and pending execution
#define URB_HCD_STATE_INFLIGHT 2 // The URB is currently in flight
#define URB_HCD_STATE_DONE 3 // The URB has completed execution or is retired, and is waiting to be dequeued
#define URB_HCD_STATE_SET(reserved_flags, state) (reserved_flags = (reserved_flags & ~URB_HCD_STATE_MASK) | state)
#define URB_HCD_STATE_GET(reserved_flags) (reserved_flags & URB_HCD_STATE_MASK)
// -------------------- Convenience ------------------------
const char *HCD_DWC_TAG = "HCD DWC";
#define HCD_ENTER_CRITICAL_ISR() portENTER_CRITICAL_ISR(&hcd_lock)
#define HCD_EXIT_CRITICAL_ISR() portEXIT_CRITICAL_ISR(&hcd_lock)
#define HCD_ENTER_CRITICAL() portENTER_CRITICAL(&hcd_lock)
#define HCD_EXIT_CRITICAL() portEXIT_CRITICAL(&hcd_lock)
#define HCD_CHECK(cond, ret_val) ({ \
if (!(cond)) { \
return (ret_val); \
} \
})
#define HCD_CHECK_FROM_CRIT(cond, ret_val) ({ \
if (!(cond)) { \
HCD_EXIT_CRITICAL(); \
return ret_val; \
} \
})
// ----------------------- Cache sync ----------------------
/**
* @brief Cache sync macros
*
* This macros are relevant only for SOCs that have L1 cache for internal memory
* For other SOCs this is no-operation
*/
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
#define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
#define CACHE_SYNC_FRAME_LIST(frame_list) cache_sync_frame_list(frame_list)
#define CACHE_SYNC_XFER_DESCRIPTOR_LIST_M2C(buffer) cache_sync_xfer_descriptor_list(buffer, true)
#define CACHE_SYNC_XFER_DESCRIPTOR_LIST_C2M(buffer) cache_sync_xfer_descriptor_list(buffer, false)
#define CACHE_SYNC_DATA_BUFFER_M2C(pipe, urb) cache_sync_data_buffer(pipe, urb, true)
#define CACHE_SYNC_DATA_BUFFER_C2M(pipe, urb) cache_sync_data_buffer(pipe, urb, false)
#else // SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
#define CACHE_SYNC_FRAME_LIST(frame_list)
#define CACHE_SYNC_XFER_DESCRIPTOR_LIST_M2C(buffer)
#define CACHE_SYNC_XFER_DESCRIPTOR_LIST_C2M(buffer)
#define CACHE_SYNC_DATA_BUFFER_M2C(pipe, urb)
#define CACHE_SYNC_DATA_BUFFER_C2M(pipe, urb)
#endif // SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
// ------------------------------------------------------ Types --------------------------------------------------------
typedef struct pipe_obj pipe_t;
typedef struct port_obj port_t;
/**
* @brief Object representing a single buffer of a pipe's multi buffer implementation
*/
typedef struct {
void *xfer_desc_list;
int xfer_desc_list_len_bytes; // Only for cache msync
urb_t *urb;
union {
struct {
uint32_t data_stg_in: 1; // Data stage of the control transfer is IN
uint32_t data_stg_skip: 1; // Control transfer has no data stage
uint32_t cur_stg: 2; // Index of the current stage (e.g., 0 is setup stage, 2 is status stage)
uint32_t reserved28: 28;
} ctrl; // Control transfer related
struct {
uint32_t zero_len_packet: 1; // Added a zero length packet, so transfer consists of 2 QTDs
uint32_t reserved31: 31;
} bulk; // Bulk transfer related
struct {
uint32_t num_qtds: 8; // Number of transfer descriptors filled (excluding zero length packet)
uint32_t zero_len_packet: 1; // Added a zero length packet, so true number descriptors is num_qtds + 1
uint32_t reserved23: 23;
} intr; // Interrupt transfer related
struct {
uint32_t num_qtds: 8; // Number of transfer descriptors filled (including NULL descriptors)
uint32_t interval: 8; // Interval (in number of SOF i.e., ms)
uint32_t start_idx: 8; // Index of the first transfer descriptor in the list
uint32_t next_start_idx: 8; // Index for the first descriptor of the next buffer
} isoc;
uint32_t val;
} flags;
union {
struct {
uint32_t executing: 1; // The buffer is currently executing
uint32_t was_canceled: 1; // Buffer was done due to a cancellation (i.e., a halt request)
uint32_t reserved6: 6;
uint32_t stop_idx: 8; // The descriptor index when the channel was halted
hcd_pipe_event_t pipe_event: 8; // The pipe event when the buffer was done
uint32_t reserved8: 8;
};
uint32_t val;
} status_flags; // Status flags for the buffer
} dma_buffer_block_t;
/**
* @brief Object representing a pipe in the HCD layer
*/
struct pipe_obj {
// URB queuing related
TAILQ_HEAD(tailhead_urb_pending, urb_s) pending_urb_tailq;
TAILQ_HEAD(tailhead_urb_done, urb_s) done_urb_tailq;
int num_urb_pending;
int num_urb_done;
// Multi-buffer control
dma_buffer_block_t *buffers[NUM_BUFFERS]; // Double buffering scheme
union {
struct {
uint32_t buffer_num_to_fill: 2; // Number of buffers that can be filled
uint32_t buffer_num_to_exec: 2; // Number of buffers that are filled and need to be executed
uint32_t buffer_num_to_parse: 2;// Number of buffers completed execution and waiting to be parsed
uint32_t reserved2: 2;
uint32_t wr_idx: 1; // Index of the next buffer to fill. Bit width must allow NUM_BUFFERS to wrap automatically
uint32_t rd_idx: 1; // Index of the current buffer in-flight. Bit width must allow NUM_BUFFERS to wrap automatically
uint32_t fr_idx: 1; // Index of the next buffer to parse. Bit width must allow NUM_BUFFERS to wrap automatically
uint32_t buffer_is_executing: 1;// One of the buffers is in flight
uint32_t reserved20: 20;
};
uint32_t val;
} multi_buffer_control;
// HAL related
usb_dwc_hal_chan_t *chan_obj;
usb_dwc_hal_ep_char_t ep_char;
// Port related
port_t *port; // The port to which this pipe is routed through
TAILQ_ENTRY(pipe_obj) tailq_entry; // TailQ entry for port's list of pipes
// Pipe status/state/events related
hcd_pipe_state_t state;
hcd_pipe_event_t last_event;
volatile TaskHandle_t task_waiting_pipe_notif; // Task handle used for internal pipe events. Set by waiter, cleared by notifier
union {
struct {
uint32_t waiting_halt: 1;
uint32_t pipe_cmd_processing: 1;
uint32_t has_urb: 1; // Indicates there is at least one URB either pending, in-flight, or done
uint32_t reserved29: 29;
};
uint32_t val;
} cs_flags;
// Pipe callback and context
hcd_pipe_callback_t callback;
void *callback_arg;
void *context;
};
/**
* @brief Object representing a port in the HCD layer
*/
struct port_obj {
usb_dwc_hal_context_t *hal;
void *frame_list;
// Pipes routed through this port
TAILQ_HEAD(tailhead_pipes_idle, pipe_obj) pipes_idle_tailq;
TAILQ_HEAD(tailhead_pipes_queued, pipe_obj) pipes_active_tailq;
int num_pipes_idle;
int num_pipes_queued;
// Port status, state, and events
hcd_port_state_t state;
usb_speed_t speed;
hcd_port_event_t last_event;
volatile TaskHandle_t task_waiting_port_notif; // Task handle used for internal port events. Set by waiter, cleared by notifier
union {
struct {
uint32_t event_pending: 1; // The port has an event that needs to be handled
uint32_t event_processing: 1; // The port is current processing (handling) an event
uint32_t cmd_processing: 1; // Used to indicate command handling is ongoing
uint32_t disable_requested: 1;
uint32_t conn_dev_ena: 1; // Used to indicate the port is connected to a device that has been reset
uint32_t periodic_scheduling_enabled: 1;
uint32_t reserved26: 26;
};
uint32_t val;
} flags;
bool initialized;
// FIFO biasing related
usb_hal_fifo_bias_t fifo_bias; // Bias is saved so it can be reconfigured upon reset
// Port callback and context
hcd_port_callback_t callback;
void *callback_arg;
SemaphoreHandle_t port_mux;
void *context;
};
/**
* @brief Object representing the HCD
*/
typedef struct {
// Ports (Hardware only has one)
port_t *port_obj;
intr_handle_t isr_hdl;
} hcd_obj_t;
static portMUX_TYPE hcd_lock = portMUX_INITIALIZER_UNLOCKED;
static hcd_obj_t *s_hcd_obj = NULL; // Note: "s_" is for the static pointer
// ------------------------------------------------- Forward Declare ---------------------------------------------------
// --------------------- Cache sync ------------------------
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
/**
* @brief Sync Frame List from cache to memory
*/
static inline void cache_sync_frame_list(void *frame_list)
{
esp_err_t ret = esp_cache_msync(frame_list, FRAME_LIST_LEN * sizeof(uint32_t), 0);
assert(ret == ESP_OK);
}
/**
* @brief Sync Transfer Descriptor List
*
* @param[in] buffer Buffer that holds the Transfer Descriptor List
* @param[in] mem_to_cache Direction of cache sync
*/
static inline void cache_sync_xfer_descriptor_list(dma_buffer_block_t *buffer, bool mem_to_cache)
{
esp_err_t ret = esp_cache_msync(buffer->xfer_desc_list, buffer->xfer_desc_list_len_bytes, mem_to_cache ? ESP_CACHE_MSYNC_FLAG_DIR_M2C : 0);
assert(ret == ESP_OK);
}
/**
* @brief Sync Transfer data buffer
*
* This function must be called before a URB is enqueued or dequeued.
* Based on transfer direction (IN/OUT), this function will msync the data buffer associated with this URB.
*
* @note Here we also accept UNALIGNED data, for cases where the class drivers force overwrite the allocated data buffers
*
* @param[in] pipe Pipe belonging to this data buffer
* @param[in] urb URB belonging to this data buffer
* @param[in] done Whether data buffer was just processed or is about to be processed
*/
static inline void cache_sync_data_buffer(pipe_t *pipe, urb_t *urb, bool done)
{
const bool is_in = pipe->ep_char.bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK;
const bool is_ctrl = (pipe->ep_char.type == USB_DWC_XFER_TYPE_CTRL);
if ((is_in == done) || is_ctrl) {
uint32_t flags = (done) ? ESP_CACHE_MSYNC_FLAG_DIR_M2C : ESP_CACHE_MSYNC_FLAG_UNALIGNED;
esp_err_t ret = esp_cache_msync(urb->transfer.data_buffer, urb->transfer.data_buffer_size, flags);
assert(ret == ESP_OK);
}
}
#endif // SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
// --------------------- Allocation ------------------------
/**
* @brief Allocate Frame List
*
* - Frame list is allocated in DMA capable memory
* - Frame list is aligned to 512 and cache line size
*
* @note Free the memory with heap_caps_free() call
*
* @param[in] frame_list_len Length of the Frame List
* @return Pointer to allocated frame list
*/
static void *frame_list_alloc(size_t frame_list_len);
/**
* @brief Allocate Transfer Descriptor List
*
* - Frame list is allocated in DMA capable memory
* - Frame list is aligned to 512 and cache line size
*
* @note Free the memory with heap_caps_free() call
*
* @param[in] list_len Required length
* @param[out] list_len_bytes_out Allocated length in bytes (can be greater than required)
* @return Pointer to allocated transfer descriptor list
*/
static void *transfer_descriptor_list_alloc(size_t list_len, size_t *list_len_bytes_out);
// ------------------- Buffer Control ----------------------
/**
* @brief Check if an inactive buffer can be filled with a pending URB
*
* @param pipe Pipe object
* @return true There are one or more pending URBs, and the inactive buffer is yet to be filled
* @return false Otherwise
*/
static inline bool _buffer_can_fill(pipe_t *pipe)
{
// We can only fill if there are pending URBs and at least one unfilled buffer
if (pipe->num_urb_pending > 0 && pipe->multi_buffer_control.buffer_num_to_fill > 0) {
return true;
} else {
return false;
}
}
/**
* @brief Fill an empty buffer with
*
* This function will:
* - Remove an URB from the pending tailq
* - Fill that URB into the inactive buffer
*
* @note _buffer_can_fill() must return true before calling this function
*
* @param pipe Pipe object
*/
static void _buffer_fill(pipe_t *pipe);
/**
* @brief Check if there are more filled buffers than can be executed
*
* @param pipe Pipe object
* @return true There are more filled buffers to be executed
* @return false No more buffers to execute
*/
static inline bool _buffer_can_exec(pipe_t *pipe)
{
// We can only execute if there is not already a buffer executing and if there are filled buffers awaiting execution
if (!pipe->multi_buffer_control.buffer_is_executing && pipe->multi_buffer_control.buffer_num_to_exec > 0) {
return true;
} else {
return false;
}
}
/**
* @brief Execute the next filled buffer
*
* - Must have called _buffer_can_exec() before calling this function
* - Will start the execution of the buffer
*
* @param pipe Pipe object
*/
static void _buffer_exec(pipe_t *pipe);
/**
* @brief Check if a buffer as completed execution
*
* This should only be called after receiving a USB_DWC_HAL_CHAN_EVENT_CPLT event to check if a buffer is actually
* done.
*
* @param pipe Pipe object
* @return true Buffer complete
* @return false Buffer not complete
*/
static inline bool _buffer_check_done(pipe_t *pipe)
{
if (pipe->ep_char.type != USB_DWC_XFER_TYPE_CTRL) {
return true;
}
// Only control transfers need to be continued
dma_buffer_block_t *buffer_inflight = pipe->buffers[pipe->multi_buffer_control.rd_idx];
return (buffer_inflight->flags.ctrl.cur_stg == 2);
}
/**
* @brief Continue execution of a buffer
*
* This should only be called after checking if a buffer has completed execution using _buffer_check_done()
*
* @param pipe Pipe object
*/
static void _buffer_exec_cont(pipe_t *pipe);
/**
* @brief Marks the last executed buffer as complete
*
* This should be called on a pipe that has confirmed that a buffer is completed via _buffer_check_done()
*
* @param pipe Pipe object
* @param stop_idx Descriptor index when the buffer stopped execution
* @param pipe_event Pipe event that caused the buffer to be complete. Use HCD_PIPE_EVENT_NONE for halt request of disconnections
* @param canceled Whether the buffer was done due to a canceled (i.e., halt request). Must set pipe_event to HCD_PIPE_EVENT_NONE
*/
static inline void _buffer_done(pipe_t *pipe, int stop_idx, hcd_pipe_event_t pipe_event, bool canceled)
{
// Store the stop_idx and pipe_event for later parsing
dma_buffer_block_t *buffer_done = pipe->buffers[pipe->multi_buffer_control.rd_idx];
buffer_done->status_flags.executing = 0;
buffer_done->status_flags.was_canceled = canceled;
buffer_done->status_flags.stop_idx = stop_idx;
buffer_done->status_flags.pipe_event = pipe_event;
pipe->multi_buffer_control.rd_idx++;
pipe->multi_buffer_control.buffer_num_to_exec--;
pipe->multi_buffer_control.buffer_num_to_parse++;
pipe->multi_buffer_control.buffer_is_executing = 0;
}
/**
* @brief Checks if a pipe has one or more completed buffers to parse
*
* @param pipe Pipe object
* @return true There are one or more buffers to parse
* @return false There are no more buffers to parse
*/
static inline bool _buffer_can_parse(pipe_t *pipe)
{
if (pipe->multi_buffer_control.buffer_num_to_parse > 0) {
return true;
} else {
return false;
}
}
/**
* @brief Parse a completed buffer
*
* This function will:
* - Parse the results of an URB from a completed buffer
* - Put the URB into the done tailq
*
* @note This function should only be called on the completion of a buffer
*
* @param pipe Pipe object
* @param stop_idx (For INTR pipes only) The index of the descriptor that follows the last descriptor of the URB. Set to 0 otherwise
*/
static void _buffer_parse(pipe_t *pipe);
/**
* @brief Marks all buffers pending execution as completed, then parses those buffers
*
* @note This should only be called on pipes do not have any currently executing buffers.
*
* @param pipe Pipe object
* @param canceled Whether this flush is due to cancellation
* @return true One or more buffers were flushed
* @return false There were no buffers that needed to be flushed
*/
static bool _buffer_flush_all(pipe_t *pipe, bool canceled);
// ------------------------ Pipe ---------------------------
/**
* @brief Decode a HAL channel error to the corresponding pipe event
*
* @param chan_error The HAL channel error
* @return hcd_pipe_event_t The corresponding pipe error event
*/
static inline hcd_pipe_event_t pipe_decode_error_event(usb_dwc_hal_chan_error_t chan_error);
/**
* @brief Halt a pipe
*
* - Attempts to halt a pipe. Pipe must be active in order to be halted
* - If the underlying channel has an ongoing transfer, a halt will be requested, then the function will block until the
* channel indicates it is halted
* - If the channel is no on-going transfer, the pipe will simply be marked has halted (thus preventing any further URBs
* from being enqueued)
*
* @note This function can block
* @param pipe Pipe object
* @return esp_err_t
*/
static esp_err_t _pipe_cmd_halt(pipe_t *pipe);
/**
* @brief Flush a pipe
*
* - Flushing a pipe causes all of its pending URBs to be become done, thus allowing them to be dequeued
* - The pipe must be halted in order to be flushed
* - The pipe callback will be run if one or more URBs become done
*
* @param pipe Pipe object
* @return esp_err_t
*/
static esp_err_t _pipe_cmd_flush(pipe_t *pipe);
/**
* @brief Clear a pipe from its halt
*
* - Pipe must be halted in order to be cleared
* - Clearing a pipe makes it active again
* - If there are any enqueued URBs, they will executed
*
* @param pipe Pipe object
* @return esp_err_t
*/
static esp_err_t _pipe_cmd_clear(pipe_t *pipe);
// ------------------------ Port ---------------------------
/**
* @brief Checks if all pipes are in the halted state
*
* @param port Port object
* @return true All pipes are halted
* @return false Not all pipes are halted
*/
static bool _port_check_all_pipes_halted(port_t *port);
/**
* @brief Debounce port after a connection or disconnection event
*
* This function should be called after a port connection or disconnect event. This function will execute a debounce
* delay then check the actual connection/disconnections state.
*
* @note This function can block
* @param port Port object
* @return true A device is connected
* @return false No device connected
*/
static bool _port_debounce(port_t *port);
/**
* @brief Power ON the port
*
* @param port Port object
* @return esp_err_t
*/
static esp_err_t _port_cmd_power_on(port_t *port);
/**
* @brief Power OFF the port
*
* - If a device is currently connected, this function will cause a disconnect event
*
* @param port Port object
* @return esp_err_t
*/
static esp_err_t _port_cmd_power_off(port_t *port);
/**
* @brief Reset the port
*
* - This function issues a reset signal using the timings specified by the USB2.0 spec
*
* @note This function can block
* @param port Port object
* @return esp_err_t
*/
static esp_err_t _port_cmd_reset(port_t *port);
/**
* @brief Suspend the port
*
* - Port must be enabled in order to to be suspended
* - All pipes must be halted for the port to be suspended
* - Suspending the port stops Keep Alive/SOF from being sent to the connected device
*
* @param port Port object
* @return esp_err_t
*/
static esp_err_t _port_cmd_bus_suspend(port_t *port);
/**
* @brief Resume the port
*
* - Port must be suspended in order to be resumed
*
* @note This function can block
* @param port Port object
* @return esp_err_t
*/
static esp_err_t _port_cmd_bus_resume(port_t *port);
/**
* @brief Disable the port
*
* - All pipes must be halted for the port to be disabled
* - The port must be enabled or suspended in order to be disabled
*
* @note This function can block
* @param port Port object
* @return esp_err_t
*/
static esp_err_t _port_cmd_disable(port_t *port);
// ----------------------- Events --------------------------
/**
* @brief Wait for an internal event from a port
*
* @note For each port, there can only be one thread/task waiting for an internal port event
* @note This function is blocking (will exit and re-enter the critical section to do so)
*
* @param port Port object
*/
static void _internal_port_event_wait(port_t *port);
/**
* @brief Notify (from an ISR context) the thread/task waiting for the internal port event
*
* @param port Port object
* @return true A yield is required
* @return false Whether a yield is required or not
*/
static bool _internal_port_event_notify_from_isr(port_t *port);
/**
* @brief Wait for an internal event from a particular pipe
*
* @note For each pipe, there can only be one thread/task waiting for an internal port event
* @note This function is blocking (will exit and re-enter the critical section to do so)
*
* @param pipe Pipe object
*/
static void _internal_pipe_event_wait(pipe_t *pipe);
/**
* @brief Notify (from an ISR context) the thread/task waiting for an internal pipe event
*
* @param pipe Pipe object
* @param from_isr Whether this is called from an ISR or not
* @return true A yield is required
* @return false Whether a yield is required or not. Always false when from_isr is also false
*/
static bool _internal_pipe_event_notify(pipe_t *pipe, bool from_isr);
// ----------------------------------------------- Interrupt Handling --------------------------------------------------
// ------------------- Internal Event ----------------------
static void _internal_port_event_wait(port_t *port)
{
// There must NOT be another thread/task already waiting for an internal event
assert(port->task_waiting_port_notif == NULL);
port->task_waiting_port_notif = xTaskGetCurrentTaskHandle();
/* We need to loop as task notifications can come from anywhere. If we this
was a port event notification, task_waiting_port_notif will have been cleared
by the notifier. */
while (port->task_waiting_port_notif != NULL) {
HCD_EXIT_CRITICAL();
// Wait to be notified from ISR
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
HCD_ENTER_CRITICAL();
}
}
static bool _internal_port_event_notify_from_isr(port_t *port)
{
// There must be a thread/task waiting for an internal event
assert(port->task_waiting_port_notif != NULL);
TaskHandle_t task_to_unblock = port->task_waiting_port_notif;
// Clear task_waiting_port_notif to indicate to the waiter that the unblock was indeed an port event notification
port->task_waiting_port_notif = NULL;
// Unblock the thread/task waiting for the notification
BaseType_t xTaskWoken = pdFALSE;
// Note: We don't exit the critical section to be atomic. vTaskNotifyGiveFromISR() doesn't block anyways
vTaskNotifyGiveFromISR(task_to_unblock, &xTaskWoken);
return (xTaskWoken == pdTRUE);
}
static void _internal_pipe_event_wait(pipe_t *pipe)
{
// There must NOT be another thread/task already waiting for an internal event
assert(pipe->task_waiting_pipe_notif == NULL);
pipe->task_waiting_pipe_notif = xTaskGetCurrentTaskHandle();
/* We need to loop as task notifications can come from anywhere. If we this
was a pipe event notification, task_waiting_pipe_notif will have been cleared
by the notifier. */
while (pipe->task_waiting_pipe_notif != NULL) {
// Wait to be unblocked by notified
HCD_EXIT_CRITICAL();
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
HCD_ENTER_CRITICAL();
}
}
static bool _internal_pipe_event_notify(pipe_t *pipe, bool from_isr)
{
// There must be a thread/task waiting for an internal event
assert(pipe->task_waiting_pipe_notif != NULL);
TaskHandle_t task_to_unblock = pipe->task_waiting_pipe_notif;
// Clear task_waiting_pipe_notif to indicate to the waiter that the unblock was indeed an pipe event notification
pipe->task_waiting_pipe_notif = NULL;
bool ret;
if (from_isr) {
BaseType_t xTaskWoken = pdFALSE;
// Note: We don't exit the critical section to be atomic. vTaskNotifyGiveFromISR() doesn't block anyways
// Unblock the thread/task waiting for the pipe notification
vTaskNotifyGiveFromISR(task_to_unblock, &xTaskWoken);
ret = (xTaskWoken == pdTRUE);
} else {
HCD_EXIT_CRITICAL();
xTaskNotifyGive(task_to_unblock);
HCD_ENTER_CRITICAL();
ret = false;
}
return ret;
}
// ----------------- HAL <-> USB helpers --------------------
static usb_speed_t get_usb_port_speed(usb_dwc_speed_t priv)
{
switch (priv) {
case USB_DWC_SPEED_LOW: return USB_SPEED_LOW;
case USB_DWC_SPEED_FULL: return USB_SPEED_FULL;
case USB_DWC_SPEED_HIGH: return USB_SPEED_HIGH;
default: abort();
}
}
static usb_hal_fifo_bias_t get_hal_fifo_bias(hcd_port_fifo_bias_t public)
{
switch (public) {
case HCD_PORT_FIFO_BIAS_BALANCED: return USB_HAL_FIFO_BIAS_DEFAULT;
case HCD_PORT_FIFO_BIAS_RX: return USB_HAL_FIFO_BIAS_RX;
case HCD_PORT_FIFO_BIAS_PTX: return USB_HAL_FIFO_BIAS_PTX;
default: abort();
}
}
// ----------------- Interrupt Handlers --------------------
/**
* @brief Handle a HAL port interrupt and obtain the corresponding port event
*
* @param[in] port Port object
* @param[in] hal_port_event The HAL port event
* @param[out] yield Set to true if a yield is required as a result of handling the interrupt
* @return hcd_port_event_t Returns a port event, or HCD_PORT_EVENT_NONE if no port event occurred
*/
static hcd_port_event_t _intr_hdlr_hprt(port_t *port, usb_dwc_hal_port_event_t hal_port_event, bool *yield)
{
hcd_port_event_t port_event = HCD_PORT_EVENT_NONE;
switch (hal_port_event) {
case USB_DWC_HAL_PORT_EVENT_CONN: {
// Don't update state immediately, we still need to debounce.
port_event = HCD_PORT_EVENT_CONNECTION;
break;
}
case USB_DWC_HAL_PORT_EVENT_DISCONN: {
port->state = HCD_PORT_STATE_RECOVERY;
port_event = HCD_PORT_EVENT_DISCONNECTION;
port->flags.conn_dev_ena = 0;
break;
}
case USB_DWC_HAL_PORT_EVENT_ENABLED: {
usb_dwc_hal_port_enable(port->hal); // Initialize remaining host port registers
port->speed = get_usb_port_speed(usb_dwc_hal_port_get_conn_speed(port->hal));
port->state = HCD_PORT_STATE_ENABLED;
port->flags.conn_dev_ena = 1;
// This was triggered by a command, so no event needs to be propagated.
break;
}
case USB_DWC_HAL_PORT_EVENT_DISABLED: {
port->flags.conn_dev_ena = 0;
// Disabled could be due to a disable request or reset request, or due to a port error
if (port->state != HCD_PORT_STATE_RESETTING) { // Ignore the disable event if it's due to a reset request
if (port->flags.disable_requested) {
// Disabled by request (i.e. by port command). Generate an internal event
port->state = HCD_PORT_STATE_DISABLED;
port->flags.disable_requested = 0;
*yield |= _internal_port_event_notify_from_isr(port);
} else {
// Disabled due to a port error
port->state = HCD_PORT_STATE_RECOVERY;
port_event = HCD_PORT_EVENT_ERROR;
}
}
break;
}
case USB_DWC_HAL_PORT_EVENT_OVRCUR:
case USB_DWC_HAL_PORT_EVENT_OVRCUR_CLR: { // Could occur if a quick overcurrent then clear happens
if (port->state != HCD_PORT_STATE_NOT_POWERED) {
// We need to power OFF the port to protect it
usb_dwc_hal_port_toggle_power(port->hal, false);
port->state = HCD_PORT_STATE_RECOVERY;
port_event = HCD_PORT_EVENT_OVERCURRENT;
}
port->flags.conn_dev_ena = 0;
break;
}
default: {
abort();
break;
}
}
return port_event;
}
/**
* @brief Handles a HAL channel interrupt
*
* This function should be called on a HAL channel when it has an interrupt. Most HAL channel events will correspond to
* to a pipe event, but not always. This function will store the pipe event and return a pipe object pointer if a pipe
* event occurred, or return NULL otherwise.
*
* @param[in] chan_obj Pointer to HAL channel object with interrupt
* @param[out] yield Set to true if a yield is required as a result of handling the interrupt
* @return hcd_pipe_event_t The pipe event
*/
static hcd_pipe_event_t _intr_hdlr_chan(pipe_t *pipe, usb_dwc_hal_chan_t *chan_obj, bool *yield)
{
usb_dwc_hal_chan_event_t chan_event = usb_dwc_hal_chan_decode_intr(chan_obj);
hcd_pipe_event_t event = HCD_PIPE_EVENT_NONE;
switch (chan_event) {
case USB_DWC_HAL_CHAN_EVENT_CPLT: {
if (!_buffer_check_done(pipe)) {
_buffer_exec_cont(pipe);
break;
}
pipe->last_event = HCD_PIPE_EVENT_URB_DONE;
event = pipe->last_event;
// Mark the buffer as done
int stop_idx = usb_dwc_hal_chan_get_qtd_idx(chan_obj);
_buffer_done(pipe, stop_idx, pipe->last_event, false);
// First check if there is another buffer we can execute. But we only want to execute if there's still a valid device
if (_buffer_can_exec(pipe) && pipe->port->flags.conn_dev_ena) {
// If the next buffer is filled and ready to execute, execute it
_buffer_exec(pipe);
}
// Handle the previously done buffer
_buffer_parse(pipe);
// Check to see if we can fill another buffer. But we only want to fill if there is still a valid device
if (_buffer_can_fill(pipe) && pipe->port->flags.conn_dev_ena) {
// Now that we've parsed a buffer, see if another URB can be filled in its place
_buffer_fill(pipe);
}
break;
}
case USB_DWC_HAL_CHAN_EVENT_ERROR: {
// Get and store the pipe error event
usb_dwc_hal_chan_error_t chan_error = usb_dwc_hal_chan_get_error(chan_obj);
pipe->last_event = pipe_decode_error_event(chan_error);
event = pipe->last_event;
pipe->state = HCD_PIPE_STATE_HALTED;
// Mark the buffer as done with an error
int stop_idx = usb_dwc_hal_chan_get_qtd_idx(chan_obj);
_buffer_done(pipe, stop_idx, pipe->last_event, false);
// Parse the buffer
_buffer_parse(pipe);
break;
}
case USB_DWC_HAL_CHAN_EVENT_HALT_REQ: {
assert(pipe->cs_flags.waiting_halt);
// We've halted a transfer, so we need to trigger the pipe callback
pipe->last_event = HCD_PIPE_EVENT_URB_DONE;
event = pipe->last_event;
// Halt request event is triggered when packet is successful completed. But just treat all halted transfers as errors
pipe->state = HCD_PIPE_STATE_HALTED;
int stop_idx = usb_dwc_hal_chan_get_qtd_idx(chan_obj);
_buffer_done(pipe, stop_idx, HCD_PIPE_EVENT_NONE, true);
// Parse the buffer
_buffer_parse(pipe);
// Notify the task waiting for the pipe halt
*yield |= _internal_pipe_event_notify(pipe, true);
break;
}
case USB_DWC_HAL_CHAN_EVENT_NONE: {
break; // Nothing to do
}
default:
abort();
break;
}
return event;
}
/**
* @brief Main interrupt handler
*
* - Handle all HPRT (Host Port) related interrupts first as they may change the
* state of the driver (e.g., a disconnect event)
* - If any channels (pipes) have pending interrupts, handle them one by one
* - The HCD has not blocking functions, so the user's ISR callback is run to
* allow the users to send whatever OS primitives they need.
*
* @param arg Interrupt handler argument
*/
static void intr_hdlr_main(void *arg)
{
port_t *port = (port_t *) arg;
bool yield = false;
HCD_ENTER_CRITICAL_ISR();
usb_dwc_hal_port_event_t hal_port_evt = usb_dwc_hal_decode_intr(port->hal);
if (hal_port_evt == USB_DWC_HAL_PORT_EVENT_CHAN) {
// Channel event. Cycle through each pending channel
usb_dwc_hal_chan_t *chan_obj = usb_dwc_hal_get_chan_pending_intr(port->hal);
while (chan_obj != NULL) {
pipe_t *pipe = (pipe_t *)usb_dwc_hal_chan_get_context(chan_obj);
hcd_pipe_event_t event = _intr_hdlr_chan(pipe, chan_obj, &yield);
// Run callback if a pipe event has occurred and the pipe also has a callback
if (event != HCD_PIPE_EVENT_NONE && pipe->callback != NULL) {
HCD_EXIT_CRITICAL_ISR();
yield |= pipe->callback((hcd_pipe_handle_t)pipe, event, pipe->callback_arg, true);
HCD_ENTER_CRITICAL_ISR();
}
// Check for more channels with pending interrupts. Returns NULL if there are no more
chan_obj = usb_dwc_hal_get_chan_pending_intr(port->hal);
}
} else if (hal_port_evt != USB_DWC_HAL_PORT_EVENT_NONE) { // Port event
hcd_port_event_t port_event = _intr_hdlr_hprt(port, hal_port_evt, &yield);
if (port_event != HCD_PORT_EVENT_NONE) {
port->last_event = port_event;
port->flags.event_pending = 1;
if (port->callback != NULL) {
HCD_EXIT_CRITICAL_ISR();
yield |= port->callback((hcd_port_handle_t)port, port_event, port->callback_arg, true);
HCD_ENTER_CRITICAL_ISR();
}
}
}
HCD_EXIT_CRITICAL_ISR();
if (yield) {
portYIELD_FROM_ISR();
}
}
// --------------------------------------------- Host Controller Driver ------------------------------------------------
static port_t *port_obj_alloc(void)
{
port_t *port = calloc(1, sizeof(port_t));
usb_dwc_hal_context_t *hal = malloc(sizeof(usb_dwc_hal_context_t));
void *frame_list = frame_list_alloc(FRAME_LIST_LEN);
SemaphoreHandle_t port_mux = xSemaphoreCreateMutex();
if (port == NULL || hal == NULL || frame_list == NULL || port_mux == NULL) {
free(port);
free(hal);
free(frame_list);
if (port_mux != NULL) {
vSemaphoreDelete(port_mux);
}
return NULL;
}
port->hal = hal;
port->frame_list = frame_list;
port->port_mux = port_mux;
return port;
}
static void port_obj_free(port_t *port)
{
if (port == NULL) {
return;
}
vSemaphoreDelete(port->port_mux);
free(port->frame_list);
free(port->hal);
free(port);
}
void *frame_list_alloc(size_t frame_list_len)
{
esp_err_t ret;
void *frame_list = NULL;
size_t actual_size = 0;
esp_dma_mem_info_t dma_mem_info = {
.dma_alignment_bytes = USB_DWC_FRAME_LIST_MEM_ALIGN,
};
ret = esp_dma_capable_calloc(frame_list_len, sizeof(uint32_t), &dma_mem_info, &frame_list, &actual_size);
assert(ret == ESP_OK);
// Both Frame List start address and size should be already cache aligned so this is only a sanity check
if (frame_list) {
if (!esp_dma_is_buffer_alignment_satisfied(frame_list, actual_size, dma_mem_info)) {
// This should never happen
heap_caps_free(frame_list);
frame_list = NULL;
}
}
return frame_list;
}
void *transfer_descriptor_list_alloc(size_t list_len, size_t *list_len_bytes_out)
{
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
// Required Transfer Descriptor List size (in bytes) might not be aligned to cache line size, align the size up
size_t data_cache_line_size = 0;
esp_cache_get_alignment(MALLOC_CAP_DMA, &data_cache_line_size);
const size_t required_list_len_bytes = list_len * sizeof(usb_dwc_ll_dma_qtd_t);
*list_len_bytes_out = ALIGN_UP_BY(required_list_len_bytes, data_cache_line_size);
#else
*list_len_bytes_out = list_len * sizeof(usb_dwc_ll_dma_qtd_t);
#endif // SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
esp_err_t ret;
void *qtd_list = NULL;
size_t actual_size = 0;
esp_dma_mem_info_t dma_mem_info = {
.dma_alignment_bytes = USB_DWC_QTD_LIST_MEM_ALIGN,
};
ret = esp_dma_capable_calloc(*list_len_bytes_out, 1, &dma_mem_info, &qtd_list, &actual_size);
assert(ret == ESP_OK);
if (qtd_list) {
if (!esp_dma_is_buffer_alignment_satisfied(qtd_list, actual_size, dma_mem_info)) {
// This should never happen
heap_caps_free(qtd_list);
qtd_list = NULL;
}
}
return qtd_list;
}
// ----------------------- Public --------------------------
esp_err_t hcd_install(const hcd_config_t *config)
{
HCD_ENTER_CRITICAL();
HCD_CHECK_FROM_CRIT(s_hcd_obj == NULL, ESP_ERR_INVALID_STATE);
HCD_EXIT_CRITICAL();
esp_err_t err_ret;
// Allocate memory for the driver object
hcd_obj_t *p_hcd_obj_dmy = calloc(1, sizeof(hcd_obj_t));
if (p_hcd_obj_dmy == NULL) {
return ESP_ERR_NO_MEM;
}
// Allocate each port object (the hardware currently only has one port)
p_hcd_obj_dmy->port_obj = port_obj_alloc();
if (p_hcd_obj_dmy->port_obj == NULL) {
err_ret = ESP_ERR_NO_MEM;
goto port_alloc_err;
}
// Allocate interrupt
err_ret = esp_intr_alloc(USB_INTR,
config->intr_flags | ESP_INTR_FLAG_INTRDISABLED, // The interrupt must be disabled until the port is initialized
intr_hdlr_main,
(void *)p_hcd_obj_dmy->port_obj,
&p_hcd_obj_dmy->isr_hdl);
if (err_ret != ESP_OK) {
goto intr_alloc_err;
}
HCD_ENTER_CRITICAL();
if (s_hcd_obj != NULL) {
HCD_EXIT_CRITICAL();
err_ret = ESP_ERR_INVALID_STATE;
goto assign_err;
}
s_hcd_obj = p_hcd_obj_dmy;
HCD_EXIT_CRITICAL();
return ESP_OK;
assign_err:
esp_intr_free(p_hcd_obj_dmy->isr_hdl);
intr_alloc_err:
port_obj_free(p_hcd_obj_dmy->port_obj);
port_alloc_err:
free(p_hcd_obj_dmy);
return err_ret;
}
esp_err_t hcd_uninstall(void)
{
HCD_ENTER_CRITICAL();
// Check that all ports have been disabled (there's only one port)
if (s_hcd_obj == NULL || s_hcd_obj->port_obj->initialized) {
HCD_EXIT_CRITICAL();
return ESP_ERR_INVALID_STATE;
}
hcd_obj_t *p_hcd_obj_dmy = s_hcd_obj;
s_hcd_obj = NULL;
HCD_EXIT_CRITICAL();
// Free resources
port_obj_free(p_hcd_obj_dmy->port_obj);
esp_intr_free(p_hcd_obj_dmy->isr_hdl);
free(p_hcd_obj_dmy);
return ESP_OK;
}
// ------------------------------------------------------ Port ---------------------------------------------------------
// ----------------------- Helpers -------------------------
static bool _port_check_all_pipes_halted(port_t *port)
{
bool all_halted = true;
pipe_t *pipe;
TAILQ_FOREACH(pipe, &port->pipes_active_tailq, tailq_entry) {
if (pipe->state != HCD_PIPE_STATE_HALTED) {
all_halted = false;
break;
}
}
TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) {
if (pipe->state != HCD_PIPE_STATE_HALTED) {
all_halted = false;
break;
}
}
return all_halted;
}
static bool _port_debounce(port_t *port)
{
if (port->state == HCD_PORT_STATE_NOT_POWERED) {
// Disconnect event due to power off, no need to debounce or update port state.
return false;
}
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(DEBOUNCE_DELAY_MS));
HCD_ENTER_CRITICAL();
// Check the post-debounce state of the bus (i.e., whether it's actually connected/disconnected)
bool is_connected = usb_dwc_hal_port_check_if_connected(port->hal);
if (is_connected) {
port->state = HCD_PORT_STATE_DISABLED;
} else {
port->state = HCD_PORT_STATE_DISCONNECTED;
}
// Disable debounce lock
usb_dwc_hal_disable_debounce_lock(port->hal);
return is_connected;
}
// ---------------------- Commands -------------------------
static esp_err_t _port_cmd_power_on(port_t *port)
{
esp_err_t ret;
// Port can only be powered on if it's currently unpowered
if (port->state == HCD_PORT_STATE_NOT_POWERED) {
port->state = HCD_PORT_STATE_DISCONNECTED;
usb_dwc_hal_port_init(port->hal);
usb_dwc_hal_port_toggle_power(port->hal, true);
ret = ESP_OK;
} else {
ret = ESP_ERR_INVALID_STATE;
}
return ret;
}
static esp_err_t _port_cmd_power_off(port_t *port)
{
esp_err_t ret;
// Port can only be unpowered if already powered
if (port->state != HCD_PORT_STATE_NOT_POWERED) {
port->state = HCD_PORT_STATE_NOT_POWERED;
usb_dwc_hal_port_deinit(port->hal);
usb_dwc_hal_port_toggle_power(port->hal, false);
// If a device is currently connected, this should trigger a disconnect event
ret = ESP_OK;
} else {
ret = ESP_ERR_INVALID_STATE;
}
return ret;
}
static esp_err_t _port_cmd_reset(port_t *port)
{
esp_err_t ret;
// Port can only a reset when it is in the enabled or disabled (in the case of a new connection)states.
if (port->state != HCD_PORT_STATE_ENABLED && port->state != HCD_PORT_STATE_DISABLED) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// Port can only be reset if all pipes are idle
if (port->num_pipes_queued > 0) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
/*
Proceed to resetting the bus
- Update the port's state variable
- Hold the bus in the reset state for RESET_HOLD_MS.
- Return the bus to the idle state for RESET_RECOVERY_MS
*/
port->state = HCD_PORT_STATE_RESETTING;
// Place the bus into the reset state. If the port was previously enabled, a disabled event will occur after this
usb_dwc_hal_port_toggle_reset(port->hal, true);
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(RESET_HOLD_MS));
HCD_ENTER_CRITICAL();
if (port->state != HCD_PORT_STATE_RESETTING) {
// The port state has unexpectedly changed
ret = ESP_ERR_INVALID_RESPONSE;
goto bailout;
}
// Return the bus to the idle state. Port enabled event should occur
usb_dwc_hal_port_toggle_reset(port->hal, false);
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(RESET_RECOVERY_MS));
HCD_ENTER_CRITICAL();
if (port->state != HCD_PORT_STATE_ENABLED || !port->flags.conn_dev_ena) {
// The port state has unexpectedly changed
ret = ESP_ERR_INVALID_RESPONSE;
goto bailout;
}
// Reinitialize port registers.
usb_dwc_hal_set_fifo_bias(port->hal, port->fifo_bias); // Set FIFO biases
usb_dwc_hal_port_set_frame_list(port->hal, port->frame_list, FRAME_LIST_LEN); // Set periodic frame list
usb_dwc_hal_port_periodic_enable(port->hal); // Enable periodic scheduling
ret = ESP_OK;
bailout:
// Reinitialize channel registers
pipe_t *pipe;
TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) {
usb_dwc_hal_chan_set_ep_char(port->hal, pipe->chan_obj, &pipe->ep_char);
}
CACHE_SYNC_FRAME_LIST(port->frame_list);
exit:
return ret;
}
static esp_err_t _port_cmd_bus_suspend(port_t *port)
{
esp_err_t ret;
// Port must have been previously enabled, and all pipes must already be halted
if (port->state == HCD_PORT_STATE_ENABLED && !_port_check_all_pipes_halted(port)) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// All pipes are guaranteed halted at this point. Proceed to suspend the port
usb_dwc_hal_port_suspend(port->hal);
port->state = HCD_PORT_STATE_SUSPENDED;
ret = ESP_OK;
exit:
return ret;
}
static esp_err_t _port_cmd_bus_resume(port_t *port)
{
esp_err_t ret;
// Port can only be resumed if it was previously suspended
if (port->state != HCD_PORT_STATE_SUSPENDED) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// Put and hold the bus in the K state.
usb_dwc_hal_port_toggle_resume(port->hal, true);
port->state = HCD_PORT_STATE_RESUMING;
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(RESUME_HOLD_MS));
HCD_ENTER_CRITICAL();
// Return and hold the bus to the J state (as port of the LS EOP)
usb_dwc_hal_port_toggle_resume(port->hal, false);
if (port->state != HCD_PORT_STATE_RESUMING || !port->flags.conn_dev_ena) {
// Port state unexpectedly changed
ret = ESP_ERR_INVALID_RESPONSE;
goto exit;
}
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(RESUME_RECOVERY_MS));
HCD_ENTER_CRITICAL();
if (port->state != HCD_PORT_STATE_RESUMING || !port->flags.conn_dev_ena) {
// Port state unexpectedly changed
ret = ESP_ERR_INVALID_RESPONSE;
goto exit;
}
port->state = HCD_PORT_STATE_ENABLED;
ret = ESP_OK;
exit:
return ret;
}
static esp_err_t _port_cmd_disable(port_t *port)
{
esp_err_t ret;
if (port->state != HCD_PORT_STATE_ENABLED && port->state != HCD_PORT_STATE_SUSPENDED) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// All pipes must be halted before disabling the port
if (!_port_check_all_pipes_halted(port)) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// All pipes are guaranteed to be halted or freed at this point. Proceed to disable the port
port->flags.disable_requested = 1;
usb_dwc_hal_port_disable(port->hal);
_internal_port_event_wait(port);
if (port->state != HCD_PORT_STATE_DISABLED) {
// Port state unexpectedly changed
ret = ESP_ERR_INVALID_RESPONSE;
goto exit;
}
ret = ESP_OK;
exit:
return ret;
}
// ----------------------- Public --------------------------
esp_err_t hcd_port_init(int port_number, const hcd_port_config_t *port_config, hcd_port_handle_t *port_hdl)
{
HCD_CHECK(port_number > 0 && port_config != NULL && port_hdl != NULL, ESP_ERR_INVALID_ARG);
HCD_CHECK(port_number <= NUM_PORTS, ESP_ERR_NOT_FOUND);
HCD_ENTER_CRITICAL();
HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && !s_hcd_obj->port_obj->initialized, ESP_ERR_INVALID_STATE);
// Port object memory and resources (such as the mutex) already be allocated. Just need to initialize necessary fields only
port_t *port_obj = s_hcd_obj->port_obj;
TAILQ_INIT(&port_obj->pipes_idle_tailq);
TAILQ_INIT(&port_obj->pipes_active_tailq);
port_obj->state = HCD_PORT_STATE_NOT_POWERED;
port_obj->last_event = HCD_PORT_EVENT_NONE;
port_obj->fifo_bias = get_hal_fifo_bias(port_config->fifo_bias);
port_obj->callback = port_config->callback;
port_obj->callback_arg = port_config->callback_arg;
port_obj->context = port_config->context;
usb_dwc_hal_init(port_obj->hal);
port_obj->initialized = true;
// Clear the frame list. We set the frame list register and enable periodic scheduling after a successful reset
memset(port_obj->frame_list, 0, FRAME_LIST_LEN * sizeof(uint32_t));
esp_intr_enable(s_hcd_obj->isr_hdl);
*port_hdl = (hcd_port_handle_t)port_obj;
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(INIT_DELAY_MS)); // Need a short delay before host mode takes effect
return ESP_OK;
}
esp_err_t hcd_port_deinit(hcd_port_handle_t port_hdl)
{
port_t *port = (port_t *)port_hdl;
HCD_ENTER_CRITICAL();
HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && port->initialized
&& port->num_pipes_idle == 0 && port->num_pipes_queued == 0
&& (port->state == HCD_PORT_STATE_NOT_POWERED || port->state == HCD_PORT_STATE_RECOVERY)
&& port->task_waiting_port_notif == NULL,
ESP_ERR_INVALID_STATE);
port->initialized = false;
esp_intr_disable(s_hcd_obj->isr_hdl);
usb_dwc_hal_deinit(port->hal);
HCD_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t hcd_port_command(hcd_port_handle_t port_hdl, hcd_port_cmd_t command)
{
esp_err_t ret = ESP_ERR_INVALID_STATE;
port_t *port = (port_t *)port_hdl;
xSemaphoreTake(port->port_mux, portMAX_DELAY);
HCD_ENTER_CRITICAL();
if (port->initialized && !port->flags.event_pending) { // Port events need to be handled first before issuing a command
port->flags.cmd_processing = 1;
switch (command) {
case HCD_PORT_CMD_POWER_ON: {
ret = _port_cmd_power_on(port);
break;
}
case HCD_PORT_CMD_POWER_OFF: {
ret = _port_cmd_power_off(port);
break;
}
case HCD_PORT_CMD_RESET: {
ret = _port_cmd_reset(port);
break;
}
case HCD_PORT_CMD_SUSPEND: {
ret = _port_cmd_bus_suspend(port);
break;
}
case HCD_PORT_CMD_RESUME: {
ret = _port_cmd_bus_resume(port);
break;
}
case HCD_PORT_CMD_DISABLE: {
ret = _port_cmd_disable(port);
break;
}
}
port->flags.cmd_processing = 0;
}
HCD_EXIT_CRITICAL();
xSemaphoreGive(port->port_mux);
return ret;
}
hcd_port_state_t hcd_port_get_state(hcd_port_handle_t port_hdl)
{
port_t *port = (port_t *)port_hdl;
hcd_port_state_t ret;
HCD_ENTER_CRITICAL();
ret = port->state;
HCD_EXIT_CRITICAL();
return ret;
}
esp_err_t hcd_port_get_speed(hcd_port_handle_t port_hdl, usb_speed_t *speed)
{
port_t *port = (port_t *)port_hdl;
HCD_CHECK(speed != NULL, ESP_ERR_INVALID_ARG);
HCD_ENTER_CRITICAL();
// Device speed is only valid if there is device connected to the port that has been reset
HCD_CHECK_FROM_CRIT(port->flags.conn_dev_ena, ESP_ERR_INVALID_STATE);
*speed = get_usb_port_speed(usb_dwc_hal_port_get_conn_speed(port->hal));
HCD_EXIT_CRITICAL();
return ESP_OK;
}
hcd_port_event_t hcd_port_handle_event(hcd_port_handle_t port_hdl)
{
port_t *port = (port_t *)port_hdl;
hcd_port_event_t ret = HCD_PORT_EVENT_NONE;
xSemaphoreTake(port->port_mux, portMAX_DELAY);
HCD_ENTER_CRITICAL();
if (port->initialized && port->flags.event_pending) {
port->flags.event_pending = 0;
port->flags.event_processing = 1;
ret = port->last_event;
switch (ret) {
case HCD_PORT_EVENT_CONNECTION: {
if (_port_debounce(port)) {
ret = HCD_PORT_EVENT_CONNECTION;
}
break;
}
case HCD_PORT_EVENT_DISCONNECTION:
case HCD_PORT_EVENT_ERROR:
case HCD_PORT_EVENT_OVERCURRENT: {
break;
}
default: {
break;
}
}
port->flags.event_processing = 0;
} else {
ret = HCD_PORT_EVENT_NONE;
}
HCD_EXIT_CRITICAL();
xSemaphoreGive(port->port_mux);
return ret;
}
esp_err_t hcd_port_recover(hcd_port_handle_t port_hdl)
{
port_t *port = (port_t *)port_hdl;
HCD_ENTER_CRITICAL();
HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && port->initialized && port->state == HCD_PORT_STATE_RECOVERY
&& port->num_pipes_idle == 0 && port->num_pipes_queued == 0
&& port->flags.val == 0 && port->task_waiting_port_notif == NULL,
ESP_ERR_INVALID_STATE);
// We are about to do a soft reset on the peripheral. Disable the peripheral throughout
esp_intr_disable(s_hcd_obj->isr_hdl);
usb_dwc_hal_core_soft_reset(port->hal);
port->state = HCD_PORT_STATE_NOT_POWERED;
port->last_event = HCD_PORT_EVENT_NONE;
port->flags.val = 0;
// Soft reset wipes all registers so we need to reinitialize the HAL
usb_dwc_hal_init(port->hal);
// Clear the frame list. We set the frame list register and enable periodic scheduling after a successful reset
memset(port->frame_list, 0, FRAME_LIST_LEN * sizeof(uint32_t));
esp_intr_enable(s_hcd_obj->isr_hdl);
HCD_EXIT_CRITICAL();
return ESP_OK;
}
void *hcd_port_get_context(hcd_port_handle_t port_hdl)
{
port_t *port = (port_t *)port_hdl;
void *ret;
HCD_ENTER_CRITICAL();
ret = port->context;
HCD_EXIT_CRITICAL();
return ret;
}
esp_err_t hcd_port_set_fifo_bias(hcd_port_handle_t port_hdl, hcd_port_fifo_bias_t bias)
{
esp_err_t ret;
usb_hal_fifo_bias_t hal_bias = get_hal_fifo_bias(bias);
// Configure the new FIFO sizes and store the pointers
port_t *port = (port_t *)port_hdl;
xSemaphoreTake(port->port_mux, portMAX_DELAY);
HCD_ENTER_CRITICAL();
// Check that port is in the correct state to update FIFO sizes
if (port->initialized && !port->flags.event_pending && port->num_pipes_idle == 0 && port->num_pipes_queued == 0) {
usb_dwc_hal_set_fifo_bias(port->hal, hal_bias);
port->fifo_bias = hal_bias;
ret = ESP_OK;
} else {
ret = ESP_ERR_INVALID_STATE;
}
HCD_EXIT_CRITICAL();
xSemaphoreGive(port->port_mux);
return ret;
}
// --------------------------------------------------- HCD Pipes -------------------------------------------------------
// ----------------------- Private -------------------------
static inline hcd_pipe_event_t pipe_decode_error_event(usb_dwc_hal_chan_error_t chan_error)
{
hcd_pipe_event_t event = HCD_PIPE_EVENT_NONE;
switch (chan_error) {
case USB_DWC_HAL_CHAN_ERROR_XCS_XACT:
event = HCD_PIPE_EVENT_ERROR_XFER;
break;
case USB_DWC_HAL_CHAN_ERROR_BNA:
event = HCD_PIPE_EVENT_ERROR_URB_NOT_AVAIL;
break;
case USB_DWC_HAL_CHAN_ERROR_PKT_BBL:
event = HCD_PIPE_EVENT_ERROR_OVERFLOW;
break;
case USB_DWC_HAL_CHAN_ERROR_STALL:
event = HCD_PIPE_EVENT_ERROR_STALL;
break;
}
return event;
}
static dma_buffer_block_t *buffer_block_alloc(usb_transfer_type_t type)
{
int desc_list_len;
switch (type) {
case USB_TRANSFER_TYPE_CTRL:
desc_list_len = XFER_LIST_LEN_CTRL;
break;
case USB_TRANSFER_TYPE_ISOCHRONOUS:
desc_list_len = XFER_LIST_LEN_ISOC;
break;
case USB_TRANSFER_TYPE_BULK:
desc_list_len = XFER_LIST_LEN_BULK;
break;
default: // USB_TRANSFER_TYPE_INTR:
desc_list_len = XFER_LIST_LEN_INTR;
break;
}
dma_buffer_block_t *buffer = calloc(1, sizeof(dma_buffer_block_t));
size_t real_len = 0;
void *xfer_desc_list = transfer_descriptor_list_alloc(desc_list_len, &real_len);
if (buffer == NULL || xfer_desc_list == NULL) {
free(buffer);
heap_caps_free(xfer_desc_list);
return NULL;
}
buffer->xfer_desc_list = xfer_desc_list;
buffer->xfer_desc_list_len_bytes = real_len;
return buffer;
}
static void buffer_block_free(dma_buffer_block_t *buffer)
{
if (buffer == NULL) {
return;
}
heap_caps_free(buffer->xfer_desc_list);
free(buffer);
}
static bool pipe_args_usb_compliance_verification(const hcd_pipe_config_t *pipe_config, usb_speed_t port_speed, usb_transfer_type_t type)
{
// Check if pipe can be supported
if (port_speed == USB_SPEED_LOW && pipe_config->dev_speed == USB_SPEED_FULL) {
ESP_LOGE(HCD_DWC_TAG, "Low speed port does not support full speed pipe");
return false;
}
if (pipe_config->dev_speed == USB_SPEED_LOW && (type == USB_TRANSFER_TYPE_BULK || type == USB_TRANSFER_TYPE_ISOCHRONOUS)) {
ESP_LOGE(HCD_DWC_TAG, "Low speed does not support Bulk or Isochronous pipes");
return false;
}
return true;
}
static bool pipe_alloc_hcd_support_verification(usb_dwc_hal_context_t *hal, const usb_ep_desc_t * ep_desc)
{
assert(hal != NULL);
assert(ep_desc != NULL);
usb_hal_fifo_mps_limits_t mps_limits = {0};
usb_dwc_hal_get_mps_limits(hal, &mps_limits);
const usb_transfer_type_t type = USB_EP_DESC_GET_XFERTYPE(ep_desc);
// Check the pipe's interval is not zero
if ((type == USB_TRANSFER_TYPE_INTR || type == USB_TRANSFER_TYPE_ISOCHRONOUS) &&
(ep_desc->bInterval == 0)) {
ESP_LOGE(HCD_DWC_TAG, "bInterval value (%d) invalid for pipe type INTR/ISOC",
ep_desc->bInterval);
return false;
}
// Check if pipe MPS exceeds HCD MPS limits (due to DWC FIFO sizing)
int limit;
if (USB_EP_DESC_GET_EP_DIR(ep_desc)) { // IN
limit = mps_limits.in_mps;
} else { // OUT
if (type == USB_TRANSFER_TYPE_CTRL || type == USB_TRANSFER_TYPE_BULK) {
limit = mps_limits.non_periodic_out_mps;
} else {
limit = mps_limits.periodic_out_mps;
}
}
if (USB_EP_DESC_GET_MPS(ep_desc) > limit) {
ESP_LOGE(HCD_DWC_TAG, "EP MPS (%d) exceeds supported limit (%d)",
USB_EP_DESC_GET_MPS(ep_desc),
limit);
return false;
}
return true;
}
static void pipe_set_ep_char(const hcd_pipe_config_t *pipe_config, usb_transfer_type_t type, bool is_default_pipe, int pipe_idx, usb_speed_t port_speed, usb_dwc_hal_ep_char_t *ep_char)
{
// Initialize EP characteristics
usb_dwc_xfer_type_t hal_xfer_type;
switch (type) {
case USB_TRANSFER_TYPE_CTRL:
hal_xfer_type = USB_DWC_XFER_TYPE_CTRL;
break;
case USB_TRANSFER_TYPE_ISOCHRONOUS:
hal_xfer_type = USB_DWC_XFER_TYPE_ISOCHRONOUS;
break;
case USB_TRANSFER_TYPE_BULK:
hal_xfer_type = USB_DWC_XFER_TYPE_BULK;
break;
default: // USB_TRANSFER_TYPE_INTR
hal_xfer_type = USB_DWC_XFER_TYPE_INTR;
break;
}
ep_char->type = hal_xfer_type;
if (is_default_pipe) {
ep_char->bEndpointAddress = 0;
// Set the default pipe's MPS to the worst case MPS for the device's speed
ep_char->mps = (pipe_config->dev_speed == USB_SPEED_LOW) ? CTRL_EP_MAX_MPS_LS : CTRL_EP_MAX_MPS_HSFS;
} else {
ep_char->bEndpointAddress = pipe_config->ep_desc->bEndpointAddress;
ep_char->mps = USB_EP_DESC_GET_MPS(pipe_config->ep_desc);
}
ep_char->dev_addr = pipe_config->dev_addr;
ep_char->ls_via_fs_hub = (port_speed == USB_SPEED_FULL && pipe_config->dev_speed == USB_SPEED_LOW);
// Calculate the pipe's interval in terms of USB frames
// @see USB-OTG programming guide chapter 6.5 for more information
if (type == USB_TRANSFER_TYPE_INTR || type == USB_TRANSFER_TYPE_ISOCHRONOUS) {
// Convert bInterval field to real value
// @see USB 2.0 specs, Table 9-13
unsigned int interval_value;
if (type == USB_TRANSFER_TYPE_INTR && pipe_config->dev_speed != USB_SPEED_HIGH) {
interval_value = pipe_config->ep_desc->bInterval;
} else {
interval_value = (1 << (pipe_config->ep_desc->bInterval - 1));
}
ep_char->periodic.interval = interval_value;
// We are the Nth pipe to be allocated. Use N as a phase offset
unsigned int xfer_list_len = (type == USB_TRANSFER_TYPE_INTR) ? XFER_LIST_LEN_INTR : XFER_LIST_LEN_ISOC;
ep_char->periodic.offset = (pipe_idx % xfer_list_len) % interval_value;
ep_char->periodic.is_hs = (pipe_config->dev_speed == USB_SPEED_HIGH);
} else {
ep_char->periodic.interval = 0;
ep_char->periodic.offset = 0;
}
}
// ---------------------- Commands -------------------------
static esp_err_t _pipe_cmd_halt(pipe_t *pipe)
{
esp_err_t ret;
// If pipe is already halted, just return.
if (pipe->state == HCD_PIPE_STATE_HALTED) {
ret = ESP_OK;
goto exit;
}
// If the pipe's port is invalid, we just mark the pipe as halted without needing to halt the underlying channel
if (pipe->port->flags.conn_dev_ena // Skip halting the underlying channel if the port is invalid
&& !usb_dwc_hal_chan_request_halt(pipe->chan_obj)) { // Check if the channel is already halted
// Channel is not halted, we need to request and wait for a haltWe need to wait for channel to be halted.
pipe->cs_flags.waiting_halt = 1;
_internal_pipe_event_wait(pipe);
// State should have been updated in the ISR
assert(pipe->state == HCD_PIPE_STATE_HALTED);
} else {
// We are already halted, just need to update the state
usb_dwc_hal_chan_mark_halted(pipe->chan_obj);
pipe->state = HCD_PIPE_STATE_HALTED;
}
ret = ESP_OK;
exit:
return ret;
}
static esp_err_t _pipe_cmd_flush(pipe_t *pipe)
{
esp_err_t ret;
// The pipe must be halted in order to be flushed
if (pipe->state != HCD_PIPE_STATE_HALTED) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// If the port is still valid, we are canceling transfers. Otherwise, we are flushing due to a port error
bool canceled = pipe->port->flags.conn_dev_ena;
bool call_pipe_cb;
// Flush any filled buffers
call_pipe_cb = _buffer_flush_all(pipe, canceled);
// Move all URBs from the pending tailq to the done tailq
if (pipe->num_urb_pending > 0) {
// Process all remaining pending URBs
urb_t *urb;
TAILQ_FOREACH(urb, &pipe->pending_urb_tailq, tailq_entry) {
// Update the URB's current state
urb->hcd_var = URB_HCD_STATE_DONE;
// URBs were never executed, Update the actual_num_bytes and status
urb->transfer.actual_num_bytes = 0;
urb->transfer.status = (canceled) ? USB_TRANSFER_STATUS_CANCELED : USB_TRANSFER_STATUS_NO_DEVICE;
if (pipe->ep_char.type == USB_DWC_XFER_TYPE_ISOCHRONOUS) {
// Update the URB's isoc packet descriptors as well
for (int pkt_idx = 0; pkt_idx < urb->transfer.num_isoc_packets; pkt_idx++) {
urb->transfer.isoc_packet_desc[pkt_idx].actual_num_bytes = 0;
urb->transfer.isoc_packet_desc[pkt_idx].status = (canceled) ? USB_TRANSFER_STATUS_CANCELED : USB_TRANSFER_STATUS_NO_DEVICE;
}
}
}
// Concatenated pending tailq to the done tailq
TAILQ_CONCAT(&pipe->done_urb_tailq, &pipe->pending_urb_tailq, tailq_entry);
pipe->num_urb_done += pipe->num_urb_pending;
pipe->num_urb_pending = 0;
call_pipe_cb = true;
}
if (call_pipe_cb) {
// One or more URBs can be dequeued as a result of the flush. We need to call the callback
HCD_EXIT_CRITICAL();
pipe->callback((hcd_pipe_handle_t)pipe, HCD_PIPE_EVENT_URB_DONE, pipe->callback_arg, false);
HCD_ENTER_CRITICAL();
}
ret = ESP_OK;
exit:
return ret;
}
static esp_err_t _pipe_cmd_clear(pipe_t *pipe)
{
esp_err_t ret;
// Pipe must be in the halted state in order to be made active, and there must be an enabled device on the port
if (pipe->state != HCD_PIPE_STATE_HALTED || !pipe->port->flags.conn_dev_ena) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// Update the pipe's state
pipe->state = HCD_PIPE_STATE_ACTIVE;
if (pipe->num_urb_pending > 0) {
// Fill as many buffers as possible
while (_buffer_can_fill(pipe)) {
_buffer_fill(pipe);
}
}
// Execute any filled buffers
if (_buffer_can_exec(pipe)) {
_buffer_exec(pipe);
}
ret = ESP_OK;
exit:
return ret;
}
// ----------------------- Public --------------------------
esp_err_t hcd_pipe_alloc(hcd_port_handle_t port_hdl, const hcd_pipe_config_t *pipe_config, hcd_pipe_handle_t *pipe_hdl)
{
HCD_CHECK(port_hdl != NULL && pipe_config != NULL && pipe_hdl != NULL, ESP_ERR_INVALID_ARG);
port_t *port = (port_t *)port_hdl;
HCD_ENTER_CRITICAL();
// Can only allocate a pipe if the target port is initialized and connected to an enabled device
HCD_CHECK_FROM_CRIT(port->initialized && port->flags.conn_dev_ena, ESP_ERR_INVALID_STATE);
usb_speed_t port_speed = port->speed;
int pipe_idx = port->num_pipes_idle + port->num_pipes_queued;
HCD_EXIT_CRITICAL();
usb_transfer_type_t type;
bool is_default;
if (pipe_config->ep_desc == NULL) {
// Default CTRL pipe allocation
type = USB_TRANSFER_TYPE_CTRL;
is_default = true;
} else {
type = USB_EP_DESC_GET_XFERTYPE(pipe_config->ep_desc);
is_default = false;
}
esp_err_t ret;
// Check if pipe configuration can be supported
if (!pipe_args_usb_compliance_verification(pipe_config, port_speed, type)) {
return ESP_ERR_NOT_SUPPORTED;
}
// Default pipes have a NULL ep_desc thus should skip the HCD support verification
if (!is_default && !pipe_alloc_hcd_support_verification(port->hal, pipe_config->ep_desc)) {
return ESP_ERR_NOT_SUPPORTED;
}
// Allocate the pipe resources
pipe_t *pipe = calloc(1, sizeof(pipe_t));
usb_dwc_hal_chan_t *chan_obj = calloc(1, sizeof(usb_dwc_hal_chan_t));
dma_buffer_block_t *buffers[NUM_BUFFERS] = {0};
if (pipe == NULL || chan_obj == NULL) {
ret = ESP_ERR_NO_MEM;
goto err;
}
for (int i = 0; i < NUM_BUFFERS; i++) {
buffers[i] = buffer_block_alloc(type);
if (buffers[i] == NULL) {
ret = ESP_ERR_NO_MEM;
goto err;
}
}
// Initialize pipe object
TAILQ_INIT(&pipe->pending_urb_tailq);
TAILQ_INIT(&pipe->done_urb_tailq);
for (int i = 0; i < NUM_BUFFERS; i++) {
pipe->buffers[i] = buffers[i];
}
pipe->multi_buffer_control.buffer_num_to_fill = NUM_BUFFERS;
pipe->port = port;
pipe->chan_obj = chan_obj;
usb_dwc_hal_ep_char_t ep_char;
pipe_set_ep_char(pipe_config, type, is_default, pipe_idx, port_speed, &ep_char);
memcpy(&pipe->ep_char, &ep_char, sizeof(usb_dwc_hal_ep_char_t));
pipe->state = HCD_PIPE_STATE_ACTIVE;
pipe->callback = pipe_config->callback;
pipe->callback_arg = pipe_config->callback_arg;
pipe->context = pipe_config->context;
// Allocate channel
HCD_ENTER_CRITICAL();
if (!port->initialized || !port->flags.conn_dev_ena) {
HCD_EXIT_CRITICAL();
ret = ESP_ERR_INVALID_STATE;
goto err;
}
bool chan_allocated = usb_dwc_hal_chan_alloc(port->hal, pipe->chan_obj, (void *) pipe);
if (!chan_allocated) {
HCD_EXIT_CRITICAL();
ret = ESP_ERR_NOT_SUPPORTED;
goto err;
}
usb_dwc_hal_chan_set_ep_char(port->hal, pipe->chan_obj, &pipe->ep_char);
CACHE_SYNC_FRAME_LIST(port->frame_list);
// Add the pipe to the list of idle pipes in the port object
TAILQ_INSERT_TAIL(&port->pipes_idle_tailq, pipe, tailq_entry);
port->num_pipes_idle++;
HCD_EXIT_CRITICAL();
*pipe_hdl = (hcd_pipe_handle_t)pipe;
return ESP_OK;
err:
for (int i = 0; i < NUM_BUFFERS; i++) {
buffer_block_free(buffers[i]);
}
free(chan_obj);
free(pipe);
return ret;
}
int hcd_pipe_get_mps(hcd_pipe_handle_t pipe_hdl)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
int mps;
HCD_ENTER_CRITICAL();
mps = pipe->ep_char.mps;
HCD_EXIT_CRITICAL();
return mps;
}
esp_err_t hcd_pipe_free(hcd_pipe_handle_t pipe_hdl)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
// Check that all URBs have been removed and pipe has no pending events
HCD_CHECK_FROM_CRIT(!pipe->multi_buffer_control.buffer_is_executing
&& !pipe->cs_flags.has_urb,
ESP_ERR_INVALID_STATE);
// Remove pipe from the list of idle pipes (it must be in the idle list because it should have no queued URBs)
TAILQ_REMOVE(&pipe->port->pipes_idle_tailq, pipe, tailq_entry);
pipe->port->num_pipes_idle--;
usb_dwc_hal_chan_free(pipe->port->hal, pipe->chan_obj);
HCD_EXIT_CRITICAL();
// Free pipe resources
for (int i = 0; i < NUM_BUFFERS; i++) {
buffer_block_free(pipe->buffers[i]);
}
free(pipe->chan_obj);
free(pipe);
return ESP_OK;
}
esp_err_t hcd_pipe_update_mps(hcd_pipe_handle_t pipe_hdl, int mps)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
// Check if pipe is in the correct state to be updated
HCD_CHECK_FROM_CRIT(!pipe->cs_flags.pipe_cmd_processing &&
!pipe->cs_flags.has_urb,
ESP_ERR_INVALID_STATE);
pipe->ep_char.mps = mps;
// Update the underlying channel's registers
usb_dwc_hal_chan_set_ep_char(pipe->port->hal, pipe->chan_obj, &pipe->ep_char);
HCD_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t hcd_pipe_update_dev_addr(hcd_pipe_handle_t pipe_hdl, uint8_t dev_addr)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
// Check if pipe is in the correct state to be updated
HCD_CHECK_FROM_CRIT(!pipe->cs_flags.pipe_cmd_processing &&
!pipe->cs_flags.has_urb,
ESP_ERR_INVALID_STATE);
pipe->ep_char.dev_addr = dev_addr;
// Update the underlying channel's registers
usb_dwc_hal_chan_set_ep_char(pipe->port->hal, pipe->chan_obj, &pipe->ep_char);
HCD_EXIT_CRITICAL();
return ESP_OK;
}
void *hcd_pipe_get_context(hcd_pipe_handle_t pipe_hdl)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
void *ret;
HCD_ENTER_CRITICAL();
ret = pipe->context;
HCD_EXIT_CRITICAL();
return ret;
}
hcd_pipe_state_t hcd_pipe_get_state(hcd_pipe_handle_t pipe_hdl)
{
hcd_pipe_state_t ret;
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
ret = pipe->state;
HCD_EXIT_CRITICAL();
return ret;
}
unsigned int hcd_pipe_get_num_urbs(hcd_pipe_handle_t pipe_hdl)
{
unsigned int ret;
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
ret = pipe->num_urb_pending + pipe->num_urb_done;
HCD_EXIT_CRITICAL();
return ret;
}
esp_err_t hcd_pipe_command(hcd_pipe_handle_t pipe_hdl, hcd_pipe_cmd_t command)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
esp_err_t ret = ESP_OK;
HCD_ENTER_CRITICAL();
pipe->cs_flags.pipe_cmd_processing = 1;
switch (command) {
case HCD_PIPE_CMD_HALT: {
ret = _pipe_cmd_halt(pipe);
break;
}
case HCD_PIPE_CMD_FLUSH: {
ret = _pipe_cmd_flush(pipe);
break;
}
case HCD_PIPE_CMD_CLEAR: {
ret = _pipe_cmd_clear(pipe);
break;
}
}
pipe->cs_flags.pipe_cmd_processing = 0;
HCD_EXIT_CRITICAL();
return ret;
}
hcd_pipe_event_t hcd_pipe_get_event(hcd_pipe_handle_t pipe_hdl)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
hcd_pipe_event_t ret;
HCD_ENTER_CRITICAL();
ret = pipe->last_event;
pipe->last_event = HCD_PIPE_EVENT_NONE;
HCD_EXIT_CRITICAL();
return ret;
}
// ------------------------------------------------- Buffer Control ----------------------------------------------------
static inline void _buffer_fill_ctrl(dma_buffer_block_t *buffer, usb_transfer_t *transfer)
{
// Get information about the control transfer by analyzing the setup packet (the first 8 bytes of the URB's data)
usb_setup_packet_t *setup_pkt = (usb_setup_packet_t *)transfer->data_buffer;
bool data_stg_in = (setup_pkt->bmRequestType & USB_BM_REQUEST_TYPE_DIR_IN);
bool data_stg_skip = (setup_pkt->wLength == 0);
// Fill setup stage
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, sizeof(usb_setup_packet_t),
USB_DWC_HAL_XFER_DESC_FLAG_SETUP | USB_DWC_HAL_XFER_DESC_FLAG_HOC);
// Fill data stage
if (data_stg_skip) {
// Not data stage. Fill with an empty descriptor
usb_dwc_hal_xfer_desc_clear(buffer->xfer_desc_list, 1);
} else {
// Fill data stage. Note that we still fill with transfer->num_bytes instead of setup_pkt->wLength as it's possible to require more bytes than wLength
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 1, transfer->data_buffer + sizeof(usb_setup_packet_t), transfer->num_bytes - sizeof(usb_setup_packet_t),
((data_stg_in) ? USB_DWC_HAL_XFER_DESC_FLAG_IN : 0) | USB_DWC_HAL_XFER_DESC_FLAG_HOC);
}
// Fill status stage (i.e., a zero length packet). If data stage is skipped, the status stage is always IN.
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 2, NULL, 0,
((data_stg_in && !data_stg_skip) ? 0 : USB_DWC_HAL_XFER_DESC_FLAG_IN) | USB_DWC_HAL_XFER_DESC_FLAG_HOC);
// Update buffer flags
buffer->flags.ctrl.data_stg_in = data_stg_in;
buffer->flags.ctrl.data_stg_skip = data_stg_skip;
buffer->flags.ctrl.cur_stg = 0;
}
static inline void _buffer_fill_bulk(dma_buffer_block_t *buffer, usb_transfer_t *transfer, bool is_in, int mps)
{
// Only add a zero length packet if OUT, flag is set, and transfer length is multiple of EP's MPS
// Minor optimization: Do the mod operation last
bool zero_len_packet = !is_in && (transfer->flags & USB_TRANSFER_FLAG_ZERO_PACK) && (transfer->num_bytes % mps == 0);
if (is_in) {
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, transfer->num_bytes,
USB_DWC_HAL_XFER_DESC_FLAG_IN | USB_DWC_HAL_XFER_DESC_FLAG_HOC);
} else { // OUT
if (zero_len_packet) {
// Adding a zero length packet, so two descriptors are used.
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, transfer->num_bytes, 0);
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 1, NULL, 0, USB_DWC_HAL_XFER_DESC_FLAG_HOC);
} else {
// Zero length packet not required. One descriptor is enough
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, transfer->num_bytes, USB_DWC_HAL_XFER_DESC_FLAG_HOC);
}
}
// Update buffer flags
buffer->flags.bulk.zero_len_packet = zero_len_packet;
}
static inline void _buffer_fill_intr(dma_buffer_block_t *buffer, usb_transfer_t *transfer, bool is_in, int mps)
{
int num_qtds;
int mod_mps = transfer->num_bytes % mps;
// Only add a zero length packet if OUT, flag is set, and transfer length is multiple of EP's MPS
bool zero_len_packet = !is_in && (transfer->flags & USB_TRANSFER_FLAG_ZERO_PACK) && (mod_mps == 0);
if (is_in) {
assert(mod_mps == 0); // IN transfers MUST be integer multiple of MPS
num_qtds = transfer->num_bytes / mps; // Can just floor divide as it's already multiple of MPS
} else {
num_qtds = transfer->num_bytes / mps; // Floor division to get the number of MPS sized packets
if (mod_mps > 0) {
num_qtds++; // Add a short packet for the remainder
}
}
assert((zero_len_packet) ? num_qtds + 1 : num_qtds <= XFER_LIST_LEN_INTR); // Check that the number of QTDs doesn't exceed the QTD list's length
uint32_t xfer_desc_flags = (is_in) ? USB_DWC_HAL_XFER_DESC_FLAG_IN : 0;
int bytes_filled = 0;
// Fill all but last QTD
for (int i = 0; i < num_qtds - 1; i++) {
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, i, &transfer->data_buffer[bytes_filled], mps, xfer_desc_flags);
bytes_filled += mps;
}
// Fill last QTD and zero length packet
if (zero_len_packet) {
// Fill in last data packet without HOC flag
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, num_qtds - 1, &transfer->data_buffer[bytes_filled], transfer->num_bytes - bytes_filled,
xfer_desc_flags);
// HOC flag goes to zero length packet instead
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, num_qtds, NULL, 0, USB_DWC_HAL_XFER_DESC_FLAG_HOC);
} else {
// Zero length packet not required. Fill in last QTD with HOC flag
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, num_qtds - 1, &transfer->data_buffer[bytes_filled], transfer->num_bytes - bytes_filled,
xfer_desc_flags | USB_DWC_HAL_XFER_DESC_FLAG_HOC);
}
// Update buffer members and flags
buffer->flags.intr.num_qtds = num_qtds;
buffer->flags.intr.zero_len_packet = zero_len_packet;
}
static inline void IRAM_ATTR _buffer_fill_isoc(dma_buffer_block_t *buffer, usb_transfer_t *transfer, bool is_in, int mps, int interval, int start_idx)
{
assert(interval > 0);
assert(__builtin_popcount(interval) == 1); // Isochronous interval must be power of 2 according to USB2.0 specification
int total_num_desc = transfer->num_isoc_packets * interval;
assert(total_num_desc <= XFER_LIST_LEN_ISOC);
int desc_idx = start_idx;
int bytes_filled = 0;
// Zeroize the whole QTD, so we can focus only on the active descriptors
memset(buffer->xfer_desc_list, 0, XFER_LIST_LEN_ISOC * sizeof(usb_dwc_ll_dma_qtd_t));
for (int pkt_idx = 0; pkt_idx < transfer->num_isoc_packets; pkt_idx++) {
int xfer_len = transfer->isoc_packet_desc[pkt_idx].num_bytes;
uint32_t flags = (is_in) ? USB_DWC_HAL_XFER_DESC_FLAG_IN : 0;
if (pkt_idx == transfer->num_isoc_packets - 1) {
// Last packet, set the the HOC flag
flags |= USB_DWC_HAL_XFER_DESC_FLAG_HOC;
}
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, desc_idx, &transfer->data_buffer[bytes_filled], xfer_len, flags);
bytes_filled += xfer_len;
desc_idx += interval;
desc_idx %= XFER_LIST_LEN_ISOC;
}
// Update buffer members and flags
buffer->flags.isoc.num_qtds = total_num_desc;
buffer->flags.isoc.interval = interval;
buffer->flags.isoc.start_idx = start_idx;
buffer->flags.isoc.next_start_idx = desc_idx;
}
static void IRAM_ATTR _buffer_fill(pipe_t *pipe)
{
// Get an URB from the pending tailq
urb_t *urb = TAILQ_FIRST(&pipe->pending_urb_tailq);
assert(pipe->num_urb_pending > 0 && urb != NULL);
TAILQ_REMOVE(&pipe->pending_urb_tailq, urb, tailq_entry);
pipe->num_urb_pending--;
// Select the inactive buffer
assert(pipe->multi_buffer_control.buffer_num_to_exec <= NUM_BUFFERS);
dma_buffer_block_t *buffer_to_fill = pipe->buffers[pipe->multi_buffer_control.wr_idx];
buffer_to_fill->status_flags.val = 0; // Clear the buffer's status flags
assert(buffer_to_fill->urb == NULL);
bool is_in = pipe->ep_char.bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK;
int mps = pipe->ep_char.mps;
usb_transfer_t *transfer = &urb->transfer;
switch (pipe->ep_char.type) {
case USB_DWC_XFER_TYPE_CTRL: {
_buffer_fill_ctrl(buffer_to_fill, transfer);
break;
}
case USB_DWC_XFER_TYPE_ISOCHRONOUS: {
uint16_t start_idx;
// Interval in frames (FS) or microframes (HS). But it does not matter here, as each QTD represents one transaction in a frame or microframe
unsigned int interval = pipe->ep_char.periodic.interval;
if (interval > XFER_LIST_LEN_ISOC) {
// Each QTD in the list corresponds to one frame/microframe. Interval > Descriptor_list does not make sense here.
interval = XFER_LIST_LEN_ISOC;
}
if (pipe->multi_buffer_control.buffer_num_to_exec == 0) {
// There are no more previously filled buffers to execute. We need to calculate a new start index based on HFNUM and the pipe's schedule
uint16_t cur_frame_num = usb_dwc_hal_port_get_cur_frame_num(pipe->port->hal);
start_idx = cur_frame_num + 1; // This is the next frame that the periodic scheduler will fetch
uint16_t rem_time = usb_dwc_ll_hfnum_get_frame_time_rem(pipe->port->hal->dev);
// If there is not enough time remaining in this frame, consider the next frame as start index
// The remaining time is in USB PHY clocks. The threshold value is time between buffer fill and execute (6-11us) = 180 + 5 x num_packets
if (rem_time < 195 + 5 * transfer->num_isoc_packets) {
if (rem_time > 165 + 5 * transfer->num_isoc_packets) {
// If the remaining time is +-15 PHY clocks around the threshold value we cannot be certain whether we will schedule it in time for this frame
// Busy wait 10us to be sure that we are at the beginning of next frame/microframe
esp_rom_delay_us(10);
}
start_idx++;
}
// Only every (interval + offset) transfer belongs to this channel
// Following calculation effectively rounds up to nearest (interval + offset)
if (interval > 1) {
uint32_t interval_offset = (start_idx - pipe->ep_char.periodic.offset) % interval; // Can be <0, interval)
if (interval_offset > 0) {
start_idx += interval - interval_offset;
}
}
start_idx %= XFER_LIST_LEN_ISOC;
} else {
// Start index is based on previously filled buffer
uint32_t prev_buffer_idx = (pipe->multi_buffer_control.wr_idx - 1) & (NUM_BUFFERS - 1);
dma_buffer_block_t *prev_filled_buffer = pipe->buffers[prev_buffer_idx];
start_idx = prev_filled_buffer->flags.isoc.next_start_idx;
}
_buffer_fill_isoc(buffer_to_fill, transfer, is_in, mps, (int)interval, start_idx);
break;
}
case USB_DWC_XFER_TYPE_BULK: {
_buffer_fill_bulk(buffer_to_fill, transfer, is_in, mps);
break;
}
case USB_DWC_XFER_TYPE_INTR: {
_buffer_fill_intr(buffer_to_fill, transfer, is_in, mps);
break;
}
default: {
abort();
break;
}
}
// Sync transfer descriptor list to memory
CACHE_SYNC_XFER_DESCRIPTOR_LIST_C2M(buffer_to_fill);
buffer_to_fill->urb = urb;
urb->hcd_var = URB_HCD_STATE_INFLIGHT;
// Update multi buffer flags
pipe->multi_buffer_control.wr_idx++;
pipe->multi_buffer_control.buffer_num_to_fill--;
pipe->multi_buffer_control.buffer_num_to_exec++;
}
static void IRAM_ATTR _buffer_exec(pipe_t *pipe)
{
assert(pipe->multi_buffer_control.rd_idx != pipe->multi_buffer_control.wr_idx || pipe->multi_buffer_control.buffer_num_to_exec > 0);
dma_buffer_block_t *buffer_to_exec = pipe->buffers[pipe->multi_buffer_control.rd_idx];
assert(buffer_to_exec->urb != NULL);
uint32_t start_idx;
int desc_list_len;
switch (pipe->ep_char.type) {
case USB_DWC_XFER_TYPE_CTRL: {
start_idx = 0;
desc_list_len = XFER_LIST_LEN_CTRL;
// Set the channel's direction to OUT and PID to 0 respectively for the the setup stage
usb_dwc_hal_chan_set_dir(pipe->chan_obj, false); // Setup stage is always OUT
usb_dwc_hal_chan_set_pid(pipe->chan_obj, 0); // Setup stage always has a PID of DATA0
break;
}
case USB_DWC_XFER_TYPE_ISOCHRONOUS: {
start_idx = buffer_to_exec->flags.isoc.start_idx;
desc_list_len = XFER_LIST_LEN_ISOC;
break;
}
case USB_DWC_XFER_TYPE_BULK: {
start_idx = 0;
desc_list_len = (buffer_to_exec->flags.bulk.zero_len_packet) ? XFER_LIST_LEN_BULK : 1;
break;
}
case USB_DWC_XFER_TYPE_INTR: {
start_idx = 0;
desc_list_len = (buffer_to_exec->flags.intr.zero_len_packet) ? buffer_to_exec->flags.intr.num_qtds + 1 : buffer_to_exec->flags.intr.num_qtds;
break;
}
default: {
start_idx = 0;
desc_list_len = 0;
abort();
break;
}
}
// Update buffer and multi buffer flags
buffer_to_exec->status_flags.executing = 1;
pipe->multi_buffer_control.buffer_is_executing = 1;
usb_dwc_hal_chan_activate(pipe->chan_obj, buffer_to_exec->xfer_desc_list, desc_list_len, start_idx);
}
static void _buffer_exec_cont(pipe_t *pipe)
{
// This should only ever be called on control transfers
assert(pipe->ep_char.type == USB_DWC_XFER_TYPE_CTRL);
dma_buffer_block_t *buffer_inflight = pipe->buffers[pipe->multi_buffer_control.rd_idx];
bool next_dir_is_in;
int next_pid;
assert(buffer_inflight->flags.ctrl.cur_stg != 2);
if (buffer_inflight->flags.ctrl.cur_stg == 0) { // Just finished control stage
if (buffer_inflight->flags.ctrl.data_stg_skip) {
// Skipping data stage. Go straight to status stage
next_dir_is_in = true; // With no data stage, status stage must be IN
next_pid = 1; // Status stage always has a PID of DATA1
buffer_inflight->flags.ctrl.cur_stg = 2; // Skip over the null descriptor representing the skipped data stage
} else {
// Go to data stage
next_dir_is_in = buffer_inflight->flags.ctrl.data_stg_in;
next_pid = 1; // Data stage always starts with a PID of DATA1
buffer_inflight->flags.ctrl.cur_stg = 1;
}
} else { // cur_stg == 1. // Just finished data stage. Go to status stage
next_dir_is_in = !buffer_inflight->flags.ctrl.data_stg_in; // Status stage is always the opposite direction of data stage
next_pid = 1; // Status stage always has a PID of DATA1
buffer_inflight->flags.ctrl.cur_stg = 2;
}
// Continue the control transfer
usb_dwc_hal_chan_set_dir(pipe->chan_obj, next_dir_is_in);
usb_dwc_hal_chan_set_pid(pipe->chan_obj, next_pid);
usb_dwc_hal_chan_activate(pipe->chan_obj, buffer_inflight->xfer_desc_list, XFER_LIST_LEN_CTRL, buffer_inflight->flags.ctrl.cur_stg);
}
static inline void _buffer_parse_ctrl(dma_buffer_block_t *buffer)
{
usb_transfer_t *transfer = &buffer->urb->transfer;
// Update URB's actual number of bytes
if (buffer->flags.ctrl.data_stg_skip) {
// There was no data stage. Just set the actual length to the size of the setup packet
transfer->actual_num_bytes = sizeof(usb_setup_packet_t);
} else {
// Parse the data stage for the remaining length
int rem_len;
int desc_status;
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, 1, &rem_len, &desc_status);
assert(desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
assert(rem_len <= (transfer->num_bytes - sizeof(usb_setup_packet_t)));
transfer->actual_num_bytes = transfer->num_bytes - rem_len;
}
// Update URB status
transfer->status = USB_TRANSFER_STATUS_COMPLETED;
// Clear the descriptor list
memset(buffer->xfer_desc_list, 0, XFER_LIST_LEN_CTRL * sizeof(usb_dwc_ll_dma_qtd_t));
}
static inline void _buffer_parse_bulk(dma_buffer_block_t *buffer)
{
usb_transfer_t *transfer = &buffer->urb->transfer;
// Update URB's actual number of bytes
int rem_len;
int desc_status;
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, 0, &rem_len, &desc_status);
assert(desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
assert(rem_len <= transfer->num_bytes);
transfer->actual_num_bytes = transfer->num_bytes - rem_len;
// Update URB's status
transfer->status = USB_TRANSFER_STATUS_COMPLETED;
// Clear the descriptor list
memset(buffer->xfer_desc_list, 0, XFER_LIST_LEN_BULK * sizeof(usb_dwc_ll_dma_qtd_t));
}
static inline void _buffer_parse_intr(dma_buffer_block_t *buffer, bool is_in, int mps)
{
usb_transfer_t *transfer = &buffer->urb->transfer;
int intr_stop_idx = buffer->status_flags.stop_idx;
if (is_in) {
if (intr_stop_idx > 0) { // This is an early stop (short packet)
assert(intr_stop_idx <= buffer->flags.intr.num_qtds);
int rem_len;
int desc_status;
for (int i = 0; i < intr_stop_idx - 1; i++) { // Check all packets before the short
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status);
assert(rem_len == 0 && desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
}
// Check the short packet
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, intr_stop_idx - 1, &rem_len, &desc_status);
assert(rem_len > 0 && desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
// Update actual bytes
transfer->actual_num_bytes = (mps * intr_stop_idx - 2) + (mps - rem_len);
} else {
// Check that all but the last packet transmitted MPS
for (int i = 0; i < buffer->flags.intr.num_qtds - 1; i++) {
int rem_len;
int desc_status;
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status);
assert(rem_len == 0 && desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
}
// Check the last packet
int last_packet_rem_len;
int last_packet_desc_status;
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, buffer->flags.intr.num_qtds - 1, &last_packet_rem_len, &last_packet_desc_status);
assert(last_packet_desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
// All packets except last MUST be MPS. So just deduct the remaining length of the last packet to get actual number of bytes
transfer->actual_num_bytes = transfer->num_bytes - last_packet_rem_len;
}
} else {
// OUT INTR transfers can only complete successfully if all packets have been transmitted. Double check
for (int i = 0 ; i < buffer->flags.intr.num_qtds; i++) {
int rem_len;
int desc_status;
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status);
assert(rem_len == 0 && desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
}
transfer->actual_num_bytes = transfer->num_bytes;
}
// Update URB's status
transfer->status = USB_TRANSFER_STATUS_COMPLETED;
// Clear the descriptor list
memset(buffer->xfer_desc_list, 0, XFER_LIST_LEN_INTR * sizeof(usb_dwc_ll_dma_qtd_t));
}
static inline void _buffer_parse_isoc(dma_buffer_block_t *buffer, bool is_in)
{
usb_transfer_t *transfer = &buffer->urb->transfer;
int desc_idx = buffer->flags.isoc.start_idx; // Descriptor index tracks which descriptor in the QTD list
int total_actual_num_bytes = 0;
for (int pkt_idx = 0; pkt_idx < transfer->num_isoc_packets; pkt_idx++) {
// Clear the filled descriptor
int rem_len;
int desc_status;
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, desc_idx, &rem_len, &desc_status);
usb_dwc_hal_xfer_desc_clear(buffer->xfer_desc_list, desc_idx);
assert(rem_len == 0 || is_in);
assert(desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS || desc_status == USB_DWC_HAL_XFER_DESC_STS_NOT_EXECUTED);
assert(rem_len <= transfer->isoc_packet_desc[pkt_idx].num_bytes); // Check for DMA errata
// Update ISO packet actual length and status
transfer->isoc_packet_desc[pkt_idx].actual_num_bytes = transfer->isoc_packet_desc[pkt_idx].num_bytes - rem_len;
total_actual_num_bytes += transfer->isoc_packet_desc[pkt_idx].actual_num_bytes;
transfer->isoc_packet_desc[pkt_idx].status = (desc_status == USB_DWC_HAL_XFER_DESC_STS_NOT_EXECUTED) ? USB_TRANSFER_STATUS_SKIPPED : USB_TRANSFER_STATUS_COMPLETED;
// A descriptor is also allocated for unscheduled frames. We need to skip over them
desc_idx += buffer->flags.isoc.interval;
if (desc_idx >= XFER_LIST_LEN_INTR) {
desc_idx -= XFER_LIST_LEN_INTR;
}
}
// Write back the actual_num_bytes and statue of entire transfer
assert(total_actual_num_bytes <= transfer->num_bytes);
transfer->actual_num_bytes = total_actual_num_bytes;
transfer->status = USB_TRANSFER_STATUS_COMPLETED;
}
static inline void _buffer_parse_error(dma_buffer_block_t *buffer)
{
// The URB had an error in one of its packet, or a port error), so we the entire URB an error.
usb_transfer_t *transfer = &buffer->urb->transfer;
transfer->actual_num_bytes = 0;
// Update the overall status of URB. Status will depend on the pipe_event
switch (buffer->status_flags.pipe_event) {
case HCD_PIPE_EVENT_NONE:
transfer->status = (buffer->status_flags.was_canceled) ? USB_TRANSFER_STATUS_CANCELED : USB_TRANSFER_STATUS_NO_DEVICE;
break;
case HCD_PIPE_EVENT_ERROR_XFER:
transfer->status = USB_TRANSFER_STATUS_ERROR;
break;
case HCD_PIPE_EVENT_ERROR_OVERFLOW:
transfer->status = USB_TRANSFER_STATUS_OVERFLOW;
break;
case HCD_PIPE_EVENT_ERROR_STALL:
transfer->status = USB_TRANSFER_STATUS_STALL;
break;
default:
// HCD_PIPE_EVENT_URB_DONE and HCD_PIPE_EVENT_ERROR_URB_NOT_AVAIL should not occur here
abort();
break;
}
}
static void _buffer_parse(pipe_t *pipe)
{
assert(pipe->multi_buffer_control.buffer_num_to_parse > 0);
dma_buffer_block_t *buffer_to_parse = pipe->buffers[pipe->multi_buffer_control.fr_idx];
assert(buffer_to_parse->urb != NULL);
bool is_in = pipe->ep_char.bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK;
int mps = pipe->ep_char.mps;
// Sync transfer descriptor list to cache
CACHE_SYNC_XFER_DESCRIPTOR_LIST_M2C(buffer_to_parse);
// Parsing the buffer will update the buffer's corresponding URB
if (buffer_to_parse->status_flags.pipe_event == HCD_PIPE_EVENT_URB_DONE) {
// URB was successful
switch (pipe->ep_char.type) {
case USB_DWC_XFER_TYPE_CTRL: {
_buffer_parse_ctrl(buffer_to_parse);
break;
}
case USB_DWC_XFER_TYPE_ISOCHRONOUS: {
_buffer_parse_isoc(buffer_to_parse, is_in);
break;
}
case USB_DWC_XFER_TYPE_BULK: {
_buffer_parse_bulk(buffer_to_parse);
break;
}
case USB_DWC_XFER_TYPE_INTR: {
_buffer_parse_intr(buffer_to_parse, is_in, mps);
break;
}
default: {
abort();
break;
}
}
} else {
// URB failed
_buffer_parse_error(buffer_to_parse);
}
urb_t *urb = buffer_to_parse->urb;
urb->hcd_var = URB_HCD_STATE_DONE;
buffer_to_parse->urb = NULL;
buffer_to_parse->flags.val = 0; // Clear flags
// Move the URB to the done tailq
TAILQ_INSERT_TAIL(&pipe->done_urb_tailq, urb, tailq_entry);
pipe->num_urb_done++;
// Update multi buffer flags
pipe->multi_buffer_control.fr_idx++;
pipe->multi_buffer_control.buffer_num_to_parse--;
pipe->multi_buffer_control.buffer_num_to_fill++;
}
static bool _buffer_flush_all(pipe_t *pipe, bool canceled)
{
int cur_num_to_mark_done = pipe->multi_buffer_control.buffer_num_to_exec;
for (int i = 0; i < cur_num_to_mark_done; i++) {
// Mark any filled buffers as done
_buffer_done(pipe, 0, HCD_PIPE_EVENT_NONE, canceled);
}
int cur_num_to_parse = pipe->multi_buffer_control.buffer_num_to_parse;
for (int i = 0; i < cur_num_to_parse; i++) {
_buffer_parse(pipe);
}
// At this point, there should be no more filled buffers. Only URBs in the pending or done tailq
return (cur_num_to_parse > 0);
}
// ---------------------------------------------- HCD Transfer Descriptors ---------------------------------------------
// ----------------------- Public --------------------------
esp_err_t hcd_urb_enqueue(hcd_pipe_handle_t pipe_hdl, urb_t *urb)
{
// Check that URB has not already been enqueued
HCD_CHECK(urb->hcd_ptr == NULL && urb->hcd_var == URB_HCD_STATE_IDLE, ESP_ERR_INVALID_STATE);
pipe_t *pipe = (pipe_t *)pipe_hdl;
// Check if the ISOC pipe can handle all packets:
// In case the pipe's interval is too long and there are too many ISOC packets, they might not fit into the transfer descriptor list
HCD_CHECK(
!((pipe->ep_char.type == USB_DWC_XFER_TYPE_ISOCHRONOUS) && (urb->transfer.num_isoc_packets * pipe->ep_char.periodic.interval > XFER_LIST_LEN_ISOC)),
ESP_ERR_INVALID_SIZE
);
// Sync user's data from cache to memory. For OUT and CTRL transfers
CACHE_SYNC_DATA_BUFFER_C2M(pipe, urb);
HCD_ENTER_CRITICAL();
// Check that pipe and port are in the correct state to receive URBs
HCD_CHECK_FROM_CRIT(pipe->port->state == HCD_PORT_STATE_ENABLED // The pipe's port must be in the correct state
&& pipe->state == HCD_PIPE_STATE_ACTIVE // The pipe must be in the correct state
&& !pipe->cs_flags.pipe_cmd_processing, // Pipe cannot currently be processing a pipe command
ESP_ERR_INVALID_STATE);
// Use the URB's reserved_ptr to store the pipe's
urb->hcd_ptr = (void *)pipe;
// Add the URB to the pipe's pending tailq
urb->hcd_var = URB_HCD_STATE_PENDING;
TAILQ_INSERT_TAIL(&pipe->pending_urb_tailq, urb, tailq_entry);
pipe->num_urb_pending++;
// use the URB's reserved_flags to store the URB's current state
if (_buffer_can_fill(pipe)) {
_buffer_fill(pipe);
}
if (_buffer_can_exec(pipe)) {
_buffer_exec(pipe);
}
if (!pipe->cs_flags.has_urb) {
// This is the first URB to be enqueued into the pipe. Move the pipe to the list of active pipes
TAILQ_REMOVE(&pipe->port->pipes_idle_tailq, pipe, tailq_entry);
TAILQ_INSERT_TAIL(&pipe->port->pipes_active_tailq, pipe, tailq_entry);
pipe->port->num_pipes_idle--;
pipe->port->num_pipes_queued++;
pipe->cs_flags.has_urb = 1;
}
HCD_EXIT_CRITICAL();
return ESP_OK;
}
urb_t *hcd_urb_dequeue(hcd_pipe_handle_t pipe_hdl)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
urb_t *urb;
HCD_ENTER_CRITICAL();
if (pipe->num_urb_done > 0) {
urb = TAILQ_FIRST(&pipe->done_urb_tailq);
TAILQ_REMOVE(&pipe->done_urb_tailq, urb, tailq_entry);
pipe->num_urb_done--;
// Check the URB's reserved fields then reset them
assert(urb->hcd_ptr == (void *)pipe && urb->hcd_var == URB_HCD_STATE_DONE); // The URB's reserved field should have been set to this pipe
urb->hcd_ptr = NULL;
urb->hcd_var = URB_HCD_STATE_IDLE;
if (pipe->cs_flags.has_urb
&& pipe->num_urb_pending == 0 && pipe->num_urb_done == 0
&& pipe->multi_buffer_control.buffer_num_to_exec == 0 && pipe->multi_buffer_control.buffer_num_to_parse == 0) {
// This pipe has no more enqueued URBs. Move the pipe to the list of idle pipes
TAILQ_REMOVE(&pipe->port->pipes_active_tailq, pipe, tailq_entry);
TAILQ_INSERT_TAIL(&pipe->port->pipes_idle_tailq, pipe, tailq_entry);
pipe->port->num_pipes_idle++;
pipe->port->num_pipes_queued--;
pipe->cs_flags.has_urb = 0;
}
// Sync user's data in memory to cache. For IN and CTRL transfers
CACHE_SYNC_DATA_BUFFER_M2C(pipe, urb);
} else {
// No more URBs to dequeue from this pipe
urb = NULL;
}
HCD_EXIT_CRITICAL();
return urb;
}
esp_err_t hcd_urb_abort(urb_t *urb)
{
HCD_ENTER_CRITICAL();
// Check that the URB was enqueued to begin with
HCD_CHECK_FROM_CRIT(urb->hcd_ptr != NULL && urb->hcd_var != URB_HCD_STATE_IDLE, ESP_ERR_INVALID_STATE);
if (urb->hcd_var == URB_HCD_STATE_PENDING) {
// URB has not been executed so it can be aborted
pipe_t *pipe = (pipe_t *)urb->hcd_ptr;
// Remove it form the pending queue
TAILQ_REMOVE(&pipe->pending_urb_tailq, urb, tailq_entry);
pipe->num_urb_pending--;
// Add it to the done queue
TAILQ_INSERT_TAIL(&pipe->done_urb_tailq, urb, tailq_entry);
pipe->num_urb_done++;
// Update the URB's current state, status, and actual length
urb->hcd_var = URB_HCD_STATE_DONE;
if (urb->transfer.num_isoc_packets == 0) {
urb->transfer.actual_num_bytes = 0;
urb->transfer.status = USB_TRANSFER_STATUS_CANCELED;
} else {
// If this is an ISOC URB, update the ISO packet descriptors instead
for (int i = 0; i < urb->transfer.num_isoc_packets; i++) {
urb->transfer.isoc_packet_desc[i].actual_num_bytes = 0;
urb->transfer.isoc_packet_desc[i].status = USB_TRANSFER_STATUS_CANCELED;
}
}
} // Otherwise, the URB is in-flight or already done thus cannot be aborted
HCD_EXIT_CRITICAL();
return ESP_OK;
}