/* * SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ // Note that most of the register operations in this layer are non-atomic operations. #pragma once #include #include #include "hal/assert.h" #include "hal/misc.h" #include "hal/parlio_types.h" #include "hal/hal_utils.h" #include "soc/hp_sys_clkrst_struct.h" #include "soc/parl_io_struct.h" #define PARLIO_LL_RX_MAX_BYTES_PER_FRAME 0xFFFF #define PARLIO_LL_RX_MAX_CLK_INT_DIV 0x100 #define PARLIO_LL_RX_MAX_CLK_FRACT_DIV 0x100 #define PARLIO_LL_RX_MAX_TIMEOUT 0xFFFF #define PARLIO_LL_TX_MAX_BITS_PER_FRAME 0x7FFFF #define PARLIO_LL_TX_MAX_CLK_INT_DIV 0x100 #define PARLIO_LL_TX_MAX_CLK_FRACT_DIV 0x100 #define PARLIO_LL_EVENT_TX_FIFO_EMPTY (1 << 0) #define PARLIO_LL_EVENT_RX_FIFO_FULL (1 << 1) #define PARLIO_LL_EVENT_TX_EOF (1 << 2) #define PARLIO_LL_EVENT_TX_MASK (PARLIO_LL_EVENT_TX_FIFO_EMPTY | PARLIO_LL_EVENT_TX_EOF) #define PARLIO_LL_EVENT_RX_MASK (PARLIO_LL_EVENT_RX_FIFO_FULL) #define PARLIO_LL_TX_DATA_LINE_AS_VALID_SIG 15 // TXD[15] can be used a valid signal #define PARLIO_LL_TX_DATA_LINE_AS_CLK_GATE 15 // TXD[15] can be used as clock gate signal #ifdef __cplusplus extern "C" { #endif typedef enum { PARLIO_LL_RX_EOF_COND_RX_FULL, /*!< RX unit generates EOF event when it receives enough data */ PARLIO_LL_RX_EOF_COND_EN_INACTIVE, /*!< RX unit generates EOF event when the external enable signal becomes inactive */ } parlio_ll_rx_eof_cond_t; typedef enum { PARLIO_LL_TX_EOF_COND_DATA_LEN, /*!< TX unit generates EOF event when it transmits particular data bit length that specified in `tx_bitlen`. */ PARLIO_LL_TX_EOF_COND_DMA_EOF, /*!< TX unit generates EOF event when the DMA EOF takes place */ } parlio_ll_tx_eof_cond_t; /** * @brief Enable or disable the parlio peripheral APB clock * * @param group_id The group id of the parlio module * @param enable Set true to enable, false to disable */ static inline void _parlio_ll_enable_bus_clock(int group_id, bool enable) { (void)group_id; HP_SYS_CLKRST.soc_clk_ctrl1.reg_parlio_sys_clk_en = enable; HP_SYS_CLKRST.soc_clk_ctrl2.reg_parlio_apb_clk_en = enable; } /// use a macro to wrap the function, force the caller to use it in a critical section /// the critical section needs to declare the __DECLARE_RCC_ATOMIC_ENV variable in advance #define parlio_ll_enable_bus_clock(...) (void)__DECLARE_RCC_ATOMIC_ENV; _parlio_ll_enable_bus_clock(__VA_ARGS__) /** * @brief Reset the parlio module * * @param group_id The group id of the parlio module */ static inline void _parlio_ll_reset_register(int group_id) { (void)group_id; HP_SYS_CLKRST.hp_rst_en2.reg_rst_en_parlio = 1; HP_SYS_CLKRST.hp_rst_en2.reg_rst_en_parlio = 0; } /// use a macro to wrap the function, force the caller to use it in a critical section /// the critical section needs to declare the __DECLARE_RCC_ATOMIC_ENV variable in advance #define parlio_ll_reset_register(...) (void)__DECLARE_RCC_ATOMIC_ENV; _parlio_ll_reset_register(__VA_ARGS__) ///////////////////////////////////////RX Unit/////////////////////////////////////// /** * @brief Set the clock source for the RX unit * * @param dev Parallel IO register base address * @param src Clock source */ static inline void _parlio_ll_rx_set_clock_source(parl_io_dev_t *dev, parlio_clock_source_t src) { (void)dev; uint32_t clk_sel = 0; switch (src) { case PARLIO_CLK_SRC_XTAL: clk_sel = 0; break; case PARLIO_CLK_SRC_RC_FAST: clk_sel = 1; break; case PARLIO_CLK_SRC_PLL_F160M: clk_sel = 2; break; case PARLIO_CLK_SRC_EXTERNAL: clk_sel = 3; break; default: // unsupported clock source HAL_ASSERT(false); break; } HP_SYS_CLKRST.peri_clk_ctrl117.reg_parlio_rx_clk_src_sel = clk_sel; } /// use a macro to wrap the function, force the caller to use it in a critical section /// the critical section needs to declare the __DECLARE_RCC_ATOMIC_ENV variable in advance #define parlio_ll_rx_set_clock_source(...) (void)__DECLARE_RCC_ATOMIC_ENV; _parlio_ll_rx_set_clock_source(__VA_ARGS__) /** * @brief Set the clock divider for the RX unit * * @param dev Parallel IO register base address * @param clk_div Clock division with integral and decimal part */ static inline void _parlio_ll_rx_set_clock_div(parl_io_dev_t *dev, const hal_utils_clk_div_t *clk_div) { (void)dev; HAL_ASSERT(clk_div->integer > 0 && clk_div->integer <= PARLIO_LL_RX_MAX_CLK_INT_DIV); HAL_FORCE_MODIFY_U32_REG_FIELD(HP_SYS_CLKRST.peri_clk_ctrl117, reg_parlio_rx_clk_div_num, clk_div->integer - 1); HAL_FORCE_MODIFY_U32_REG_FIELD(HP_SYS_CLKRST.peri_clk_ctrl118, reg_parlio_rx_clk_div_denominator, clk_div->denominator); HAL_FORCE_MODIFY_U32_REG_FIELD(HP_SYS_CLKRST.peri_clk_ctrl118, reg_parlio_rx_clk_div_numerator, clk_div->numerator); } /// use a macro to wrap the function, force the caller to use it in a critical section /// the critical section needs to declare the __DECLARE_RCC_ATOMIC_ENV variable in advance #define parlio_ll_rx_set_clock_div(...) (void)__DECLARE_RCC_ATOMIC_ENV; _parlio_ll_rx_set_clock_div(__VA_ARGS__) /** * @brief Reset the RX unit Core clock domain * * @param dev Parallel IO register base address */ static inline void _parlio_ll_rx_reset_clock(parl_io_dev_t *dev) { (void)dev; HP_SYS_CLKRST.hp_rst_en2.reg_rst_en_parlio_rx = 1; HP_SYS_CLKRST.hp_rst_en2.reg_rst_en_parlio_rx = 0; } /// use a macro to wrap the function, force the caller to use it in a critical section /// the critical section needs to declare the __DECLARE_RCC_ATOMIC_ENV variable in advance #define parlio_ll_rx_reset_clock(...) (void)__DECLARE_RCC_ATOMIC_ENV; _parlio_ll_rx_reset_clock(__VA_ARGS__) /** * @brief Enable the RX unit Core clock domain * * @param dev Parallel IO register base address * @param en True to enable, False to disable */ __attribute__((always_inline)) static inline void _parlio_ll_rx_enable_clock(parl_io_dev_t *dev, bool en) { (void)dev; HP_SYS_CLKRST.peri_clk_ctrl117.reg_parlio_rx_clk_en = en; } /// use a macro to wrap the function, force the caller to use it in a critical section /// the critical section needs to declare the __DECLARE_RCC_ATOMIC_ENV variable in advance #define parlio_ll_rx_enable_clock(...) (void)__DECLARE_RCC_ATOMIC_ENV; _parlio_ll_rx_enable_clock(__VA_ARGS__) /** * @brief Set the condition to generate the RX EOF event * * @param dev Parallel IO register base address * @param cond RX EOF condition */ __attribute__((always_inline)) static inline void parlio_ll_rx_set_eof_condition(parl_io_dev_t *dev, parlio_ll_rx_eof_cond_t cond) { dev->rx_genrl_cfg.rx_eof_gen_sel = cond; } /** * @brief Start RX unit to sample the input data * * @param dev Parallel IO register base address * @param en True to start, False to stop */ __attribute__((always_inline)) static inline void parlio_ll_rx_start(parl_io_dev_t *dev, bool en) { dev->rx_start_cfg.rx_start = en; } /** * @brief Set the receive length * * @note The receive length can be used to generate DMA EOF signal, or to work as a frame end delimiter * * @param dev Parallel IO register base address * @param bitlen Number of bits to receive in the next transaction, bitlen must be a multiple of 8 */ __attribute__((always_inline)) static inline void parlio_ll_rx_set_recv_bit_len(parl_io_dev_t *dev, uint32_t bitlen) { dev->rx_data_cfg.rx_bitlen = bitlen; } /** * @brief Set the sub mode of the level controlled receive mode * * @param dev Parallel IO register base address * @param active_level Level of the external enable signal, true for active high, false for active low */ __attribute__((always_inline)) static inline void parlio_ll_rx_set_level_recv_mode(parl_io_dev_t *dev, bool active_level) { dev->rx_mode_cfg.rx_smp_mode_sel = 0; dev->rx_mode_cfg.rx_ext_en_inv = !active_level; // 0: active low, 1: active high } /** * @brief Set the sub mode of the pulse controlled receive mode * * @param dev Parallel IO register base address * @param start_inc Whether the start pulse is counted * @param end_inc Whether the end pulse is counted * @param end_by_len Whether to use the frame length to determine the end of the frame * @param pulse_inv Whether the pulse is inverted */ __attribute__((always_inline)) static inline void parlio_ll_rx_set_pulse_recv_mode(parl_io_dev_t *dev, bool start_inc, bool end_inc, bool end_by_len, bool pulse_inv) { uint32_t submode = 0; uint32_t step = 1; if (end_by_len) { submode += 4; } else { // end by pulse step = 2; if (!end_inc) { submode += 1; } } if (!start_inc) { submode += step; } dev->rx_mode_cfg.rx_smp_mode_sel = 1; dev->rx_mode_cfg.rx_pulse_submode_sel = submode; dev->rx_mode_cfg.rx_ext_en_inv = pulse_inv; } /** * @brief Set the receive mode to software controlled receive mode * * @param dev Parallel IO register base address */ __attribute__((always_inline)) static inline void parlio_ll_rx_set_soft_recv_mode(parl_io_dev_t *dev) { dev->rx_mode_cfg.rx_smp_mode_sel = 2; } /** * @brief Whether to start the software controlled receive mode * * @param dev Parallel IO register base address * @param en True to enable, False to disable */ static inline void parlio_ll_rx_start_soft_recv(parl_io_dev_t *dev, bool en) { dev->rx_mode_cfg.rx_sw_en = en; } /** * @brief Set the sample clock edge * * @param dev Parallel IO register base address * @param edge Sample clock edge */ __attribute__((always_inline)) static inline void parlio_ll_rx_set_sample_clock_edge(parl_io_dev_t *dev, parlio_sample_edge_t edge) { dev->rx_clk_cfg.rx_clk_i_inv = edge; dev->rx_clk_cfg.rx_clk_o_inv = edge; } /** * @brief Set the order to pack bits into one byte * * @param dev Parallel IO register base address * @param order Packing order */ __attribute__((always_inline)) static inline void parlio_ll_rx_set_bit_pack_order(parl_io_dev_t *dev, parlio_bit_pack_order_t order) { dev->rx_data_cfg.rx_data_order_inv = order; } /** * @brief Set the bus width of the RX unit * * @param dev Parallel IO register base address * @param width Bus width */ static inline void parlio_ll_rx_set_bus_width(parl_io_dev_t *dev, uint32_t width) { uint32_t width_sel = 0; switch (width) { case 16: width_sel = 4; break; case 8: width_sel = 3; break; case 4: width_sel = 2; break; case 2: width_sel = 1; break; case 1: width_sel = 0; break; default: HAL_ASSERT(false); } dev->rx_data_cfg.rx_bus_wid_sel = width_sel; } /** * @brief Reset RX Async FIFO * * @note During the reset of the asynchronous FIFO, it takes two clock cycles to synchronize within AHB clock domain (GDMA) and Core clock domain. * The reset synchronization must be performed two clock cycles in advance. * @note If the next frame transfer needs to be reset, you need to first switch to the internal free-running clock, * and then switch to the actual clock after the reset is completed. * * @param dev Parallel IO register base address */ static inline void parlio_ll_rx_reset_fifo(parl_io_dev_t *dev) { dev->fifo_cfg.rx_fifo_srst = 1; dev->fifo_cfg.rx_fifo_srst = 0; } /** * @brief Set which data line as the enable signal * * @param dev Parallel IO register base address * @param line_num Data line number (0-15) */ __attribute__((always_inline)) static inline void parlio_ll_rx_treat_data_line_as_en(parl_io_dev_t *dev, uint32_t line_num) { dev->rx_mode_cfg.rx_ext_en_sel = line_num; } /** * @brief Wether to enable the RX clock gating * * @param dev Parallel IO register base address * @param en True to enable, False to disable */ static inline void parlio_ll_rx_enable_clock_gating(parl_io_dev_t *dev, bool en) { dev->rx_genrl_cfg.rx_gating_en = en; } /** * @brief Enable RX timeout feature * * @param dev Parallel IO register base address * @param en True to enable, False to disable */ __attribute__((always_inline)) static inline void parlio_ll_rx_enable_timeout(parl_io_dev_t *dev, bool en) { dev->rx_genrl_cfg.rx_timeout_en = en; } /** * @brief Set the threshold of RX timeout * * @param dev Parallel IO register base address * @param thres Threshold of RX timeout */ __attribute__((always_inline)) static inline void parlio_ll_rx_set_timeout_thres(parl_io_dev_t *dev, uint32_t thres) { HAL_FORCE_MODIFY_U32_REG_FIELD(dev->rx_genrl_cfg, rx_timeout_thres, thres); } /** * @brief Update the RX configuration, to make the new configuration take effect * * @param dev Parallel IO register base address */ __attribute__((always_inline)) static inline void parlio_ll_rx_update_config(parl_io_dev_t *dev) { dev->reg_update.rx_reg_update = 1; while (dev->reg_update.rx_reg_update); } ///////////////////////////////////TX Unit/////////////////////////////////////// /** * @brief Set the clock source for the TX unit * * @param dev Parallel IO register base address * @param src Clock source */ static inline void _parlio_ll_tx_set_clock_source(parl_io_dev_t *dev, parlio_clock_source_t src) { (void)dev; uint32_t clk_sel = 0; switch (src) { case PARLIO_CLK_SRC_XTAL: clk_sel = 0; break; case PARLIO_CLK_SRC_RC_FAST: clk_sel = 1; break; case PARLIO_CLK_SRC_PLL_F160M: clk_sel = 2; break; case PARLIO_CLK_SRC_EXTERNAL: clk_sel = 3; break; default: // unsupported clock source HAL_ASSERT(false); break; } HP_SYS_CLKRST.peri_clk_ctrl118.reg_parlio_tx_clk_src_sel = clk_sel; } /// use a macro to wrap the function, force the caller to use it in a critical section /// the critical section needs to declare the __DECLARE_RCC_ATOMIC_ENV variable in advance #define parlio_ll_tx_set_clock_source(...) (void)__DECLARE_RCC_ATOMIC_ENV; _parlio_ll_tx_set_clock_source(__VA_ARGS__) /** * @brief Set the clock divider for the TX unit * * @param dev Parallel IO register base address * @param clk_div Clock division with integral and decimal part */ static inline void _parlio_ll_tx_set_clock_div(parl_io_dev_t *dev, const hal_utils_clk_div_t *clk_div) { (void)dev; HAL_ASSERT(clk_div->integer > 0 && clk_div->integer <= PARLIO_LL_RX_MAX_CLK_INT_DIV); HAL_FORCE_MODIFY_U32_REG_FIELD(HP_SYS_CLKRST.peri_clk_ctrl118, reg_parlio_tx_clk_div_num, clk_div->integer - 1); HAL_FORCE_MODIFY_U32_REG_FIELD(HP_SYS_CLKRST.peri_clk_ctrl119, reg_parlio_tx_clk_div_denominator, clk_div->denominator); HAL_FORCE_MODIFY_U32_REG_FIELD(HP_SYS_CLKRST.peri_clk_ctrl119, reg_parlio_tx_clk_div_numerator, clk_div->numerator); } /// use a macro to wrap the function, force the caller to use it in a critical section /// the critical section needs to declare the __DECLARE_RCC_ATOMIC_ENV variable in advance #define parlio_ll_tx_set_clock_div(...) (void)__DECLARE_RCC_ATOMIC_ENV; _parlio_ll_tx_set_clock_div(__VA_ARGS__) /** * @brief Reset the TX unit Core clock domain * * @param dev Parallel IO register base address */ __attribute__((always_inline)) static inline void _parlio_ll_tx_reset_clock(parl_io_dev_t *dev) { (void)dev; HP_SYS_CLKRST.hp_rst_en2.reg_rst_en_parlio_tx = 1; HP_SYS_CLKRST.hp_rst_en2.reg_rst_en_parlio_tx = 0; } /// use a macro to wrap the function, force the caller to use it in a critical section /// the critical section needs to declare the __DECLARE_RCC_ATOMIC_ENV variable in advance #define parlio_ll_tx_reset_clock(...) (void)__DECLARE_RCC_ATOMIC_ENV; _parlio_ll_tx_reset_clock(__VA_ARGS__) /** * @brief Enable the TX unit Core clock domain * * @param dev Parallel IO register base address * @param en True to enable, False to disable */ __attribute__((always_inline)) static inline void _parlio_ll_tx_enable_clock(parl_io_dev_t *dev, bool en) { (void)dev; HP_SYS_CLKRST.peri_clk_ctrl118.reg_parlio_tx_clk_en = en; } /// use a macro to wrap the function, force the caller to use it in a critical section /// the critical section needs to declare the __DECLARE_RCC_ATOMIC_ENV variable in advance #define parlio_ll_tx_enable_clock(...) (void)__DECLARE_RCC_ATOMIC_ENV; _parlio_ll_tx_enable_clock(__VA_ARGS__) /** * @brief Set the data length to be transmitted * * @param dev Parallel IO register base address * @param bitlen Data length in bits, must be a multiple of 8 */ __attribute__((always_inline)) static inline void parlio_ll_tx_set_trans_bit_len(parl_io_dev_t *dev, uint32_t bitlen) { dev->tx_data_cfg.tx_bitlen = bitlen; } /** * @brief Set the condition to generate the TX EOF event * * @param dev Parallel IO register base address * @param cond TX EOF condition */ static inline void parlio_ll_tx_set_eof_condition(parl_io_dev_t *dev, parlio_ll_tx_eof_cond_t cond) { dev->tx_genrl_cfg.tx_eof_gen_sel = cond; } /** * @brief Wether to enable the TX clock gating * * @note The MSB of TXD will be taken as the gating enable signal * * @param dev Parallel IO register base address * @param en True to enable, False to disable */ static inline void parlio_ll_tx_enable_clock_gating(parl_io_dev_t *dev, bool en) { dev->tx_genrl_cfg.tx_gating_en = en; } /** * @brief Start TX unit to transmit data * * @param dev Parallel IO register base address * @param en True to start, False to stop */ __attribute__((always_inline)) static inline void parlio_ll_tx_start(parl_io_dev_t *dev, bool en) { dev->tx_start_cfg.tx_start = en; } /** * @brief Whether to treat the MSB of TXD as the valid signal * * @note If enabled, TXD[15] will work as valid signal, which stay high during data transmission. * * @param dev Parallel IO register base address * @param en True to enable, False to disable */ static inline void parlio_ll_tx_treat_msb_as_valid(parl_io_dev_t *dev, bool en) { dev->tx_genrl_cfg.tx_valid_output_en = en; } /** * @brief Set the sample clock edge * * @param dev Parallel IO register base address * @param edge Sample clock edge */ static inline void parlio_ll_tx_set_sample_clock_edge(parl_io_dev_t *dev, parlio_sample_edge_t edge) { dev->tx_clk_cfg.tx_clk_i_inv = edge; dev->tx_clk_cfg.tx_clk_o_inv = edge; } /** * @brief Set the order to unpack bits from a byte * * @param dev Parallel IO register base address * @param order Packing order */ static inline void parlio_ll_tx_set_bit_pack_order(parl_io_dev_t *dev, parlio_bit_pack_order_t order) { dev->tx_data_cfg.tx_data_order_inv = order; } /** * @brief Set the bus width of the TX unit * * @param dev Parallel IO register base address * @param width Bus width */ static inline void parlio_ll_tx_set_bus_width(parl_io_dev_t *dev, uint32_t width) { uint32_t width_sel = 0; switch (width) { // TODO: check this field (IDF-8284) case 16: width_sel = 4; break; case 8: width_sel = 3; break; case 4: width_sel = 2; break; case 2: width_sel = 1; break; case 1: width_sel = 0; break; default: HAL_ASSERT(false); } dev->tx_data_cfg.tx_bus_wid_sel = width_sel; } /** * @brief Reset TX Async FIFO * * @note During the reset of the asynchronous FIFO, it takes two clock cycles to synchronize within AHB clock domain (GDMA) and Core clock domain. * The reset synchronization must be performed two clock cycles in advance. * @note If the next frame transfer needs to be reset, you need to first switch to the internal free-running clock, * and then switch to the actual clock after the reset is completed. * * @param dev Parallel IO register base address */ __attribute__((always_inline)) static inline void parlio_ll_tx_reset_fifo(parl_io_dev_t *dev) { dev->fifo_cfg.tx_fifo_srst = 1; dev->fifo_cfg.tx_fifo_srst = 0; } /** * @brief Set the value to output on the TXD when the TX unit is in IDLE state * * @param dev Parallel IO register base address * @param value Value to output */ __attribute__((always_inline)) static inline void parlio_ll_tx_set_idle_data_value(parl_io_dev_t *dev, uint32_t value) { dev->tx_genrl_cfg.tx_idle_value = value; } /** * @brief Check whether the TX unit is ready * * @param dev Parallel IO register base address * @return true: ready, false: busy */ __attribute__((always_inline)) static inline bool parlio_ll_tx_is_ready(parl_io_dev_t *dev) { return dev->st.tx_ready; } ////////////////////////////////////Interrupt//////////////////////////////////////////////// /** * @brief Enable Parallel IO interrupt for specific event mask * * @param dev Parallel IO register base address * @param mask Event mask * @param enable True to enable, False to disable */ static inline void parlio_ll_enable_interrupt(parl_io_dev_t *dev, uint32_t mask, bool enable) { if (enable) { dev->int_ena.val |= mask; } else { dev->int_ena.val &= ~mask; } } /** * @brief Get interrupt status for TX unit * * @param dev Parallel IO register base address * @return Interrupt status */ __attribute__((always_inline)) static inline uint32_t parlio_ll_tx_get_interrupt_status(parl_io_dev_t *dev) { return dev->int_st.val & PARLIO_LL_EVENT_TX_MASK; } /** * @brief Get interrupt status for RX unit * * @param dev Parallel IO register base address * @return Interrupt status */ __attribute__((always_inline)) static inline uint32_t parlio_ll_rx_get_interrupt_status(parl_io_dev_t *dev) { return dev->int_st.val & PARLIO_LL_EVENT_RX_MASK; } /** * @brief Clear Parallel IO interrupt status by mask * * @param dev Parallel IO register base address * @param mask Interrupt status mask */ __attribute__((always_inline)) static inline void parlio_ll_clear_interrupt_status(parl_io_dev_t *dev, uint32_t mask) { dev->int_clr.val = mask; } /** * @brief Get interrupt status register address * * @param dev Parallel IO register base address * @return Register address */ static inline volatile void *parlio_ll_get_interrupt_status_reg(parl_io_dev_t *dev) { return &dev->int_st; } #ifdef __cplusplus } #endif