/* * SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include "hal/mipi_dsi_hal.h" #include "hal/mipi_dsi_ll.h" #include "hal/assert.h" #include "hal/log.h" #include "soc/mipi_dsi_periph.h" void mipi_dsi_hal_init(mipi_dsi_hal_context_t *hal, const mipi_dsi_hal_config_t *config) { hal->host = MIPI_DSI_LL_GET_HOST(config->bus_id); hal->bridge = MIPI_DSI_LL_GET_BRG(config->bus_id); // set the data lane number mipi_dsi_phy_ll_set_data_lane_number(hal->host, config->num_data_lanes); // power on the host controller and PHY mipi_dsi_host_ll_power_on_off(hal->host, true); mipi_dsi_phy_ll_power_on_off(hal->host, true); // reset the PHY and then enable the clock lane mipi_dsi_phy_ll_reset(hal->host); mipi_dsi_phy_ll_enable_clock_lane(hal->host, true); mipi_dsi_phy_ll_force_pll(hal->host, true); } void mipi_dsi_hal_deinit(mipi_dsi_hal_context_t *hal) { // power off the host controller and PHY mipi_dsi_phy_ll_power_on_off(hal->host, false); mipi_dsi_host_ll_power_on_off(hal->host, false); hal->host = NULL; hal->bridge = NULL; } void mipi_dsi_hal_configure_phy_pll(mipi_dsi_hal_context_t *hal, uint32_t phy_clk_src_freq_hz, uint32_t lane_bit_rate_mbps) { // Formula: f_vco = M/N * f_ref // where the M is Feedback Multiplication Ratio, N is Input Frequency Division Ratio uint32_t ref_freq_mhz = phy_clk_src_freq_hz / 1000 / 1000; uint32_t vco_freq_mhz = lane_bit_rate_mbps; uint8_t pll_N = 1; uint16_t pll_M = 0; // 5MHz <= f_ref/N <= 40MHz uint8_t min_N = MAX(1, ref_freq_mhz / 40); uint8_t max_N = ref_freq_mhz / 5; for (uint8_t n = min_N; n <= max_N; n++) { uint16_t m = vco_freq_mhz * n / ref_freq_mhz; // M must be even number if ((m & 0x01) == 0) { pll_M = m; pll_N = n; break; } } HAL_ASSERT(pll_M && pll_N); // search for the best PLL range uint8_t hs_freq_sel = 0; for (size_t i = 0; i < num_of_soc_mipi_dsi_phy_pll_ranges; i++) { if (lane_bit_rate_mbps >= soc_mipi_dsi_phy_pll_ranges[i].start_mbps && lane_bit_rate_mbps <= soc_mipi_dsi_phy_pll_ranges[i].end_mbps) { hs_freq_sel = soc_mipi_dsi_phy_pll_ranges[i].hs_freq_range_sel; break; } } mipi_dsi_hal_phy_write_register(hal, 0x44, hs_freq_sel << 1); // make use of the N and M factors that configured in the 0x17 and 0x18 mipi_dsi_hal_phy_write_register(hal, 0x19, 0x30); mipi_dsi_hal_phy_write_register(hal, 0x17, pll_N - 1); mipi_dsi_hal_phy_write_register(hal, 0x18, ((pll_M - 1) & 0x1F)); mipi_dsi_hal_phy_write_register(hal, 0x18, 0x80 | (((pll_M - 1) >> 5) & 0x0F)); // update the real lane bit rate hal->lane_bit_rate_mbps = ref_freq_mhz * pll_M / pll_N; HAL_LOGD("dsi_hal", "phy pll: ref=%" PRIu32 "Hz, lane_bit_rate=%" PRIu32 "Mbps, M=%" PRId16 ", N=%" PRId8 ", hsfreqrange=%" PRId8, phy_clk_src_freq_hz, hal->lane_bit_rate_mbps, pll_M, pll_N, hs_freq_sel); } void mipi_dsi_hal_phy_write_register(mipi_dsi_hal_context_t *hal, uint8_t reg_addr, uint8_t reg_val) { // disable the test clear pin, enable the interface to write values to the PHY internal registers mipi_dsi_phy_ll_write_clock(hal->host, 0, false); // load PHY register address mipi_dsi_phy_ll_write_reg_addr(hal->host, reg_addr); // the address write operation is set on the falling edge of the test clock mipi_dsi_phy_ll_write_clock(hal->host, 1, false); mipi_dsi_phy_ll_write_clock(hal->host, 0, false); // load PHY register value mipi_dsi_phy_ll_write_reg_val(hal->host, reg_val); // the data write operation is set on the rising edge of the test clock mipi_dsi_phy_ll_write_clock(hal->host, 1, false); mipi_dsi_phy_ll_write_clock(hal->host, 0, false); } void mipi_dsi_hal_host_gen_write_dcs_command(mipi_dsi_hal_context_t *hal, uint8_t vc, uint32_t command, uint32_t command_bytes, const void *param, uint16_t param_size) { mipi_dsi_data_type_t dt = 0; uint8_t pkt_hdr_msb = 0; uint8_t pkt_hdr_lsb = 0; const uint8_t *payload = param; // the payload size is the command size plus the parameter size uint32_t payload_size = command_bytes + param_size; // merge the command and some bytes of parameters into one 32-bit word uint32_t temp = command & ((1 << (8 * command_bytes)) - 1); uint16_t merged_size = MIN(4 - command_bytes, param_size); for (int i = 0; i < merged_size; i++) { temp |= payload[i] << (8 * (i + command_bytes)); } if (payload_size > 2) { // write the first 32-bit word into FIFO while (mipi_dsi_host_ll_gen_is_write_fifo_full(hal->host)); mipi_dsi_host_ll_gen_write_payload_fifo(hal->host, temp); // write the remaining parameters into FIFO payload += merged_size; uint32_t remain_size = param_size - merged_size; while (remain_size >= 4) { temp = *(uint32_t *)payload; while (mipi_dsi_host_ll_gen_is_write_fifo_full(hal->host)); mipi_dsi_host_ll_gen_write_payload_fifo(hal->host, temp); payload += 4; remain_size -= 4; } if (remain_size) { temp = *(uint32_t *)payload; temp &= (1 << (8 * remain_size)) - 1; while (mipi_dsi_host_ll_gen_is_write_fifo_full(hal->host)); mipi_dsi_host_ll_gen_write_payload_fifo(hal->host, temp); } dt = MIPI_DSI_DT_DCS_LONG_WRITE; pkt_hdr_msb = (payload_size >> 8) & 0xFF; pkt_hdr_lsb = payload_size & 0xFF; } else if (payload_size == 2) { dt = MIPI_DSI_DT_DCS_SHORT_WRITE_1; pkt_hdr_msb = (temp >> 8) & 0xFF; pkt_hdr_lsb = temp & 0xFF; } else if (payload_size == 1) { dt = MIPI_DSI_DT_DCS_SHORT_WRITE_0; pkt_hdr_msb = (temp >> 8) & 0xFF; pkt_hdr_lsb = temp & 0xFF; } // write the packet header while (mipi_dsi_host_ll_gen_is_cmd_fifo_full(hal->host)); mipi_dsi_host_ll_gen_set_packet_header(hal->host, vc, dt, pkt_hdr_msb, pkt_hdr_lsb); } void mipi_dsi_hal_host_gen_write_short_packet(mipi_dsi_hal_context_t *hal, uint8_t vc, mipi_dsi_data_type_t dt, uint16_t header_data) { uint8_t msb = (header_data >> 8) & 0xFF; uint8_t lsb = header_data & 0xFF; while (mipi_dsi_host_ll_gen_is_cmd_fifo_full(hal->host)); mipi_dsi_host_ll_gen_set_packet_header(hal->host, vc, dt, msb, lsb); } void mipi_dsi_hal_host_gen_write_long_packet(mipi_dsi_hal_context_t *hal, uint8_t vc, mipi_dsi_data_type_t dt, const void *buffer, uint16_t buffer_size) { const uint8_t *payload = buffer; uint32_t remain_size = buffer_size; uint32_t temp = 0; while (remain_size >= 4) { temp = *(uint32_t *)payload; while (mipi_dsi_host_ll_gen_is_write_fifo_full(hal->host)); mipi_dsi_host_ll_gen_write_payload_fifo(hal->host, temp); payload += 4; remain_size -= 4; } if (remain_size) { temp = *(uint32_t *)payload; temp &= (1 << (8 * remain_size)) - 1; while (mipi_dsi_host_ll_gen_is_write_fifo_full(hal->host)); mipi_dsi_host_ll_gen_write_payload_fifo(hal->host, temp); } uint8_t wc_msb = (buffer_size >> 8) & 0xFF; uint8_t wc_lsb = buffer_size & 0xFF; while (mipi_dsi_host_ll_gen_is_cmd_fifo_full(hal->host)); mipi_dsi_host_ll_gen_set_packet_header(hal->host, vc, dt, wc_msb, wc_lsb); } void mipi_dsi_hal_host_gen_read_short_packet(mipi_dsi_hal_context_t *hal, uint8_t vc, mipi_dsi_data_type_t dt, uint16_t header_data, void *ret_buffer, uint16_t buffer_size) { uint8_t *receive_buffer = (uint8_t *)ret_buffer; // set the maximum returned data size, it should equal to the parameter size of the read command mipi_dsi_hal_host_gen_write_short_packet(hal, vc, MIPI_DSI_DT_SET_MAXIMUM_RETURN_PKT, buffer_size); // make sure command mode is on mipi_dsi_host_ll_enable_video_mode(hal->host, false); // make sure receiving is enabled mipi_dsi_host_ll_enable_bta(hal->host, true); // listen to the same virtual channel as the one sent to mipi_dsi_host_ll_gen_set_rx_vcid(hal->host, vc); mipi_dsi_hal_host_gen_write_short_packet(hal, vc, dt, header_data); while (mipi_dsi_host_ll_gen_is_read_cmd_busy(hal->host)); // wait data to come into the fifo while (mipi_dsi_host_ll_gen_is_read_fifo_empty(hal->host)); uint32_t temp = 0; uint32_t counter = 0; while (!mipi_dsi_host_ll_gen_is_read_fifo_empty(hal->host)) { temp = mipi_dsi_host_ll_gen_read_payload_fifo(hal->host); for (int i = 0; i < 4; i++) { if ((counter + i) < buffer_size) { receive_buffer[counter + i] = (temp >> (8 * i)) & 0xFF; } counter++; } } } void mipi_dsi_hal_host_gen_read_dcs_command(mipi_dsi_hal_context_t *hal, uint8_t vc, uint32_t command, uint32_t command_bytes, void *ret_param, uint16_t param_buf_size) { uint16_t header_data = command & ((1 << (8 * command_bytes)) - 1); mipi_dsi_hal_host_gen_read_short_packet(hal, vc, MIPI_DSI_DT_DCS_READ_0, header_data, ret_param, param_buf_size); } void mipi_dsi_hal_host_dpi_set_color_coding(mipi_dsi_hal_context_t *hal, lcd_color_rgb_pixel_format_t color_coding, uint32_t sub_config) { mipi_dsi_host_ll_dpi_set_color_coding(hal->host, color_coding, sub_config); mipi_dsi_brg_ll_set_pixel_format(hal->bridge, color_coding, sub_config); } void mipi_dsi_hal_host_dpi_set_horizontal_timing(mipi_dsi_hal_context_t *hal, uint32_t hsw, uint32_t hbp, uint32_t active_width, uint32_t hfp) { float dpi2lane_clk_ratio = (float)hal->lane_bit_rate_mbps / hal->dpi_clock_freq_mhz / 8; mipi_dsi_host_ll_dpi_set_horizontal_timing(hal->host, hsw * dpi2lane_clk_ratio, hbp * dpi2lane_clk_ratio, active_width * dpi2lane_clk_ratio, hfp * dpi2lane_clk_ratio); mipi_dsi_brg_ll_set_horizontal_timing(hal->bridge, hsw, hbp, active_width, hfp); } void mipi_dsi_hal_host_dpi_set_vertical_timing(mipi_dsi_hal_context_t *hal, uint32_t vsw, uint32_t vbp, uint32_t active_height, uint32_t vfp) { mipi_dsi_host_ll_dpi_set_vertical_timing(hal->host, vsw, vbp, active_height, vfp); mipi_dsi_brg_ll_set_vertical_timing(hal->bridge, vsw, vbp, active_height, vfp); } uint32_t mipi_dsi_hal_host_dpi_calculate_divider(mipi_dsi_hal_context_t *hal, uint32_t clk_src_mhz, uint32_t expect_dpi_clk_mhz) { uint32_t div = clk_src_mhz / expect_dpi_clk_mhz; hal->dpi_clock_freq_mhz = clk_src_mhz / div; return div; }