lcd: add LL driver for esp32-s3

pull/6828/head
morris 2021-02-26 13:58:04 +08:00 zatwierdzone przez suda-morris
rodzic c49d03b8eb
commit d0be56b8fe
12 zmienionych plików z 592 dodań i 144 usunięć

Wyświetl plik

@ -72,6 +72,7 @@ if(NOT BOOTLOADER_BUILD)
list(APPEND srcs
"dac_hal.c"
"gdma_hal.c"
"lcd_hal.c"
"pcnt_hal.c"
"spi_flash_hal_gpspi.c"
"spi_slave_hd_hal.c"

Wyświetl plik

@ -2,7 +2,7 @@ COMPONENT_SRCDIRS := . esp32
COMPONENT_ADD_INCLUDEDIRS := esp32/include include
COMPONENT_ADD_LDFRAGMENTS += linker.lf
COMPONENT_OBJEXCLUDE += ./spi_slave_hd_hal.o ./spi_flash_hal_gpspi.o ./spi_slave_hd_hal.o ./ds_hal.o ./gdma_hal.o
COMPONENT_OBJEXCLUDE += ./spi_slave_hd_hal.o ./spi_flash_hal_gpspi.o ./spi_slave_hd_hal.o ./ds_hal.o ./gdma_hal.o ./lcd_hal.o
ifndef CONFIG_ETH_USE_ESP32_EMAC
COMPONENT_OBJEXCLUDE += esp32/emac_hal.o

Wyświetl plik

@ -49,6 +49,8 @@ static inline uint32_t periph_ll_get_clk_en_mask(periph_module_t periph)
return SYSTEM_I2S0_CLK_EN;
case PERIPH_I2S1_MODULE:
return SYSTEM_I2S1_CLK_EN;
case PERIPH_LCD_CAM_MODULE:
return SYSTEM_LCD_CAM_CLK_EN;
case PERIPH_TIMG0_MODULE:
return SYSTEM_TIMERGROUP_CLK_EN;
case PERIPH_TIMG1_MODULE:
@ -130,6 +132,8 @@ static inline uint32_t periph_ll_get_rst_en_mask(periph_module_t periph, bool en
return SYSTEM_I2S0_RST;
case PERIPH_I2S1_MODULE:
return SYSTEM_I2S1_RST;
case PERIPH_LCD_CAM_MODULE:
return SYSTEM_LCD_CAM_RST;
case PERIPH_TIMG0_MODULE:
return SYSTEM_TIMERGROUP_RST;
case PERIPH_TIMG1_MODULE:
@ -205,6 +209,7 @@ static uint32_t periph_ll_get_clk_en_reg(periph_module_t periph)
return SYSTEM_WIFI_CLK_EN_REG ;
case PERIPH_UART2_MODULE:
case PERIPH_SDMMC_MODULE:
case PERIPH_LCD_CAM_MODULE:
case PERIPH_GDMA_MODULE:
case PERIPH_AES_MODULE:
case PERIPH_SHA_MODULE:
@ -230,6 +235,7 @@ static uint32_t periph_ll_get_rst_en_reg(periph_module_t periph)
case PERIPH_UART2_MODULE:
case PERIPH_SDMMC_MODULE:
case PERIPH_GDMA_MODULE:
case PERIPH_LCD_CAM_MODULE:
case PERIPH_AES_MODULE:
case PERIPH_SHA_MODULE:
case PERIPH_RSA_MODULE:

Wyświetl plik

@ -0,0 +1,253 @@
// Copyright 2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdint.h>
#include <stdbool.h>
#include <assert.h>
#include "soc/lcd_cam_reg.h"
#include "soc/lcd_cam_struct.h"
#ifdef __cplusplus
extern "C" {
#endif
#define LCD_LL_GET_HW(id) (((id) == 0) ? (&LCD_CAM) : NULL)
// Interrupt event, bit mask
#define LCD_LL_EVENT_VSYNC_END (1 << 0)
#define LCD_LL_EVENT_TRANS_DONE (1 << 1)
#define LCD_LL_EVENT_MASK (LCD_LL_EVENT_VSYNC_END | LCD_LL_EVENT_TRANS_DONE)
// Clock source ID represented in register
#define LCD_LL_CLOCK_SRC_XTAL (1)
#define LCD_LL_CLOCK_SRC_APLL (2)
#define LCD_LL_CLOCK_SRC_PLL160M (3)
// Maximum coefficient of clock prescaler
#define LCD_LL_CLOCK_PRESCALE_MAX (64)
static inline void lcd_ll_enable_clock(lcd_cam_dev_t *dev, bool en)
{
dev->lcd_clock.clk_en = en;
}
static inline void lcd_ll_set_group_clock_src(lcd_cam_dev_t *dev, int src, int div_num, int div_a, int div_b)
{
// lcd_clk = module_clock_src / (div_num + div_b / div_a)
assert(div_num >= 2);
dev->lcd_clock.lcd_clk_sel = src;
dev->lcd_clock.lcd_clkm_div_num = div_num;
dev->lcd_clock.lcd_clkm_div_a = div_a;
dev->lcd_clock.lcd_clkm_div_b = div_b;
}
static inline void lcd_ll_set_clock_idle_level(lcd_cam_dev_t *dev, bool level)
{
dev->lcd_clock.lcd_ck_idle_edge = level;
}
static inline void lcd_ll_set_pixel_clock_edge(lcd_cam_dev_t *dev, bool active_on_neg)
{
dev->lcd_clock.lcd_clk_equ_sysclk = 0; // if we want to pixel_clk == lcd_clk, just make clkcnt = 0
dev->lcd_clock.lcd_ck_out_edge = active_on_neg;
}
static inline void lcd_ll_set_pixel_clock_prescale(lcd_cam_dev_t *dev, uint32_t prescale)
{
// Formula: pixel_clk = lcd_clk / (1 + clkcnt_n)
dev->lcd_clock.lcd_clkcnt_n = prescale - 1;
}
static inline void lcd_ll_enable_rgb_yuv_convert(lcd_cam_dev_t *dev, bool en)
{
dev->lcd_rgb_yuv.lcd_conv_bypass = en;
}
static inline void lcd_ll_set_phase_cycles(lcd_cam_dev_t *dev, uint32_t cmd_cycles, uint32_t dummy_cycles, uint32_t data_cycles)
{
assert(cmd_cycles <= 2);
dev->lcd_user.lcd_cmd = (cmd_cycles > 0);
dev->lcd_user.lcd_dummy = (dummy_cycles > 0);
dev->lcd_user.lcd_dout = (data_cycles > 0);
dev->lcd_user.lcd_cmd_2_cycle_en = cmd_cycles > 1;
dev->lcd_user.lcd_dummy_cyclelen = dummy_cycles - 1;
dev->lcd_user.lcd_dout_cyclelen = data_cycles - 1;
}
static inline void lcd_ll_set_blank_cycles(lcd_cam_dev_t *dev, uint32_t fk_cycles, uint32_t bk_cycles)
{
dev->lcd_misc.lcd_bk_en = (fk_cycles || bk_cycles);
dev->lcd_misc.lcd_vfk_cyclelen = fk_cycles - 1;
dev->lcd_misc.lcd_vbk_cyclelen = bk_cycles - 1;
}
static inline void lcd_ll_set_data_width(lcd_cam_dev_t *dev, uint32_t width)
{
dev->lcd_user.lcd_2byte_en = (width == 16);
}
static inline uint32_t lcd_ll_get_data_width(lcd_cam_dev_t *dev)
{
return dev->lcd_user.lcd_2byte_en ? 16 : 8;
}
static inline void lcd_ll_enable_output_always_on(lcd_cam_dev_t *dev, bool en)
{
dev->lcd_user.lcd_always_out_en = en;
}
static inline void lcd_ll_start(lcd_cam_dev_t *dev)
{
dev->lcd_user.lcd_update = 1; // update parameters before start transaction
dev->lcd_user.lcd_start = 1;
}
static inline void lcd_ll_stop(lcd_cam_dev_t *dev)
{
dev->lcd_user.lcd_start = 0;
dev->lcd_user.lcd_update = 1; // self clear
}
static inline void lcd_ll_reset(lcd_cam_dev_t *dev)
{
dev->lcd_user.lcd_reset = 1;
dev->lcd_user.lcd_reset = 0;
}
static inline void lcd_ll_reverse_data_bit_order(lcd_cam_dev_t *dev, bool en)
{
// whether to change LCD_DATA_out[N:0] to LCD_DATA_out[0:N]
dev->lcd_user.lcd_bit_order = en;
}
static inline void lcd_ll_reverse_data_byte_order(lcd_cam_dev_t *dev, uint32_t data_width, bool en)
{
if (data_width == 8) {
dev->lcd_user.lcd_8bits_order = en; // valid in 8bit mode
dev->lcd_user.lcd_byte_order = 0;
} else if (data_width == 16) {
dev->lcd_user.lcd_byte_order = en; // valid in 16bit mode
dev->lcd_user.lcd_8bits_order = 0;
}
}
static inline void lcd_ll_fifo_reset(lcd_cam_dev_t *dev)
{
dev->lcd_misc.lcd_afifo_reset = 1;
dev->lcd_misc.lcd_afifo_reset = 0;
}
static inline void lcd_ll_set_dc_level(lcd_cam_dev_t *dev, bool idle_phase, bool cmd_phase, bool dummy_phase, bool data_phase)
{
dev->lcd_misc.lcd_cd_idle_edge = idle_phase;
dev->lcd_misc.lcd_cd_cmd_set = (cmd_phase != idle_phase);
dev->lcd_misc.lcd_cd_dummy_set = (dummy_phase != idle_phase);
dev->lcd_misc.lcd_cd_data_set = (data_phase != idle_phase);
}
static inline void lcd_ll_set_dc_delay_ticks(lcd_cam_dev_t *dev, uint32_t delay)
{
dev->lcd_dly_mode.lcd_cd_mode = delay;
}
static inline void lcd_ll_set_command(lcd_cam_dev_t *dev, uint32_t data_width, uint32_t command)
{
// if command phase has two cycles, in the first cycle, command[15:0] is sent out via lcd_data_out[15:0]
// in the second cycle, command[31:16] is sent out via lcd_data_out[15:0]
// no matter the LCD is in 8bit mode or 16bit mode
// so this is a workaround especially for 8bit mode
if (data_width == 8) {
command = (command & 0xFF) | (command & 0xFF00) << 8;
}
dev->lcd_cmd_val = command;
}
static inline void lcd_ll_enable_rgb_mode(lcd_cam_dev_t *dev, bool en)
{
dev->lcd_ctrl.lcd_rgb_mode_en = en;
}
static inline void lcd_ll_enable_auto_next_frame(lcd_cam_dev_t *dev, bool en)
{
// in RGB mode, enabling "next frame" means LCD controller keeps sending frame data
dev->lcd_misc.lcd_next_frame_en = en;
}
static inline void lcd_ll_set_horizontal_timing(lcd_cam_dev_t *dev, uint32_t hsw, uint32_t hbp, uint32_t active_width, uint32_t hfp)
{
dev->lcd_ctrl2.lcd_hsync_width = hsw;
dev->lcd_ctrl.lcd_hb_front = hbp;
dev->lcd_ctrl1.lcd_ha_width = active_width;
dev->lcd_ctrl1.lcd_ht_width = hsw + hbp + active_width + hfp;
}
static inline void lcd_ll_set_vertical_timing(lcd_cam_dev_t *dev, uint32_t vsw, uint32_t vbp, uint32_t active_height, uint32_t vfp)
{
dev->lcd_ctrl2.lcd_vsync_width = vsw;
dev->lcd_ctrl1.lcd_vb_front = vbp;
dev->lcd_ctrl.lcd_va_height = active_height;
dev->lcd_ctrl.lcd_vt_height = vsw + vbp + active_height + vfp;
}
static inline void lcd_ll_set_idle_level(lcd_cam_dev_t *dev, bool hsync_idle_level, bool vsync_idle_level, bool de_idle_level)
{
dev->lcd_ctrl2.lcd_hsync_idle_pol = hsync_idle_level;
dev->lcd_ctrl2.lcd_vsync_idle_pol = vsync_idle_level;
dev->lcd_ctrl2.lcd_de_idle_pol = de_idle_level;
}
static inline void lcd_ll_set_delay_ticks(lcd_cam_dev_t *dev, uint32_t hsync_delay, uint32_t vsync_delay, uint32_t de_delay)
{
dev->lcd_dly_mode.lcd_hsync_mode = hsync_delay;
dev->lcd_dly_mode.lcd_vsync_mode = vsync_delay;
dev->lcd_dly_mode.lcd_de_mode = de_delay;
}
static inline void lcd_ll_set_data_delay_ticks(lcd_cam_dev_t *dev, uint32_t delay)
{
uint32_t reg_val = 0;
for (int i = 0; i < 16; i++) {
reg_val |= (delay & 0x03) << (2 * i);
}
dev->lcd_data_dout_mode.val = reg_val;
}
static inline void lcd_ll_enable_interrupt(lcd_cam_dev_t *dev, uint32_t mask, bool en)
{
if (en) {
dev->lc_dma_int_ena.val |= mask & 0x03;
} else {
dev->lc_dma_int_ena.val &= ~(mask & 0x03);
}
}
static inline uint32_t lcd_ll_get_interrupt_status(lcd_cam_dev_t *dev)
{
return dev->lc_dma_int_st.val & 0x03;
}
static inline void lcd_ll_clear_interrupt_status(lcd_cam_dev_t *dev, uint32_t mask)
{
dev->lc_dma_int_clr.val = mask & 0x03;
}
static inline uint32_t lcd_ll_get_interrupt_status_reg(lcd_cam_dev_t *dev)
{
return (uint32_t)(&dev->lc_dma_int_st);
}
#ifdef __cplusplus
}
#endif

Wyświetl plik

@ -0,0 +1,37 @@
// Copyright 2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The HAL is not public api, don't use in application code.
* See readme.md in soc/README.md
******************************************************************************/
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include "soc/lcd_cam_struct.h"
typedef struct {
lcd_cam_dev_t *dev;
} lcd_hal_context_t;
void lcd_hal_init(lcd_hal_context_t *hal, int id);
#ifdef __cplusplus
}
#endif

Wyświetl plik

@ -0,0 +1,21 @@
// Copyright 2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "hal/lcd_hal.h"
#include "hal/lcd_ll.h"
void lcd_hal_init(lcd_hal_context_t *hal, int id)
{
hal->dev = LCD_LL_GET_HW(id);
}

Wyświetl plik

@ -7,6 +7,7 @@ set(srcs
"i2c_periph.c"
"i2s_periph.c"
"interrupts.c"
"lcd_periph.c"
"ledc_periph.c"
"pcnt_periph.c"
"rmt_periph.c"

Wyświetl plik

@ -13,190 +13,190 @@
// limitations under the License.
#pragma once
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
typedef volatile struct {
union {
struct {
uint32_t lcd_clkcnt_n: 6; /*f_LCD_PCLK = f_LCD_CLK / (reg_clkcnt_N + 1) when reg_clk_equ_sysclk is 0.*/
uint32_t lcd_clk_equ_sysclk: 1; /*1: f_LCD_PCLK = f_LCD_CLK. 0: f_LCD_PCLK = f_LCD_CLK / (reg_clkcnt_N + 1).*/
uint32_t lcd_ck_idle_edge: 1; /*1: LCD_PCLK line is high when idle 0: LCD_PCLK line is low when idle.*/
uint32_t lcd_ck_out_edge: 1;
uint32_t lcd_clkm_div_num: 8; /*Integral LCD clock divider value*/
uint32_t lcd_clkm_div_b: 6; /*Fractional clock divider numerator value*/
uint32_t lcd_clkm_div_a: 6; /*Fractional clock divider denominator value*/
uint32_t lcd_clk_sel: 2; /*Select LCD module source clock. 0: no clock. 1: APLL. 2: CLK160. 3: no clock.*/
uint32_t clk_en: 1; /*Set this bit to enable clk gate*/
uint32_t lcd_clkcnt_n: 6; /*f_LCD_PCLK = f_LCD_CLK / (reg_clkcnt_N + 1) when reg_clk_equ_sysclk is 0.*/
uint32_t lcd_clk_equ_sysclk: 1; /*1: f_LCD_PCLK = f_LCD_CLK. 0: f_LCD_PCLK = f_LCD_CLK / (reg_clkcnt_N + 1).*/
uint32_t lcd_ck_idle_edge: 1; /*1: LCD_PCLK line is high when idle 0: LCD_PCLK line is low when idle.*/
uint32_t lcd_ck_out_edge: 1; /*1: LCD_PCLK is high on the first half clock 0: LCD_PCLK is high on the second half clock*/
uint32_t lcd_clkm_div_num: 8; /*Integral LCD clock divider value*/
uint32_t lcd_clkm_div_b: 6; /*Fractional clock divider numerator value*/
uint32_t lcd_clkm_div_a: 6; /*Fractional clock divider denominator value*/
uint32_t lcd_clk_sel: 2; /*Select LCD module source clock. 0: no clock. 1: APLL. 2: CLK160. 3: no clock.*/
uint32_t clk_en: 1; /*Set this bit to enable clk gate*/
};
uint32_t val;
} lcd_clock;
union {
struct {
uint32_t cam_stop_en: 1; /*Camera stop enable signal 1: camera stops when DMA Rx FIFO is full. 0: Not stop.*/
uint32_t cam_vsync_filter_thres: 3; /*Filter threshold value for CAM_VSYNC signal.*/
uint32_t cam_update: 1; /*1: Update Camera registers will be cleared by hardware. 0 : Not care.*/
uint32_t cam_byte_order: 1; /*1: Change data bit order change CAM_DATA_in[7:0] to CAM_DATA_in[0:7] in one byte mode and bits[15:0] to bits[0:15] in two byte mode. 0: Not change.*/
uint32_t cam_bit_order: 1; /*1: invert data byte order only valid in 2 byte mode. 0: Not change.*/
uint32_t cam_line_int_en: 1; /*1: Enable to generate CAM_HS_INT. 0: Disable.*/
uint32_t cam_vs_eof_en: 1; /*1: CAM_VSYNC to generate in_suc_eof. 0: in_suc_eof is controlled by reg_cam_rec_data_cyclelen.*/
uint32_t cam_clkm_div_num: 8; /*Integral Camera clock divider value*/
uint32_t cam_clkm_div_b: 6; /*Fractional clock divider numerator value*/
uint32_t cam_clkm_div_a: 6; /*Fractional clock divider denominator value*/
uint32_t cam_clk_sel: 2; /*Select Camera module source clock. 0: no clock. 1: APLL. 2: CLK160. 3: no clock.*/
uint32_t reserved31: 1; /*reserved*/
uint32_t cam_stop_en: 1; /*Camera stop enable signal 1: camera stops when DMA Rx FIFO is full. 0: Not stop.*/
uint32_t cam_vsync_filter_thres: 3; /*Filter threshold value for CAM_VSYNC signal.*/
uint32_t cam_update: 1; /*1: Update Camera registers will be cleared by hardware. 0 : Not care.*/
uint32_t cam_byte_order: 1; /*1: Change data bit order change CAM_DATA_in[7:0] to CAM_DATA_in[0:7] in one byte mode and bits[15:0] to bits[0:15] in two byte mode. 0: Not change.*/
uint32_t cam_bit_order: 1; /*1: invert data byte order only valid in 2 byte mode. 0: Not change.*/
uint32_t cam_line_int_en: 1; /*1: Enable to generate CAM_HS_INT. 0: Disable.*/
uint32_t cam_vs_eof_en: 1; /*1: CAM_VSYNC to generate in_suc_eof. 0: in_suc_eof is controlled by reg_cam_rec_data_cyclelen.*/
uint32_t cam_clkm_div_num: 8; /*Integral Camera clock divider value*/
uint32_t cam_clkm_div_b: 6; /*Fractional clock divider numerator value*/
uint32_t cam_clkm_div_a: 6; /*Fractional clock divider denominator value*/
uint32_t cam_clk_sel: 2; /*Select Camera module source clock. 0: no clock. 1: APLL. 2: CLK160. 3: no clock.*/
uint32_t reserved31: 1; /*reserved*/
};
uint32_t val;
} cam_ctrl;
union {
struct {
uint32_t cam_rec_data_bytelen: 14; /*Camera receive data byte length minus 1 to set DMA in_suc_eof_int.*/
uint32_t cam_line_int_num: 7; /*The line number minus 1 to generate cam_hs_int.*/
uint32_t cam_clk_inv: 1; /*1: Invert the input signal CAM_PCLK. 0: Not invert.*/
uint32_t reserved22: 1;
uint32_t cam_vsync_filter_en: 1; /*1: Enable CAM_VSYNC filter function. 0: bypass.*/
uint32_t cam_2byte_en: 1; /*1: The bit number of input data is 9~16. 0: The bit number of input data is 0~8.*/
uint32_t cam_de_inv: 1; /*CAM_DE invert enable signal valid in high level.*/
uint32_t cam_hsync_inv: 1; /*CAM_HSYNC invert enable signal valid in high level.*/
uint32_t cam_vsync_inv: 1; /*CAM_VSYNC invert enable signal valid in high level.*/
uint32_t cam_vh_de_mode_en: 1; /*1: Input control signals are CAM_DE CAM_HSYNC and CAM_VSYNC is 1. 0: Input control signals are CAM_DE and CAM_VSYNC*/
uint32_t cam_start: 1; /*Camera module start signal.*/
uint32_t cam_reset: 1; /*Camera module reset signal.*/
uint32_t cam_afifo_reset: 1; /*Camera AFIFO reset signal.*/
uint32_t cam_rec_data_bytelen: 14; /*Camera receive data byte length minus 1 to set DMA in_suc_eof_int.*/
uint32_t cam_line_int_num: 7; /*The line number minus 1 to generate cam_hs_int.*/
uint32_t cam_clk_inv: 1; /*1: Invert the input signal CAM_PCLK. 0: Not invert.*/
uint32_t reserved22: 1; /*Reserved*/
uint32_t cam_vsync_filter_en: 1; /*1: Enable CAM_VSYNC filter function. 0: bypass.*/
uint32_t cam_2byte_en: 1; /*1: The bit number of input data is 9~16. 0: The bit number of input data is 0~8.*/
uint32_t cam_de_inv: 1; /*CAM_DE invert enable signal valid in high level.*/
uint32_t cam_hsync_inv: 1; /*CAM_HSYNC invert enable signal valid in high level.*/
uint32_t cam_vsync_inv: 1; /*CAM_VSYNC invert enable signal valid in high level.*/
uint32_t cam_vh_de_mode_en: 1; /*1: Input control signals are CAM_DE CAM_HSYNC and CAM_VSYNC is 1. 0: Input control signals are CAM_DE and CAM_VSYNC*/
uint32_t cam_start: 1; /*Camera module start signal.*/
uint32_t cam_reset: 1; /*Camera module reset signal.*/
uint32_t cam_afifo_reset: 1; /*Camera AFIFO reset signal.*/
};
uint32_t val;
} cam_ctrl1;
union {
struct {
uint32_t reserved0: 21; /*reserved*/
uint32_t cam_conv_8bits_data_inv: 1; /*1:invert every two 8bits input data. 2. disabled.*/
uint32_t cam_conv_yuv2yuv_mode: 2; /*0: to yuv422. 1: to yuv420. 2: to yuv411. 3: disabled. To enable yuv2yuv mode trans_mode must be set to 1.*/
uint32_t cam_conv_yuv_mode: 2; /*0: yuv422. 1: yuv420. 2: yuv411. When in yuv2yuv mode yuv_mode decides the yuv mode of Data_in*/
uint32_t cam_conv_protocol_mode: 1; /*0:BT601. 1:BT709.*/
uint32_t cam_conv_data_out_mode: 1; /*LIMIT or FULL mode of Data out. 0: limit. 1: full*/
uint32_t cam_conv_data_in_mode: 1; /*LIMIT or FULL mode of Data in. 0: limit. 1: full*/
uint32_t cam_conv_mode_8bits_on: 1; /*0: 16bits mode. 1: 8bits mode.*/
uint32_t cam_conv_trans_mode: 1; /*0: YUV to RGB. 1: RGB to YUV.*/
uint32_t cam_conv_bypass: 1; /*0: Bypass converter. 1: Enable converter.*/
uint32_t reserved0: 21; /*reserved*/
uint32_t cam_conv_8bits_data_inv: 1; /*1:invert every two 8bits input data. 2. disabled.*/
uint32_t cam_conv_yuv2yuv_mode: 2; /*0: to yuv422. 1: to yuv420. 2: to yuv411. 3: disabled. To enable yuv2yuv mode trans_mode must be set to 1.*/
uint32_t cam_conv_yuv_mode: 2; /*0: yuv422. 1: yuv420. 2: yuv411. When in yuv2yuv mode yuv_mode decides the yuv mode of Data_in*/
uint32_t cam_conv_protocol_mode: 1; /*0:BT601. 1:BT709.*/
uint32_t cam_conv_data_out_mode: 1; /*LIMIT or FULL mode of Data out. 0: limit. 1: full*/
uint32_t cam_conv_data_in_mode: 1; /*LIMIT or FULL mode of Data in. 0: limit. 1: full*/
uint32_t cam_conv_mode_8bits_on: 1; /*0: 16bits mode. 1: 8bits mode.*/
uint32_t cam_conv_trans_mode: 1; /*0: YUV to RGB. 1: RGB to YUV.*/
uint32_t cam_conv_bypass: 1; /*0: Bypass converter. 1: Enable converter.*/
};
uint32_t val;
} cam_rgb_yuv;
union {
struct {
uint32_t reserved0: 20; /*reserved*/
uint32_t lcd_conv_8bits_data_inv: 1; /*1:invert every two 8bits input data. 2. disabled.*/
uint32_t lcd_conv_txtorx: 1; /*0: txtorx mode off. 1: txtorx mode on.*/
uint32_t lcd_conv_yuv2yuv_mode: 2; /*0: to yuv422. 1: to yuv420. 2: to yuv411. 3: disabled. To enable yuv2yuv mode trans_mode must be set to 1.*/
uint32_t lcd_conv_yuv_mode: 2; /*0: yuv422. 1: yuv420. 2: yuv411. When in yuv2yuv mode yuv_mode decides the yuv mode of Data_in*/
uint32_t lcd_conv_protocol_mode: 1; /*0:BT601. 1:BT709.*/
uint32_t lcd_conv_data_out_mode: 1; /*LIMIT or FULL mode of Data out. 0: limit. 1: full*/
uint32_t lcd_conv_data_in_mode: 1; /*LIMIT or FULL mode of Data in. 0: limit. 1: full*/
uint32_t lcd_conv_mode_8bits_on: 1; /*0: 16bits mode. 1: 8bits mode.*/
uint32_t lcd_conv_trans_mode: 1; /*0: YUV to RGB. 1: RGB to YUV.*/
uint32_t lcd_conv_bypass: 1; /*0: Bypass converter. 1: Enable converter.*/
uint32_t reserved0: 20; /*reserved*/
uint32_t lcd_conv_8bits_data_inv: 1; /*1:invert every two 8bits input data. 2. disabled.*/
uint32_t lcd_conv_txtorx: 1; /*0: txtorx mode off. 1: txtorx mode on.*/
uint32_t lcd_conv_yuv2yuv_mode: 2; /*0: to yuv422. 1: to yuv420. 2: to yuv411. 3: disabled. To enable yuv2yuv mode trans_mode must be set to 1.*/
uint32_t lcd_conv_yuv_mode: 2; /*0: yuv422. 1: yuv420. 2: yuv411. When in yuv2yuv mode yuv_mode decides the yuv mode of Data_in*/
uint32_t lcd_conv_protocol_mode: 1; /*0:BT601. 1:BT709.*/
uint32_t lcd_conv_data_out_mode: 1; /*LIMIT or FULL mode of Data out. 0: limit. 1: full*/
uint32_t lcd_conv_data_in_mode: 1; /*LIMIT or FULL mode of Data in. 0: limit. 1: full*/
uint32_t lcd_conv_mode_8bits_on: 1; /*0: 16bits mode. 1: 8bits mode.*/
uint32_t lcd_conv_trans_mode: 1; /*0: YUV to RGB. 1: RGB to YUV.*/
uint32_t lcd_conv_bypass: 1; /*0: Bypass converter. 1: Enable converter.*/
};
uint32_t val;
} lcd_rgb_yuv;
union {
struct {
uint32_t lcd_dout_cyclelen: 13; /*The output data cycles minus 1 of LCD module.*/
uint32_t lcd_always_out_en: 1; /*LCD always output when LCD is in LCD_DOUT state unless reg_lcd_start is cleared or reg_lcd_reset is set.*/
uint32_t reserved14: 5; /*reserved*/
uint32_t lcd_8bits_order: 1; /*1: invert every two data byte valid in 1 byte mode. 0: Not change.*/
uint32_t lcd_update: 1; /*1: Update LCD registers will be cleared by hardware. 0 : Not care.*/
uint32_t lcd_bit_order: 1; /*1: Change data bit order change LCD_DATA_out[7:0] to LCD_DATA_out[0:7] in one byte mode and bits[15:0] to bits[0:15] in two byte mode. 0: Not change.*/
uint32_t lcd_byte_order: 1; /*1: invert data byte order only valid in 2 byte mode. 0: Not change.*/
uint32_t lcd_2byte_en: 1; /*1: The bit number of output LCD data is 9~16. 0: The bit number of output LCD data is 0~8.*/
uint32_t lcd_dout: 1; /*1: Be able to send data out in LCD sequence when LCD starts. 0: Disable.*/
uint32_t lcd_dummy: 1; /*1: Enable DUMMY phase in LCD sequence when LCD starts. 0: Disable.*/
uint32_t lcd_cmd: 1; /*1: Be able to send command in LCD sequence when LCD starts. 0: Disable.*/
uint32_t lcd_start: 1; /*LCD start sending data enable signal valid in high level.*/
uint32_t lcd_reset: 1; /*The value of command.*/
uint32_t lcd_dummy_cyclelen: 2; /*The dummy cycle length minus 1.*/
uint32_t lcd_cmd_2_cycle_en: 1; /*The cycle length of command phase*/
uint32_t lcd_dout_cyclelen: 13; /*The output data cycles minus 1 of LCD module.*/
uint32_t lcd_always_out_en: 1; /*LCD always output when LCD is in LCD_DOUT state unless reg_lcd_start is cleared or reg_lcd_reset is set.*/
uint32_t reserved14: 5; /*reserved*/
uint32_t lcd_8bits_order: 1; /*1: invert every two data byte valid in 1 byte mode. 0: Not change.*/
uint32_t lcd_update: 1; /*1: Update LCD registers will be cleared by hardware. 0 : Not care.*/
uint32_t lcd_bit_order: 1; /*1: Change data bit order change LCD_DATA_out[7:0] to LCD_DATA_out[0:7] in one byte mode and bits[15:0] to bits[0:15] in two byte mode. 0: Not change.*/
uint32_t lcd_byte_order: 1; /*1: invert data byte order only valid in 2 byte mode. 0: Not change.*/
uint32_t lcd_2byte_en: 1; /*1: The bit number of output LCD data is 0~15. 0: The bit number of output LCD data is 0~7.*/
uint32_t lcd_dout: 1; /*1: Be able to send data out in LCD sequence when LCD starts. 0: Disable.*/
uint32_t lcd_dummy: 1; /*1: Enable DUMMY phase in LCD sequence when LCD starts. 0: Disable.*/
uint32_t lcd_cmd: 1; /*1: Be able to send command in LCD sequence when LCD starts. 0: Disable.*/
uint32_t lcd_start: 1; /*LCD start sending data enable signal valid in high level.*/
uint32_t lcd_reset: 1; /*The value of command.*/
uint32_t lcd_dummy_cyclelen: 2; /*The dummy cycle length minus 1.*/
uint32_t lcd_cmd_2_cycle_en: 1; /*The cycle length of command phase*/
};
uint32_t val;
} lcd_user;
union {
struct {
uint32_t reserved0: 1; /*reserved*/
uint32_t lcd_afifo_threshold_num: 5; /*The awfull threshold number of lcd_afifo.*/
uint32_t lcd_vfk_cyclelen: 6; /*The setup cycle length minus 1 in LCD non-RGB mode.*/
uint32_t lcd_vbk_cyclelen: 13; /*The vertical back blank region cycle length minus 1 in LCD RGB mode or the hold time cycle length in LCD non-RGB mode.*/
uint32_t lcd_next_frame_en: 1; /*1: Send the next frame data when the current frame is sent out. 0: LCD stops when the current frame is sent out.*/
uint32_t lcd_bk_en: 1; /*1: Enable blank region when LCD sends data out. 0: No blank region.*/
uint32_t lcd_afifo_reset: 1; /*LCD AFIFO reset signal.*/
uint32_t lcd_cd_data_set: 1; /*1: LCD_CD = !reg_cd_idle_edge when lcd_st[2:0] is in LCD_DOUT state. 0: LCD_CD = reg_cd_idle_edge.*/
uint32_t lcd_cd_dummy_set: 1; /*1: LCD_CD = !reg_cd_idle_edge when lcd_st[2:0] is in LCD_DUMMY state. 0: LCD_CD = reg_cd_idle_edge.*/
uint32_t lcd_cd_cmd_set: 1; /*1: LCD_CD = !reg_cd_idle_edge when lcd_st[2:0] is in LCD_CMD state. 0: LCD_CD = reg_cd_idle_edge.*/
uint32_t lcd_cd_idle_edge: 1; /*The default value of LCD_CD.*/
uint32_t reserved0: 1; /*reserved*/
uint32_t lcd_afifo_threshold_num: 5; /*The awfull threshold number of lcd_afifo.*/
uint32_t lcd_vfk_cyclelen: 6; /*The setup cycle length minus 1 in LCD non-RGB mode.*/
uint32_t lcd_vbk_cyclelen: 13; /*The vertical back blank region cycle length minus 1 in LCD RGB mode or the hold time cycle length in LCD non-RGB mode.*/
uint32_t lcd_next_frame_en: 1; /*1: Send the next frame data when the current frame is sent out. 0: LCD stops when the current frame is sent out.*/
uint32_t lcd_bk_en: 1; /*1: Enable blank region when LCD sends data out. 0: No blank region.*/
uint32_t lcd_afifo_reset: 1; /*LCD AFIFO reset signal.*/
uint32_t lcd_cd_data_set: 1; /*1: LCD_CD = !reg_cd_idle_edge when lcd_st[2:0] is in LCD_DOUT state. 0: LCD_CD = reg_cd_idle_edge.*/
uint32_t lcd_cd_dummy_set: 1; /*1: LCD_CD = !reg_cd_idle_edge when lcd_st[2:0] is in LCD_DUMMY state. 0: LCD_CD = reg_cd_idle_edge.*/
uint32_t lcd_cd_cmd_set: 1; /*1: LCD_CD = !reg_cd_idle_edge when lcd_st[2:0] is in LCD_CMD state. 0: LCD_CD = reg_cd_idle_edge.*/
uint32_t lcd_cd_idle_edge: 1; /*The default value of LCD_CD.*/
};
uint32_t val;
} lcd_misc;
union {
struct {
uint32_t lcd_hb_front: 11; /*It is the horizontal blank front porch of a frame.*/
uint32_t lcd_va_height: 10; /*It is the vertical active height of a frame.*/
uint32_t lcd_vt_height: 10; /*It is the vertical total height of a frame.*/
uint32_t lcd_rgb_mode_en: 1; /*1: Enable reg mode input vsync*/
uint32_t lcd_hb_front: 11; /*It is the horizontal blank front porch of a frame.*/
uint32_t lcd_va_height: 10; /*It is the vertical active height of a frame.*/
uint32_t lcd_vt_height: 10; /*It is the vertical total height of a frame.*/
uint32_t lcd_rgb_mode_en: 1; /*1: Enable reg mode input vsync*/
};
uint32_t val;
} lcd_ctrl;
union {
struct {
uint32_t lcd_vb_front: 8; /*It is the vertical blank front porch of a frame.*/
uint32_t lcd_ha_width: 12; /*It is the horizontal active width of a frame.*/
uint32_t lcd_ht_width: 12; /*It is the horizontal total width of a frame.*/
uint32_t lcd_vb_front: 8; /*It is the vertical blank front porch of a frame.*/
uint32_t lcd_ha_width: 12; /*It is the horizontal active width of a frame.*/
uint32_t lcd_ht_width: 12; /*It is the horizontal total width of a frame.*/
};
uint32_t val;
} lcd_ctrl1;
union {
struct {
uint32_t lcd_vsync_width: 7; /*It is the position of LCD_VSYNC active pulse in a line.*/
uint32_t lcd_vsync_idle_pol: 1; /*It is the idle value of LCD_VSYNC.*/
uint32_t lcd_de_idle_pol: 1; /*It is the idle value of LCD_DE.*/
uint32_t lcd_hs_blank_en: 1; /*1: The pulse of LCD_HSYNC is out in vertical blanking lines RGB mode. 0: LCD_HSYNC pulse is valid only in active region lines in RGB mode.*/
uint32_t reserved10: 6; /*reserved*/
uint32_t lcd_hsync_width: 7; /*It is the position of LCD_HSYNC active pulse in a line.*/
uint32_t lcd_hsync_idle_pol: 1; /*It is the idle value of LCD_HSYNC.*/
uint32_t lcd_hsync_position: 8; /*It is the position of LCD_HSYNC active pulse in a line.*/
uint32_t lcd_vsync_width: 7; /*It is the position of LCD_VSYNC active pulse in a line.*/
uint32_t lcd_vsync_idle_pol: 1; /*It is the idle value of LCD_VSYNC.*/
uint32_t lcd_de_idle_pol: 1; /*It is the idle value of LCD_DE.*/
uint32_t lcd_hs_blank_en: 1; /*1: The pulse of LCD_HSYNC is out in vertical blanking lines RGB mode. 0: LCD_HSYNC pulse is valid only in active region lines in RGB mode.*/
uint32_t reserved10: 6; /*reserved*/
uint32_t lcd_hsync_width: 7; /*It is the position of LCD_HSYNC active pulse in a line.*/
uint32_t lcd_hsync_idle_pol: 1; /*It is the idle value of LCD_HSYNC.*/
uint32_t lcd_hsync_position: 8; /*It is the position of LCD_HSYNC active pulse in a line.*/
};
uint32_t val;
} lcd_ctrl2;
uint32_t lcd_cmd_val; /*The LCD write command value.*/
uint32_t lcd_cmd_val; /*The LCD write command value.*/
uint32_t reserved_2c;
union {
struct {
uint32_t lcd_cd_mode: 2; /*The output LCD_CD is delayed by module clock LCD_CLK*/
uint32_t lcd_de_mode: 2; /*The output LCD_DE is delayed by module clock LCD_CLK*/
uint32_t lcd_hsync_mode: 2; /*The output LCD_HSYNC is delayed by module clock LCD_CLK*/
uint32_t lcd_vsync_mode: 2; /*The output LCD_VSYNC is delayed by module clock LCD_CLK*/
uint32_t reserved8: 24; /*reserved*/
uint32_t lcd_cd_mode: 2; /*The output LCD_CD is delayed by module clock LCD_CLK*/
uint32_t lcd_de_mode: 2; /*The output LCD_DE is delayed by module clock LCD_CLK*/
uint32_t lcd_hsync_mode: 2; /*The output LCD_HSYNC is delayed by module clock LCD_CLK*/
uint32_t lcd_vsync_mode: 2; /*The output LCD_VSYNC is delayed by module clock LCD_CLK*/
uint32_t reserved8: 24; /*reserved*/
};
uint32_t val;
} lcd_dly_mode;
uint32_t reserved_34;
union {
struct {
uint32_t dout0_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout1_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout2_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout3_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout4_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout5_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout6_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout7_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout8_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout9_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout10_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout11_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout12_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout13_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout14_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout15_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout0_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout1_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout2_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout3_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout4_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout5_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout6_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout7_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout8_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout9_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout10_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout11_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout12_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout13_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout14_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
uint32_t dout15_mode: 2; /*The output data bit $n is delayed by module clock LCD_CLK*/
};
uint32_t val;
} lcd_data_dout_mode;
@ -212,41 +212,41 @@ typedef volatile struct {
uint32_t reserved_60;
union {
struct {
uint32_t lcd_vsync: 1; /*The enable bit for LCD frame end interrupt.*/
uint32_t lcd_trans_done: 1; /*The enable bit for lcd transfer end interrupt.*/
uint32_t cam_vsync: 1; /*The enable bit for Camera frame end interrupt.*/
uint32_t cam_hs: 1; /*The enable bit for Camera line interrupt.*/
uint32_t reserved4: 28; /*reserved*/
uint32_t lcd_vsync: 1; /*The enable bit for LCD frame end interrupt.*/
uint32_t lcd_trans_done: 1; /*The enable bit for lcd transfer end interrupt.*/
uint32_t cam_vsync: 1; /*The enable bit for Camera frame end interrupt.*/
uint32_t cam_hs: 1; /*The enable bit for Camera line interrupt.*/
uint32_t reserved4: 28; /*reserved*/
};
uint32_t val;
} lc_dma_int_ena;
union {
struct {
uint32_t lcd_vsync: 1; /*The raw bit for LCD frame end interrupt.*/
uint32_t lcd_trans_done: 1; /*The raw bit for lcd transfer end interrupt.*/
uint32_t cam_vsync: 1; /*The raw bit for Camera frame end interrupt.*/
uint32_t cam_hs: 1; /*The raw bit for Camera line interrupt.*/
uint32_t reserved4: 28; /*reserved*/
uint32_t lcd_vsync: 1; /*The raw bit for LCD frame end interrupt.*/
uint32_t lcd_trans_done: 1; /*The raw bit for lcd transfer end interrupt.*/
uint32_t cam_vsync: 1; /*The raw bit for Camera frame end interrupt.*/
uint32_t cam_hs: 1; /*The raw bit for Camera line interrupt.*/
uint32_t reserved4: 28; /*reserved*/
};
uint32_t val;
} lc_dma_int_raw;
union {
struct {
uint32_t lcd_vsync: 1; /*The status bit for LCD frame end interrupt.*/
uint32_t lcd_trans_done: 1; /*The status bit for lcd transfer end interrupt.*/
uint32_t cam_vsync: 1; /*The status bit for Camera frame end interrupt.*/
uint32_t cam_hs: 1; /*The status bit for Camera transfer end interrupt.*/
uint32_t reserved4: 28; /*reserved*/
uint32_t lcd_vsync: 1; /*The status bit for LCD frame end interrupt.*/
uint32_t lcd_trans_done: 1; /*The status bit for lcd transfer end interrupt.*/
uint32_t cam_vsync: 1; /*The status bit for Camera frame end interrupt.*/
uint32_t cam_hs: 1; /*The status bit for Camera transfer end interrupt.*/
uint32_t reserved4: 28; /*reserved*/
};
uint32_t val;
} lc_dma_int_st;
union {
struct {
uint32_t lcd_vsync: 1; /*The clear bit for LCD frame end interrupt.*/
uint32_t lcd_trans_done: 1; /*The clear bit for lcd transfer end interrupt.*/
uint32_t cam_vsync: 1; /*The clear bit for Camera frame end interrupt.*/
uint32_t cam_hs: 1; /*The clear bit for Camera line interrupt.*/
uint32_t reserved4: 28; /*reserved*/
uint32_t lcd_vsync: 1; /*The clear bit for LCD frame end interrupt.*/
uint32_t lcd_trans_done: 1; /*The clear bit for lcd transfer end interrupt.*/
uint32_t cam_vsync: 1; /*The clear bit for Camera frame end interrupt.*/
uint32_t cam_hs: 1; /*The clear bit for Camera line interrupt.*/
uint32_t reserved4: 28; /*reserved*/
};
uint32_t val;
} lc_dma_int_clr;
@ -286,8 +286,8 @@ typedef volatile struct {
uint32_t reserved_f8;
union {
struct {
uint32_t lc_date: 28; /*LCD_CAM version control register*/
uint32_t reserved28: 4; /*reserved*/
uint32_t lc_date: 28; /*LCD_CAM version control register*/
uint32_t reserved28: 4; /*reserved*/
};
uint32_t val;
} lc_date;

Wyświetl plik

@ -28,6 +28,7 @@ typedef enum {
PERIPH_I2C1_MODULE,
PERIPH_I2S0_MODULE,
PERIPH_I2S1_MODULE,
PERIPH_LCD_CAM_MODULE,
PERIPH_TIMG0_MODULE,
PERIPH_TIMG1_MODULE,
PERIPH_PWM0_MODULE,
@ -149,7 +150,6 @@ typedef enum {
ETS_CACHE_CORE0_ACS_INTR_SOURCE,
ETS_CACHE_CORE1_ACS_INTR_SOURCE,
ETS_MAX_INTR_SOURCE, /**< number of interrupt sources */
} periph_interrput_t;
#ifdef __cplusplus

Wyświetl plik

@ -9,6 +9,7 @@
#define SOC_PCNT_SUPPORTED 1
#define SOC_TWAI_SUPPORTED 1
#define SOC_GDMA_SUPPORTED 1
#define SOC_I80_LCD_SUPPORTED 1
#define SOC_DEDICATED_GPIO_SUPPORTED 1
#define SOC_CPU_CORES_NUM 2
#define SOC_CACHE_SUPPORT_WRAP 1
@ -71,6 +72,12 @@
#define SOC_RMT_SUPPORT_TX_SYNCHRO (1) /*!< Support coordinate a group of TX channels to start simultaneously */
#define SOC_RMT_SUPPORT_XTAL (1) /*!< Support set XTAL clock as the RMT clock source */
/*-------------------------- LCD CAPS ----------------------------------------*/
#define SOC_LCD_I80_BUSES (1) /*!< Has one LCD Intel 8080 bus */
#define SOC_LCD_RGB_PANELS (1) /*!< Support one RGB LCD panel */
#define SOC_LCD_MAX_DATA_WIDTH (16) /*!< Maximum number of LCD data lines */
/*-------------------------- RTCIO CAPS --------------------------------------*/
#include "rtc_io_caps.h"

Wyświetl plik

@ -0,0 +1,74 @@
// Copyright 2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "soc/lcd_periph.h"
#include "soc/gpio_sig_map.h"
const lcd_signal_conn_t lcd_periph_signals = {
.buses = {
[0] = {
.module = PERIPH_LCD_CAM_MODULE,
.irq_id = ETS_LCD_CAM_INTR_SOURCE,
.data_sigs = {
LCD_DATA_OUT0_IDX,
LCD_DATA_OUT1_IDX,
LCD_DATA_OUT2_IDX,
LCD_DATA_OUT3_IDX,
LCD_DATA_OUT4_IDX,
LCD_DATA_OUT5_IDX,
LCD_DATA_OUT6_IDX,
LCD_DATA_OUT7_IDX,
LCD_DATA_OUT8_IDX,
LCD_DATA_OUT9_IDX,
LCD_DATA_OUT10_IDX,
LCD_DATA_OUT11_IDX,
LCD_DATA_OUT12_IDX,
LCD_DATA_OUT13_IDX,
LCD_DATA_OUT14_IDX,
LCD_DATA_OUT15_IDX,
},
.cs_sig = LCD_CS_IDX,
.dc_sig = LCD_DC_IDX,
.wr_sig = LCD_PCLK_IDX
}
},
.panels = {
[0] = {
.module = PERIPH_LCD_CAM_MODULE,
.irq_id = ETS_LCD_CAM_INTR_SOURCE,
.data_sigs = {
LCD_DATA_OUT0_IDX,
LCD_DATA_OUT1_IDX,
LCD_DATA_OUT2_IDX,
LCD_DATA_OUT3_IDX,
LCD_DATA_OUT4_IDX,
LCD_DATA_OUT5_IDX,
LCD_DATA_OUT6_IDX,
LCD_DATA_OUT7_IDX,
LCD_DATA_OUT8_IDX,
LCD_DATA_OUT9_IDX,
LCD_DATA_OUT10_IDX,
LCD_DATA_OUT11_IDX,
LCD_DATA_OUT12_IDX,
LCD_DATA_OUT13_IDX,
LCD_DATA_OUT14_IDX,
LCD_DATA_OUT15_IDX,
},
.hsync_sig = LCD_H_SYNC_IDX,
.vsync_sig = LCD_V_SYNC_IDX,
.pclk_sig = LCD_PCLK_IDX,
.de_sig = LCD_H_ENABLE_IDX,
}
}
};

Wyświetl plik

@ -0,0 +1,48 @@
// Copyright 2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "soc/soc_caps.h"
#include "soc/periph_defs.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef struct {
struct {
const periph_module_t module;
const int irq_id;
const int data_sigs[SOC_LCD_MAX_DATA_WIDTH];
const int cs_sig;
const int dc_sig;
const int wr_sig;
} buses[SOC_LCD_I80_BUSES];
struct {
const periph_module_t module;
const int irq_id;
const int data_sigs[SOC_LCD_MAX_DATA_WIDTH];
const int hsync_sig;
const int vsync_sig;
const int pclk_sig;
const int de_sig;
} panels[SOC_LCD_RGB_PANELS];
} lcd_signal_conn_t;
extern const lcd_signal_conn_t lcd_periph_signals;
#ifdef __cplusplus
}
#endif