esp-idf/components/esp_hw_support/cpu.c

240 wiersze
7.8 KiB
C

/*
* SPDX-FileCopyrightText: 2020-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "sdkconfig.h"
#include <stdint.h>
#include <assert.h>
#include "soc/soc.h"
#include "soc/soc_caps.h"
#include "hal/cpu_utility_ll.h"
#include "esp_bit_defs.h"
#include "esp_attr.h"
#include "esp_err.h"
#include "esp_cpu.h"
#if __XTENSA__
#include "xtensa/config/core-isa.h"
#else // __riscv
#include "riscv/semihosting.h"
#if SOC_CPU_HAS_FLEXIBLE_INTC
#include "riscv/instruction_decode.h"
#endif
#endif // __riscv
/* --------------------------------------------------- CPU Control -----------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
void esp_cpu_stall(int core_id)
{
#if SOC_CPU_CORES_NUM > 1 // We don't allow stalling of the current core
assert(core_id >= 0 && core_id < SOC_CPU_CORES_NUM);
cpu_utility_ll_stall_cpu(core_id);
#endif // SOC_CPU_CORES_NUM > 1
}
void esp_cpu_unstall(int core_id)
{
#if SOC_CPU_CORES_NUM > 1 // We don't allow stalling of the current core
assert(core_id >= 0 && core_id < SOC_CPU_CORES_NUM);
cpu_utility_ll_unstall_cpu(core_id);
#endif // SOC_CPU_CORES_NUM > 1
}
void esp_cpu_reset(int core_id)
{
assert(core_id >= 0 && core_id < SOC_CPU_CORES_NUM);
cpu_utility_ll_reset_cpu(core_id);
}
void esp_cpu_wait_for_intr(void)
{
#if __XTENSA__
xt_utils_wait_for_intr();
#else
if (esp_cpu_dbgr_is_attached() && cpu_utility_ll_wait_mode() == 0) {
/* when SYSTEM_CPU_WAIT_MODE_FORCE_ON is disabled in WFI mode SBA access to memory does not work for debugger,
so do not enter that mode when debugger is connected */
return;
}
rv_utils_wait_for_intr();
#endif // __XTENSA__
}
/* ---------------------------------------------------- Debugging ------------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
// --------------- Breakpoints/Watchpoints -----------------
#if SOC_CPU_BREAKPOINTS_NUM > 0
esp_err_t esp_cpu_set_breakpoint(int bp_num, const void *bp_addr)
{
/*
Todo:
- Check that bp_num is in range
*/
#if __XTENSA__
xt_utils_set_breakpoint(bp_num, (uint32_t)bp_addr);
#else
if (esp_cpu_dbgr_is_attached()) {
/* If we want to set breakpoint which when hit transfers control to debugger
* we need to set `action` in `mcontrol` to 1 (Enter Debug Mode).
* That `action` value is supported only when `dmode` of `tdata1` is set.
* But `dmode` can be modified by debugger only (from Debug Mode).
*
* So when debugger is connected we use special syscall to ask it to set breakpoint for us.
*/
long args[] = {true, bp_num, (long)bp_addr};
int ret = semihosting_call_noerrno(ESP_SEMIHOSTING_SYS_BREAKPOINT_SET, args);
if (ret == 0) {
return ESP_ERR_INVALID_RESPONSE;
}
} else {
rv_utils_set_breakpoint(bp_num, (uint32_t)bp_addr);
}
#endif // __XTENSA__
return ESP_OK;
}
esp_err_t esp_cpu_clear_breakpoint(int bp_num)
{
/*
Todo:
- Check if the bp_num is valid
*/
#if __XTENSA__
xt_utils_clear_breakpoint(bp_num);
#else
if (esp_cpu_dbgr_is_attached()) {
// See description in esp_cpu_set_breakpoint()
long args[] = {false, bp_num};
int ret = semihosting_call_noerrno(ESP_SEMIHOSTING_SYS_BREAKPOINT_SET, args);
if (ret == 0) {
return ESP_ERR_INVALID_RESPONSE;
}
} else {
rv_utils_clear_breakpoint(bp_num);
}
#endif // __XTENSA__
return ESP_OK;
}
#endif // SOC_CPU_BREAKPOINTS_NUM > 0
#if SOC_CPU_WATCHPOINTS_NUM > 0
esp_err_t esp_cpu_set_watchpoint(int wp_num, const void *wp_addr, size_t size, esp_cpu_watchpoint_trigger_t trigger)
{
/*
Todo:
- Check if the wp_num is already in use
*/
if (wp_num < 0 || wp_num >= SOC_CPU_WATCHPOINTS_NUM) {
return ESP_ERR_INVALID_ARG;
}
// Check that the watched region's start address is naturally aligned to the size of the region
if ((uint32_t)wp_addr % size) {
return ESP_ERR_INVALID_ARG;
}
// Check if size is 2^n, and size is in the range of [1 ... SOC_CPU_WATCHPOINT_MAX_REGION_SIZE]
if (size < 1 || size > SOC_CPU_WATCHPOINT_MAX_REGION_SIZE || (size & (size - 1)) != 0) {
return ESP_ERR_INVALID_ARG;
}
bool on_read = (trigger == ESP_CPU_WATCHPOINT_LOAD || trigger == ESP_CPU_WATCHPOINT_ACCESS);
bool on_write = (trigger == ESP_CPU_WATCHPOINT_STORE || trigger == ESP_CPU_WATCHPOINT_ACCESS);
#if __XTENSA__
xt_utils_set_watchpoint(wp_num, (uint32_t)wp_addr, size, on_read, on_write);
#else
if (esp_cpu_dbgr_is_attached()) {
// See description in esp_cpu_set_breakpoint()
long args[] = {true, wp_num, (long)wp_addr, (long)size,
(long)((on_read ? ESP_SEMIHOSTING_WP_FLG_RD : 0) | (on_write ? ESP_SEMIHOSTING_WP_FLG_WR : 0))
};
int ret = semihosting_call_noerrno(ESP_SEMIHOSTING_SYS_WATCHPOINT_SET, args);
if (ret == 0) {
return ESP_ERR_INVALID_RESPONSE;
}
} else {
rv_utils_set_watchpoint(wp_num, (uint32_t)wp_addr, size, on_read, on_write);
}
#endif // __XTENSA__
return ESP_OK;
}
esp_err_t esp_cpu_clear_watchpoint(int wp_num)
{
/*
Todo:
- Check if the wp_num is valid
*/
#if __XTENSA__
xt_utils_clear_watchpoint(wp_num);
#else
if (esp_cpu_dbgr_is_attached()) {
// See description in esp_cpu_dbgr_is_attached()
long args[] = {false, wp_num};
int ret = semihosting_call_noerrno(ESP_SEMIHOSTING_SYS_WATCHPOINT_SET, args);
if (ret == 0) {
return ESP_ERR_INVALID_RESPONSE;
}
} else {
rv_utils_clear_watchpoint(wp_num);
}
#endif // __XTENSA__
return ESP_OK;
}
#endif // SOC_CPU_WATCHPOINTS_NUM > 0
/* ------------------------------------------------------ Misc ---------------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
#if __XTENSA__ && XCHAL_HAVE_S32C1I && CONFIG_SPIRAM
static DRAM_ATTR uint32_t external_ram_cas_lock = 0;
#endif
bool esp_cpu_compare_and_set(volatile uint32_t *addr, uint32_t compare_value, uint32_t new_value)
{
#if __XTENSA__
bool ret;
#if XCHAL_HAVE_S32C1I && CONFIG_SPIRAM
// Check if the target address is in external RAM
if ((uint32_t)addr >= SOC_EXTRAM_DATA_LOW && (uint32_t)addr < SOC_EXTRAM_DATA_HIGH) {
/* The target address is in external RAM, thus the native CAS instruction cannot be used. Instead, we achieve
atomicity by disabling interrupts and then acquiring an external RAM CAS lock. */
uint32_t intr_level;
__asm__ __volatile__ ("rsil %0, " XTSTR(XCHAL_EXCM_LEVEL) "\n"
: "=r"(intr_level));
if (!xt_utils_compare_and_set(&external_ram_cas_lock, 0, 1)) {
// External RAM CAS lock already taken. Exit
ret = false;
goto exit;
}
// Now we compare and set the target address
ret = (*addr == compare_value);
if (ret) {
*addr = new_value;
}
// Release the external RAM CAS lock
external_ram_cas_lock = 0;
exit:
// Re-enable interrupts
__asm__ __volatile__ ("memw \n"
"wsr %0, ps\n"
:: "r"(intr_level));
} else
#endif // XCHAL_HAVE_S32C1I && CONFIG_SPIRAM
{
// The target address is in internal RAM. Use the CPU's native CAS instruction
ret = xt_utils_compare_and_set(addr, compare_value, new_value);
}
return ret;
#else // __riscv
return rv_utils_compare_and_set(addr, compare_value, new_value);
#endif
}