fix(rmt): fix the counting clock used by rx filter on esp32/s2

is always APB, independent to the channel clock selection

Closes https://github.com/espressif/esp-idf/issues/13510
pull/13651/head
morris 2024-04-02 18:21:45 +08:00
rodzic d908150adc
commit 9ada0b029a
4 zmienionych plików z 142 dodań i 11 usunięć

Wyświetl plik

@ -19,7 +19,6 @@
#include "soc/rmt_periph.h"
#include "hal/rmt_ll.h"
#include "driver/gpio.h"
#include "esp_clk_tree.h"
#include "esp_private/periph_ctrl.h"
static const char *TAG = "rmt";

Wyświetl plik

@ -21,6 +21,7 @@
#include "hal/cache_ll.h"
#include "esp_intr_alloc.h"
#include "esp_heap_caps.h"
#include "esp_clk_tree.h"
#include "esp_pm.h"
#include "esp_attr.h"
#include "esp_private/gdma.h"
@ -190,6 +191,7 @@ typedef struct {
struct rmt_rx_channel_t {
rmt_channel_t base; // channel base class
uint32_t filter_clock_resolution_hz; // filter clock resolution, in Hz
size_t mem_off; // starting offset to fetch the symbols in RMT-MEM
size_t ping_pong_symbols; // ping-pong size (half of the RMT channel memory)
rmt_rx_done_callback_t on_recv_done; // callback, invoked on receive done

Wyświetl plik

@ -265,6 +265,13 @@ esp_err_t rmt_new_rx_channel(const rmt_rx_channel_config_t *config, rmt_channel_
ESP_LOGW(TAG, "channel resolution loss, real=%"PRIu32, rx_channel->base.resolution_hz);
}
rx_channel->filter_clock_resolution_hz = group->resolution_hz;
// On esp32 and esp32s2, the counting clock used by the RX filter always comes from APB clock
// no matter what the clock source is used by the RMT channel as the "core" clock
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2
esp_clk_tree_src_get_freq_hz(SOC_MOD_CLK_APB, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &rx_channel->filter_clock_resolution_hz);
#endif
rmt_ll_rx_set_mem_blocks(hal->regs, channel_id, rx_channel->base.mem_block_num);
rmt_ll_rx_set_mem_owner(hal->regs, channel_id, RMT_LL_MEM_OWNER_HW);
#if SOC_RMT_SUPPORT_RX_PINGPONG
@ -383,7 +390,7 @@ esp_err_t rmt_receive(rmt_channel_handle_t channel, void *buffer, size_t buffer_
rmt_hal_context_t *hal = &group->hal;
int channel_id = channel->channel_id;
uint32_t filter_reg_value = ((uint64_t)group->resolution_hz * config->signal_range_min_ns) / 1000000000UL;
uint32_t filter_reg_value = ((uint64_t)rx_chan->filter_clock_resolution_hz * config->signal_range_min_ns) / 1000000000UL;
uint32_t idle_reg_value = ((uint64_t)channel->resolution_hz * config->signal_range_max_ns) / 1000000000UL;
ESP_RETURN_ON_FALSE_ISR(filter_reg_value <= RMT_LL_MAX_FILTER_VALUE, ESP_ERR_INVALID_ARG, TAG, "signal_range_min_ns too big");
ESP_RETURN_ON_FALSE_ISR(idle_reg_value <= RMT_LL_MAX_IDLE_VALUE, ESP_ERR_INVALID_ARG, TAG, "signal_range_max_ns too big");

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -25,13 +25,13 @@
typedef struct {
TaskHandle_t task_to_notify;
size_t received_symbol_num;
} test_nec_rx_user_data_t;
} test_rx_user_data_t;
TEST_RMT_CALLBACK_ATTR
static bool test_rmt_rx_done_callback(rmt_channel_handle_t channel, const rmt_rx_done_event_data_t *edata, void *user_data)
{
BaseType_t high_task_wakeup = pdFALSE;
test_nec_rx_user_data_t *test_user_data = (test_nec_rx_user_data_t *)user_data;
test_rx_user_data_t *test_user_data = (test_rx_user_data_t *)user_data;
rmt_symbol_word_t *remote_codes = edata->received_symbols;
esp_rom_printf("%u symbols decoded:\r\n", edata->num_symbols);
for (size_t i = 0; i < edata->num_symbols; i++) {
@ -64,7 +64,7 @@ static void test_rmt_rx_nec_carrier(size_t mem_block_symbols, bool with_dma, rmt
rmt_rx_event_callbacks_t cbs = {
.on_recv_done = test_rmt_rx_done_callback,
};
test_nec_rx_user_data_t test_user_data = {
test_rx_user_data_t test_user_data = {
.task_to_notify = xTaskGetCurrentTaskHandle(),
};
TEST_ESP_OK(rmt_rx_register_event_callbacks(rx_channel, &cbs, &test_user_data));
@ -216,11 +216,6 @@ static void pwm_bit_bang(int gpio_num)
}
}
typedef struct {
TaskHandle_t task_to_notify;
size_t received_symbol_num;
} test_rx_user_data_t;
TEST_RMT_CALLBACK_ATTR
static bool test_rmt_partial_receive_done(rmt_channel_handle_t channel, const rmt_rx_done_event_data_t *edata, void *user_data)
{
@ -307,3 +302,131 @@ TEST_CASE("rmt rx long frame partially", "[rmt]")
#endif
}
#endif // SOC_RMT_SUPPORT_RX_PINGPONG
TEST_RMT_CALLBACK_ATTR
static bool test_rmt_received_done(rmt_channel_handle_t channel, const rmt_rx_done_event_data_t *edata, void *user_data)
{
BaseType_t high_task_wakeup = pdFALSE;
test_rx_user_data_t *test_user_data = (test_rx_user_data_t *)user_data;
test_user_data->received_symbol_num += edata->num_symbols;
// when receive done, notify the task to check the received data
if (edata->flags.is_last) {
vTaskNotifyGiveFromISR(test_user_data->task_to_notify, &high_task_wakeup);
}
return high_task_wakeup == pdTRUE;
}
static void test_rmt_receive_filter(rmt_clock_source_t clk_src)
{
uint32_t const test_rx_buffer_symbols = 32;
rmt_symbol_word_t *receive_user_buf = heap_caps_aligned_calloc(64, test_rx_buffer_symbols, sizeof(rmt_symbol_word_t),
MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
TEST_ASSERT_NOT_NULL(receive_user_buf);
rmt_rx_channel_config_t rx_channel_cfg = {
.clk_src = clk_src,
.resolution_hz = 1000000, // 1MHz, 1 tick = 1us
.mem_block_symbols = SOC_RMT_MEM_WORDS_PER_CHANNEL,
.gpio_num = TEST_RMT_GPIO_NUM_A,
.flags.io_loop_back = true, // the GPIO will act like a loopback
};
printf("install rx channel\r\n");
rmt_channel_handle_t rx_channel = NULL;
TEST_ESP_OK(rmt_new_rx_channel(&rx_channel_cfg, &rx_channel));
// initialize the GPIO level to low
TEST_ESP_OK(gpio_set_level(TEST_RMT_GPIO_NUM_A, 0));
printf("register rx event callbacks\r\n");
rmt_rx_event_callbacks_t cbs = {
.on_recv_done = test_rmt_received_done,
};
test_rx_user_data_t test_user_data = {
.task_to_notify = xTaskGetCurrentTaskHandle(),
.received_symbol_num = 0,
};
TEST_ESP_OK(rmt_rx_register_event_callbacks(rx_channel, &cbs, &test_user_data));
// use TX channel to simulate the input signal
rmt_tx_channel_config_t tx_channel_cfg = {
.clk_src = clk_src,
.resolution_hz = 1000000, // 1MHz, 1 tick = 1us
.mem_block_symbols = SOC_RMT_MEM_WORDS_PER_CHANNEL,
.trans_queue_depth = 4,
.gpio_num = TEST_RMT_GPIO_NUM_A,
.flags.io_loop_back = true, // TX channel and RX channel will bounded to the same GPIO
};
printf("install tx channel\r\n");
rmt_channel_handle_t tx_channel = NULL;
TEST_ESP_OK(rmt_new_tx_channel(&tx_channel_cfg, &tx_channel));
printf("install a simple copy encoder\r\n");
rmt_encoder_handle_t copy_encoder = NULL;
rmt_copy_encoder_config_t encoder_cfg = {};
TEST_ESP_OK(rmt_new_copy_encoder(&encoder_cfg, &copy_encoder));
rmt_transmit_config_t transmit_config = {
.loop_count = 0, // no loop
};
printf("enable tx channel\r\n");
TEST_ESP_OK(rmt_enable(tx_channel));
printf("enable rx channel\r\n");
TEST_ESP_OK(rmt_enable(rx_channel));
rmt_receive_config_t rx_config = {
.signal_range_min_ns = 3000, // filter out the pulses shorter than 3us
.signal_range_max_ns = 12000000,
};
// ready to receive
TEST_ESP_OK(rmt_receive(rx_channel, receive_user_buf, test_rx_buffer_symbols * sizeof(rmt_symbol_word_t), &rx_config));
// generate short pulse of width 2us, should be filtered out
printf("send a short pulse\r\n");
rmt_symbol_word_t short_pulse = {
.level0 = 1,
.duration0 = 2, // pulse width 2us
.level1 = 0,
.duration1 = 1,
};
TEST_ESP_OK(rmt_transmit(tx_channel, copy_encoder, &short_pulse, sizeof(short_pulse), &transmit_config));
TEST_ASSERT_EQUAL(0, ulTaskNotifyTake(pdFALSE, pdMS_TO_TICKS(1000)));
printf("received %zu symbols\r\n", test_user_data.received_symbol_num);
TEST_ASSERT_EQUAL(0, test_user_data.received_symbol_num);
printf("send a long pulse\r\n");
// generate long pulse of width 10us, should be received
rmt_symbol_word_t long_pulse = {
.level0 = 1,
.duration0 = 10, // pulse width 10us
.level1 = 0,
.duration1 = 1,
};
TEST_ESP_OK(rmt_transmit(tx_channel, copy_encoder, &long_pulse, sizeof(long_pulse), &transmit_config));
TEST_ASSERT_NOT_EQUAL(0, ulTaskNotifyTake(pdFALSE, pdMS_TO_TICKS(1000)));
printf("received %zu symbols\r\n", test_user_data.received_symbol_num);
TEST_ASSERT_EQUAL(1, test_user_data.received_symbol_num);
// verify the received data
printf("{%d:%d},{%d:%d}\r\n", receive_user_buf[0].level0, receive_user_buf[0].duration0, receive_user_buf[0].level1, receive_user_buf[0].duration1);
TEST_ASSERT_EQUAL(1, receive_user_buf[0].level0);
TEST_ASSERT_INT_WITHIN(2, 10, receive_user_buf[0].duration0);
TEST_ASSERT_EQUAL(0, receive_user_buf[0].level1);
printf("disable tx and rx channels\r\n");
TEST_ESP_OK(rmt_disable(tx_channel));
TEST_ESP_OK(rmt_disable(rx_channel));
printf("delete channels and encoder\r\n");
TEST_ESP_OK(rmt_del_channel(rx_channel));
TEST_ESP_OK(rmt_del_channel(tx_channel));
TEST_ESP_OK(rmt_del_encoder(copy_encoder));
free(receive_user_buf);
}
TEST_CASE("rmt rx filter functionality", "[rmt]")
{
// test width different clock sources
rmt_clock_source_t clk_srcs[] = SOC_RMT_CLKS;
for (size_t i = 0; i < sizeof(clk_srcs) / sizeof(clk_srcs[0]); i++) {
test_rmt_receive_filter(clk_srcs[i]);
}
}