/* * SPDX-FileCopyrightText: 2021-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include "sdkconfig.h" #include "esp_err.h" #include "esp_attr.h" #include "hal/assert.h" #include "hal/cache_hal.h" #include "hal/cache_types.h" #include "hal/cache_ll.h" #include "hal/mmu_hal.h" #include "hal/mmu_ll.h" #include "soc/soc_caps.h" #include "rom/cache.h" /*------------------------------------------------------------------------------ * Unified Cache Control * See cache_hal.h for more info about these HAL APIs * This file is in internal RAM. * Now this file doesn't compile on ESP32 *----------------------------------------------------------------------------*/ /** * Necessary hal contexts, could be maintained by upper layer in the future */ typedef struct { bool i_autoload_en; bool d_autoload_en; #if CACHE_LL_ENABLE_DISABLE_STATE_SW // There's no register indicating if cache is enabled on these chips, use sw flag to save this state. bool i_cache_enabled; bool d_cache_enabled; #endif } cache_hal_state_t; typedef struct { cache_hal_state_t l1; cache_hal_state_t l2; } cache_hal_context_t; static cache_hal_context_t ctx; void s_cache_hal_init_ctx(void) { ctx.l1.d_autoload_en = cache_ll_is_cache_autoload_enabled(1, CACHE_TYPE_DATA, CACHE_LL_ID_ALL); ctx.l1.i_autoload_en = cache_ll_is_cache_autoload_enabled(1, CACHE_TYPE_INSTRUCTION, CACHE_LL_ID_ALL); ctx.l2.d_autoload_en = cache_ll_is_cache_autoload_enabled(2, CACHE_TYPE_DATA, CACHE_LL_ID_ALL); ctx.l2.i_autoload_en = cache_ll_is_cache_autoload_enabled(2, CACHE_TYPE_INSTRUCTION, CACHE_LL_ID_ALL); } void cache_hal_init(void) { s_cache_hal_init_ctx(); if (CACHE_LL_LEVEL_EXT_MEM == 1) { cache_ll_enable_cache(1, CACHE_TYPE_ALL, CACHE_LL_ID_ALL, ctx.l1.i_autoload_en, ctx.l1.d_autoload_en); } else if (CACHE_LL_LEVEL_EXT_MEM == 2) { cache_ll_enable_cache(2, CACHE_TYPE_ALL, CACHE_LL_ID_ALL, ctx.l2.i_autoload_en, ctx.l2.d_autoload_en); } cache_ll_l1_enable_bus(0, CACHE_LL_DEFAULT_DBUS_MASK); cache_ll_l1_enable_bus(0, CACHE_LL_DEFAULT_IBUS_MASK); #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE cache_ll_l1_enable_bus(1, CACHE_LL_DEFAULT_DBUS_MASK); cache_ll_l1_enable_bus(1, CACHE_LL_DEFAULT_IBUS_MASK); #endif #if CACHE_LL_ENABLE_DISABLE_STATE_SW ctx.l1.i_cache_enabled = 1; ctx.l1.d_cache_enabled = 1; ctx.l2.i_cache_enabled = 1; ctx.l2.d_cache_enabled = 1; #endif } #if CACHE_LL_ENABLE_DISABLE_STATE_SW void s_update_cache_state(uint32_t cache_level, cache_type_t type, bool en) { HAL_ASSERT(cache_level && (cache_level <= CACHE_LL_LEVEL_NUMS)); switch (cache_level) { case 1: if (type == CACHE_TYPE_INSTRUCTION) { ctx.l1.i_cache_enabled = en; break; } else if (type == CACHE_TYPE_DATA) { ctx.l1.d_cache_enabled = en; break; } else if (type == CACHE_TYPE_ALL) { ctx.l1.i_cache_enabled = en; ctx.l1.d_cache_enabled = en; break; } else { HAL_ASSERT(false); break; } case 2: if (type == CACHE_TYPE_INSTRUCTION) { ctx.l2.i_cache_enabled = en; break; } else if (type == CACHE_TYPE_DATA) { ctx.l2.d_cache_enabled = en; break; } else if (type == CACHE_TYPE_ALL) { ctx.l2.i_cache_enabled = en; ctx.l2.d_cache_enabled = en; break; } else { HAL_ASSERT(false); break; } default: HAL_ASSERT(false); break; } } bool s_get_cache_state(uint32_t cache_level, cache_type_t type) { HAL_ASSERT(cache_level && (cache_level <= CACHE_LL_LEVEL_NUMS)); bool enabled = false; switch (cache_level) { case 1: if (type == CACHE_TYPE_INSTRUCTION) { enabled = ctx.l1.i_cache_enabled; break; } else if (type == CACHE_TYPE_DATA) { enabled = ctx.l1.d_cache_enabled; break; } else if (type == CACHE_TYPE_ALL) { enabled = ctx.l1.i_cache_enabled; enabled &= ctx.l1.d_cache_enabled; break; } else { HAL_ASSERT(false); break; } case 2: if (type == CACHE_TYPE_INSTRUCTION) { enabled = ctx.l2.i_cache_enabled; break; } else if (type == CACHE_TYPE_DATA) { enabled = ctx.l2.d_cache_enabled; break; } else if (type == CACHE_TYPE_ALL) { enabled = ctx.l2.i_cache_enabled; enabled &= ctx.l2.d_cache_enabled; break; } else { HAL_ASSERT(false); break; } default: HAL_ASSERT(false); break; } return enabled; } #endif //#if CACHE_LL_ENABLE_DISABLE_STATE_SW void cache_hal_disable(uint32_t cache_level, cache_type_t type) { HAL_ASSERT(cache_level && (cache_level <= CACHE_LL_LEVEL_NUMS)); cache_ll_disable_cache(cache_level, type, CACHE_LL_ID_ALL); #if CACHE_LL_ENABLE_DISABLE_STATE_SW s_update_cache_state(cache_level, type, false); #endif } void cache_hal_enable(uint32_t cache_level, cache_type_t type) { HAL_ASSERT(cache_level && (cache_level <= CACHE_LL_LEVEL_NUMS)); if (cache_level == 1) { cache_ll_enable_cache(1, type, CACHE_LL_ID_ALL, ctx.l1.i_autoload_en, ctx.l1.d_autoload_en); } else if (cache_level == 2) { cache_ll_enable_cache(2, type, CACHE_LL_ID_ALL, ctx.l2.i_autoload_en, ctx.l2.d_autoload_en); } #if CACHE_LL_ENABLE_DISABLE_STATE_SW s_update_cache_state(cache_level, type, true); #endif } void cache_hal_suspend(uint32_t cache_level, cache_type_t type) { HAL_ASSERT(cache_level && (cache_level <= CACHE_LL_LEVEL_NUMS)); cache_ll_suspend_cache(cache_level, type, CACHE_LL_ID_ALL); #if CACHE_LL_ENABLE_DISABLE_STATE_SW s_update_cache_state(cache_level, type, false); #endif } void cache_hal_resume(uint32_t cache_level, cache_type_t type) { HAL_ASSERT(cache_level && (cache_level <= CACHE_LL_LEVEL_NUMS)); if (cache_level == 1) { cache_ll_resume_cache(1, type, CACHE_LL_ID_ALL, ctx.l1.i_autoload_en, ctx.l1.d_autoload_en); } else if (cache_level == 2) { cache_ll_resume_cache(2, type, CACHE_LL_ID_ALL, ctx.l2.i_autoload_en, ctx.l2.d_autoload_en); } #if CACHE_LL_ENABLE_DISABLE_STATE_SW s_update_cache_state(cache_level, type, true); #endif } bool cache_hal_is_cache_enabled(uint32_t cache_level, cache_type_t type) { bool enabled = false; #if CACHE_LL_ENABLE_DISABLE_STATE_SW enabled = s_get_cache_state(cache_level, type); #else enabled = cache_ll_is_cache_enabled(type); #endif //CACHE_LL_ENABLE_DISABLE_STATE_SW return enabled; } bool cache_hal_vaddr_to_cache_level_id(uint32_t vaddr_start, uint32_t len, uint32_t *out_level, uint32_t *out_id) { if (!out_level || !out_id) { return false; } return cache_ll_vaddr_to_cache_level_id(vaddr_start, len, out_level, out_id); } bool cache_hal_invalidate_addr(uint32_t vaddr, uint32_t size) { bool valid = false; uint32_t cache_level = 0; uint32_t cache_id = 0; valid = cache_hal_vaddr_to_cache_level_id(vaddr, size, &cache_level, &cache_id); if (valid) { cache_ll_invalidate_addr(cache_level, CACHE_TYPE_ALL, cache_id, vaddr, size); } return valid; } #if SOC_CACHE_WRITEBACK_SUPPORTED bool cache_hal_writeback_addr(uint32_t vaddr, uint32_t size) { bool valid = false; uint32_t cache_level = 0; uint32_t cache_id = 0; valid = cache_hal_vaddr_to_cache_level_id(vaddr, size, &cache_level, &cache_id); if (valid) { cache_ll_writeback_addr(cache_level, CACHE_TYPE_DATA, cache_id, vaddr, size); } return valid; } #endif //#if SOC_CACHE_WRITEBACK_SUPPORTED #if SOC_CACHE_FREEZE_SUPPORTED void cache_hal_freeze(uint32_t cache_level, cache_type_t type) { HAL_ASSERT(cache_level && (cache_level <= CACHE_LL_LEVEL_NUMS)); cache_ll_freeze_cache(cache_level, type, CACHE_LL_ID_ALL); } void cache_hal_unfreeze(uint32_t cache_level, cache_type_t type) { HAL_ASSERT(cache_level && (cache_level <= CACHE_LL_LEVEL_NUMS)); cache_ll_unfreeze_cache(cache_level, type, CACHE_LL_ID_ALL); } #endif //#if SOC_CACHE_FREEZE_SUPPORTED uint32_t cache_hal_get_cache_line_size(uint32_t cache_level, cache_type_t type) { HAL_ASSERT(cache_level <= CACHE_LL_LEVEL_NUMS); uint32_t line_size = 0; #if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE line_size = cache_ll_get_line_size(cache_level, type, CACHE_LL_ID_ALL); #else if (cache_level == CACHE_LL_LEVEL_EXT_MEM) { line_size = cache_ll_get_line_size(cache_level, type, CACHE_LL_ID_ALL); } #endif return line_size; }