Merge branch 'feat/rmt_support_esp32c5' into 'master'

Basic RMT driver support on esp32c5

See merge request espressif/esp-idf!29215
pull/13306/head
morris 2024-03-14 11:52:01 +08:00
commit 79d8057a8c
19 zmienionych plików z 1164 dodań i 61 usunięć

Wyświetl plik

@ -86,4 +86,15 @@ menu "Driver Configurations"
endmenu # Legacy Timer Group Driver Configurations
menu "Legacy RMT Driver Configurations"
depends on SOC_RMT_SUPPORTED
config RMT_SUPPRESS_DEPRECATE_WARN
bool "Suppress legacy driver deprecated warning"
default n
help
Wether to suppress the deprecation warnings when using legacy rmt driver (driver/rmt.h).
If you want to continue using the legacy driver, and don't want to see related deprecation warnings,
you can enable this option.
endmenu # Legacy RMT Driver Configurations
endmenu # Driver configurations

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -13,6 +13,7 @@
#include "esp_check.h"
#include "driver/gpio.h"
#include "esp_private/periph_ctrl.h"
#include "esp_private/gpio.h"
#include "driver/rmt_types_legacy.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
@ -537,7 +538,7 @@ esp_err_t rmt_set_gpio(rmt_channel_t channel, rmt_mode_t mode, gpio_num_t gpio_n
ESP_RETURN_ON_FALSE(((GPIO_IS_VALID_GPIO(gpio_num) && (mode == RMT_MODE_RX)) ||
(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num) && (mode == RMT_MODE_TX))), ESP_ERR_INVALID_ARG, TAG, RMT_GPIO_ERROR_STR);
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
gpio_func_sel(gpio_num, PIN_FUNC_GPIO);
if (mode == RMT_MODE_TX) {
ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2021-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2021-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -18,6 +18,7 @@
#include "ir_tools.h"
#include "driver/rmt.h"
#include "soc/rmt_periph.h"
#include "esp_private/gpio.h"
#define RMT_RX_CHANNEL_ENCODING_START (SOC_RMT_CHANNELS_PER_GROUP-SOC_RMT_TX_CANDIDATES_PER_GROUP)
#define RMT_TX_CHANNEL_ENCODING_END (SOC_RMT_TX_CANDIDATES_PER_GROUP-1)
@ -71,7 +72,7 @@ static void rmt_setup_testbench(int tx_channel, int rx_channel, uint32_t flags)
}
// Routing internal signals by IO Matrix (bind rmt tx and rx signal on the same GPIO)
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[RMT_DATA_IO], PIN_FUNC_GPIO);
gpio_func_sel(RMT_DATA_IO, PIN_FUNC_GPIO);
TEST_ESP_OK(gpio_set_direction(RMT_DATA_IO, GPIO_MODE_INPUT_OUTPUT));
if (tx_channel >= 0) {
esp_rom_gpio_connect_out_signal(RMT_DATA_IO, rmt_periph_signals.groups[0].channels[tx_channel].tx_sig, 0, 0);

Wyświetl plik

@ -18,14 +18,6 @@ menu "ESP-Driver:RMT Configurations"
so that the receive function can be IRAM-safe and able to be called when the flash cache is disabled.
Enabling this option can improve driver performance as well.
config RMT_SUPPRESS_DEPRECATE_WARN
bool "Suppress legacy driver deprecated warning"
default n
help
Wether to suppress the deprecation warnings when using legacy rmt driver (driver/rmt.h).
If you want to continue using the legacy driver, and don't want to see related deprecation warnings,
you can enable this option.
config RMT_ENABLE_DEBUG_LOG
bool "Enable debug log"
default n

Wyświetl plik

@ -25,6 +25,7 @@
#include "esp_attr.h"
#include "esp_private/gdma.h"
#include "esp_private/esp_gpio_reserve.h"
#include "esp_private/gpio.h"
#include "driver/rmt_common.h"
#ifdef __cplusplus
@ -67,6 +68,9 @@ typedef dma_descriptor_align4_t rmt_dma_descriptor_t;
#define RMT_GET_NON_CACHE_ADDR(addr) (addr)
#endif
#define ALIGN_UP(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
#define ALIGN_DOWN(num, align) ((num) & ~((align) - 1))
typedef struct {
struct {
rmt_symbol_word_t symbols[SOC_RMT_MEM_WORDS_PER_CHANNEL];

Wyświetl plik

@ -28,9 +28,6 @@
#include "driver/rmt_rx.h"
#include "rmt_private.h"
#define ALIGN_UP(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
#define ALIGN_DOWN(num, align) ((num) & ~((align) - 1))
static const char *TAG = "rmt";
static esp_err_t rmt_del_rx_channel(rmt_channel_handle_t channel);
@ -207,10 +204,20 @@ esp_err_t rmt_new_rx_channel(const rmt_rx_channel_config_t *config, rmt_channel_
uint32_t data_cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_INT_MEM, CACHE_TYPE_DATA);
// the alignment should meet both the DMA and cache requirement
size_t alignment = MAX(data_cache_line_size, RMT_DMA_DESC_ALIGN);
rx_channel->dma_nodes = heap_caps_aligned_calloc(alignment, num_dma_nodes, sizeof(rmt_dma_descriptor_t), mem_caps);
ESP_GOTO_ON_FALSE(rx_channel->dma_nodes, ESP_ERR_NO_MEM, err, TAG, "no mem for rx channel DMA nodes");
size_t dma_nodes_size = ALIGN_UP(num_dma_nodes * sizeof(rmt_dma_descriptor_t), alignment);
rmt_dma_descriptor_t *dma_nodes = heap_caps_aligned_calloc(alignment, 1, dma_nodes_size, mem_caps);
ESP_GOTO_ON_FALSE(dma_nodes, ESP_ERR_NO_MEM, err, TAG, "no mem for rx channel DMA nodes");
rx_channel->dma_nodes = dma_nodes;
// do memory sync only when the data cache exists
if (data_cache_line_size) {
// write back and then invalidate the cached dma_nodes, we will skip the cache (by non-cacheable address) when access the dma_nodes
// even the cache auto-write back happens, there's no risk the dma_nodes will be overwritten
ESP_GOTO_ON_ERROR(esp_cache_msync(dma_nodes, dma_nodes_size,
ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_INVALIDATE),
err, TAG, "cache sync failed");
}
// we will use the non-cached address to manipulate the DMA descriptor, for simplicity
rx_channel->dma_nodes_nc = (rmt_dma_descriptor_t *)RMT_GET_NON_CACHE_ADDR(rx_channel->dma_nodes);
rx_channel->dma_nodes_nc = (rmt_dma_descriptor_t *)RMT_GET_NON_CACHE_ADDR(dma_nodes);
}
rx_channel->num_dma_nodes = num_dma_nodes;
// register the channel to group
@ -284,7 +291,7 @@ esp_err_t rmt_new_rx_channel(const rmt_rx_channel_config_t *config, rmt_channel_
esp_rom_gpio_connect_in_signal(config->gpio_num,
rmt_periph_signals.groups[group_id].channels[channel_id + RMT_RX_CHANNEL_OFFSET_IN_GROUP].rx_sig,
config->flags.invert_in);
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[config->gpio_num], PIN_FUNC_GPIO);
gpio_func_sel(config->gpio_num, PIN_FUNC_GPIO);
// initialize other members of rx channel
portMUX_INITIALIZE(&rx_channel->base.spinlock);
@ -351,11 +358,11 @@ esp_err_t rmt_receive(rmt_channel_handle_t channel, void *buffer, size_t buffer_
rmt_rx_channel_t *rx_chan = __containerof(channel, rmt_rx_channel_t, base);
size_t per_dma_block_size = 0;
size_t last_dma_block_size = 0;
uint32_t data_cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_INT_MEM, CACHE_TYPE_DATA);
if (channel->dma_chan) {
// Currently we assume the user buffer is allocated from internal RAM, PSRAM is not supported yet.
ESP_RETURN_ON_FALSE_ISR(esp_ptr_internal(buffer), ESP_ERR_INVALID_ARG, TAG, "user buffer not allocated from internal RAM");
uint32_t data_cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_INT_MEM, CACHE_TYPE_DATA);
// DMA doesn't have alignment requirement for SRAM buffer if the burst mode is not enabled,
// but we need to make sure the buffer is aligned to cache line size
uint32_t align_mask = data_cache_line_size ? (data_cache_line_size - 1) : 0;
@ -395,6 +402,10 @@ esp_err_t rmt_receive(rmt_channel_handle_t channel, void *buffer, size_t buffer_
if (channel->dma_chan) {
#if SOC_RMT_SUPPORT_DMA
// invalidate the user buffer, in case cache auto-write back happens and breaks the data just written by the DMA
if (data_cache_line_size) {
ESP_RETURN_ON_ERROR_ISR(esp_cache_msync(buffer, buffer_size, ESP_CACHE_MSYNC_FLAG_DIR_M2C), TAG, "cache sync failed");
}
rmt_rx_mount_dma_buffer(rx_chan, buffer, buffer_size, per_dma_block_size, last_dma_block_size);
gdma_reset(channel->dma_chan);
gdma_start(channel->dma_chan, (intptr_t)rx_chan->dma_nodes); // note, we must use the cached descriptor address to start the DMA

Wyświetl plik

@ -23,6 +23,7 @@
#include "hal/gpio_hal.h"
#include "hal/cache_hal.h"
#include "hal/cache_ll.h"
#include "esp_cache.h"
#include "driver/gpio.h"
#include "driver/rmt_tx.h"
#include "rmt_private.h"
@ -54,10 +55,20 @@ static esp_err_t rmt_tx_init_dma_link(rmt_tx_channel_t *tx_channel, const rmt_tx
uint32_t data_cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_INT_MEM, CACHE_TYPE_DATA);
// the alignment should meet both the DMA and cache requirement
size_t alignment = MAX(data_cache_line_size, sizeof(rmt_symbol_word_t));
rmt_symbol_word_t *dma_mem_base = heap_caps_aligned_calloc(alignment, config->mem_block_symbols, sizeof(rmt_symbol_word_t),
size_t dma_mem_base_size = ALIGN_UP(config->mem_block_symbols * sizeof(rmt_symbol_word_t), alignment);
rmt_symbol_word_t *dma_mem_base = heap_caps_aligned_calloc(alignment, 1, dma_mem_base_size,
RMT_MEM_ALLOC_CAPS | MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
ESP_RETURN_ON_FALSE(dma_mem_base, ESP_ERR_NO_MEM, TAG, "no mem for tx DMA buffer");
tx_channel->dma_mem_base = dma_mem_base;
// do memory sync only when the data cache exists
if (data_cache_line_size) {
// write back and then invalidate the cache, we will skip the cache (by non-cacheable address) when access the dma_mem_base
// even the cache auto-write back happens, there's no risk the dma_mem_base will be overwritten
ESP_RETURN_ON_ERROR(esp_cache_msync(dma_mem_base, dma_mem_base_size,
ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_INVALIDATE),
TAG, "cache sync failed");
}
// we use the non-cached address to manipulate this DMA buffer
tx_channel->dma_mem_base_nc = (rmt_symbol_word_t *)RMT_GET_NON_CACHE_ADDR(dma_mem_base);
for (int i = 0; i < RMT_DMA_NODES_PING_PONG; i++) {
// each descriptor shares half of the DMA buffer
@ -258,10 +269,18 @@ esp_err_t rmt_new_tx_channel(const rmt_tx_channel_config_t *config, rmt_channel_
uint32_t data_cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_INT_MEM, CACHE_TYPE_DATA);
// the alignment should meet both the DMA and cache requirement
size_t alignment = MAX(data_cache_line_size, RMT_DMA_DESC_ALIGN);
tx_channel->dma_nodes = heap_caps_aligned_calloc(alignment, RMT_DMA_NODES_PING_PONG, sizeof(rmt_dma_descriptor_t), mem_caps);
ESP_GOTO_ON_FALSE(tx_channel->dma_nodes, ESP_ERR_NO_MEM, err, TAG, "no mem for tx DMA nodes");
size_t dma_nodes_mem_size = ALIGN_UP(RMT_DMA_NODES_PING_PONG * sizeof(rmt_dma_descriptor_t), alignment);
rmt_dma_descriptor_t *dma_nodes = heap_caps_aligned_calloc(alignment, 1, dma_nodes_mem_size, mem_caps);
ESP_GOTO_ON_FALSE(dma_nodes, ESP_ERR_NO_MEM, err, TAG, "no mem for tx DMA nodes");
tx_channel->dma_nodes = dma_nodes;
// write back and then invalidate the cached dma_nodes, we will skip the cache (by non-cacheable address) when access the dma_nodes
if (data_cache_line_size) {
ESP_GOTO_ON_ERROR(esp_cache_msync(dma_nodes, dma_nodes_mem_size,
ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_INVALIDATE),
err, TAG, "cache sync failed");
}
// we will use the non-cached address to manipulate the DMA descriptor, for simplicity
tx_channel->dma_nodes_nc = (rmt_dma_descriptor_t *)RMT_GET_NON_CACHE_ADDR(tx_channel->dma_nodes);
tx_channel->dma_nodes_nc = (rmt_dma_descriptor_t *)RMT_GET_NON_CACHE_ADDR(dma_nodes);
}
// create transaction queues
ESP_GOTO_ON_ERROR(rmt_tx_create_trans_queue(tx_channel, config), err, TAG, "install trans queues failed");
@ -336,7 +355,7 @@ esp_err_t rmt_new_tx_channel(const rmt_tx_channel_config_t *config, rmt_channel_
esp_rom_gpio_connect_out_signal(config->gpio_num,
rmt_periph_signals.groups[group_id].channels[channel_id + RMT_TX_CHANNEL_OFFSET_IN_GROUP].tx_sig,
config->flags.invert_out, false);
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[config->gpio_num], PIN_FUNC_GPIO);
gpio_func_sel(config->gpio_num, PIN_FUNC_GPIO);
tx_channel->base.gpio_num = config->gpio_num;
portMUX_INITIALIZE(&tx_channel->base.spinlock);

Wyświetl plik

@ -51,8 +51,8 @@ uint64_t esp_gpio_revoke(uint64_t gpio_mask);
*
* @param gpio_mask Mask of the GPIOs to be checked
* @return
* - true Aay of the given GPIO(s) is reserved
* - false Aay of the given GPIO(s) is not reserved
* - true Any of the given GPIO(s) is reserved
* - false Any of the given GPIO(s) is not reserved
*/
bool esp_gpio_is_reserved(uint64_t gpio_mask);

Wyświetl plik

@ -0,0 +1,885 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @note TX and RX channels are index from 0 in the LL driver, i.e. tx_channel = [0,1], rx_channel = [0,1]
*/
#pragma once
#include <stdint.h>
#include <stdbool.h>
#include <stddef.h>
#include "hal/misc.h"
#include "hal/assert.h"
#include "hal/rmt_types.h"
#include "soc/rmt_struct.h"
#include "soc/pcr_struct.h"
#ifdef __cplusplus
extern "C" {
#endif
#define RMT_LL_EVENT_TX_DONE(channel) (1 << (channel))
#define RMT_LL_EVENT_TX_THRES(channel) (1 << ((channel) + 8))
#define RMT_LL_EVENT_TX_LOOP_END(channel) (1 << ((channel) + 12))
#define RMT_LL_EVENT_TX_ERROR(channel) (1 << ((channel) + 4))
#define RMT_LL_EVENT_RX_DONE(channel) (1 << ((channel) + 2))
#define RMT_LL_EVENT_RX_THRES(channel) (1 << ((channel) + 10))
#define RMT_LL_EVENT_RX_ERROR(channel) (1 << ((channel) + 6))
#define RMT_LL_EVENT_TX_MASK(channel) (RMT_LL_EVENT_TX_DONE(channel) | RMT_LL_EVENT_TX_THRES(channel) | RMT_LL_EVENT_TX_LOOP_END(channel))
#define RMT_LL_EVENT_RX_MASK(channel) (RMT_LL_EVENT_RX_DONE(channel) | RMT_LL_EVENT_RX_THRES(channel))
#define RMT_LL_MAX_LOOP_COUNT_PER_BATCH 1023
#define RMT_LL_MAX_FILTER_VALUE 255
#define RMT_LL_MAX_IDLE_VALUE 32767
typedef enum {
RMT_LL_MEM_OWNER_SW = 0,
RMT_LL_MEM_OWNER_HW = 1,
} rmt_ll_mem_owner_t;
/**
* @brief Enable the bus clock for RMT module
*
* @param group_id Group ID
* @param enable true to enable, false to disable
*/
static inline void rmt_ll_enable_bus_clock(int group_id, bool enable)
{
(void)group_id;
PCR.rmt_conf.rmt_clk_en = enable;
}
/**
* @brief Reset the RMT module
*
* @param group_id Group ID
*/
static inline void rmt_ll_reset_register(int group_id)
{
(void)group_id;
PCR.rmt_conf.rmt_rst_en = 1;
PCR.rmt_conf.rmt_rst_en = 0;
}
/**
* @brief Enable clock gate for register and memory
*
* @param dev Peripheral instance address
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_enable_periph_clock(rmt_dev_t *dev, bool enable)
{
dev->sys_conf.clk_en = enable; // register clock gating
dev->sys_conf.mem_clk_force_on = enable; // memory clock gating
}
/**
* @brief Power down memory
*
* @param dev Peripheral instance address
* @param enable True to power down, False to power up
*/
static inline void rmt_ll_power_down_mem(rmt_dev_t *dev, bool enable)
{
dev->sys_conf.mem_force_pu = !enable;
dev->sys_conf.mem_force_pd = enable;
}
/**
* @brief Enable APB accessing RMT memory in nonfifo mode
*
* @param dev Peripheral instance address
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_enable_mem_access_nonfifo(rmt_dev_t *dev, bool enable)
{
dev->sys_conf.apb_fifo_mask = enable;
}
/**
* @brief Set clock source and divider for RMT channel group
*
* @param dev Peripheral instance address
* @param channel not used as clock source is set for all channels
* @param src Clock source
* @param divider_integral Integral part of the divider
* @param divider_denominator Denominator part of the divider
* @param divider_numerator Numerator part of the divider
*/
static inline void rmt_ll_set_group_clock_src(rmt_dev_t *dev, uint32_t channel, rmt_clock_source_t src,
uint32_t divider_integral, uint32_t divider_denominator, uint32_t divider_numerator)
{
// Formula: rmt_sclk = module_clock_src / (1 + div_num + div_a / div_b)
(void)channel; // the source clock is set for all channels
HAL_ASSERT(divider_integral >= 1);
HAL_FORCE_MODIFY_U32_REG_FIELD(PCR.rmt_sclk_conf, rmt_sclk_div_num, divider_integral - 1);
PCR.rmt_sclk_conf.rmt_sclk_div_a = divider_numerator;
PCR.rmt_sclk_conf.rmt_sclk_div_b = divider_denominator;
switch (src) {
case RMT_CLK_SRC_PLL_F80M:
PCR.rmt_sclk_conf.rmt_sclk_sel = 2;
break;
case RMT_CLK_SRC_RC_FAST:
PCR.rmt_sclk_conf.rmt_sclk_sel = 1;
break;
case RMT_CLK_SRC_XTAL:
PCR.rmt_sclk_conf.rmt_sclk_sel = 0;
break;
default:
HAL_ASSERT(false);
break;
}
}
/**
* @brief Enable RMT peripheral source clock
*
* @param dev Peripheral instance address
* @param en True to enable, False to disable
*/
static inline void rmt_ll_enable_group_clock(rmt_dev_t *dev, bool en)
{
(void)dev;
PCR.rmt_sclk_conf.rmt_sclk_en = en;
}
////////////////////////////////////////TX Channel Specific/////////////////////////////////////////////////////////////
/**
* @brief Reset clock divider for TX channels by mask
*
* @param dev Peripheral instance address
* @param channel_mask Mask of TX channels
*/
static inline void rmt_ll_tx_reset_channels_clock_div(rmt_dev_t *dev, uint32_t channel_mask)
{
// write 1 to reset
dev->ref_cnt_rst.val |= channel_mask & 0x03;
}
/**
* @brief Set TX channel clock divider
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param div Division value
*/
static inline void rmt_ll_tx_set_channel_clock_div(rmt_dev_t *dev, uint32_t channel, uint32_t div)
{
HAL_ASSERT(div >= 1 && div <= 256 && "divider out of range");
// limit the maximum divider to 256
if (div >= 256) {
div = 0; // 0 means 256 division
}
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->chnconf0[channel], div_cnt_chn, div);
}
/**
* @brief Reset RMT reading pointer for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
*/
__attribute__((always_inline))
static inline void rmt_ll_tx_reset_pointer(rmt_dev_t *dev, uint32_t channel)
{
dev->chnconf0[channel].mem_rd_rst_chn = 1;
dev->chnconf0[channel].mem_rd_rst_chn = 0;
dev->chnconf0[channel].apb_mem_rst_chn = 1;
dev->chnconf0[channel].apb_mem_rst_chn = 0;
}
/**
* @brief Start transmitting for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
*/
__attribute__((always_inline))
static inline void rmt_ll_tx_start(rmt_dev_t *dev, uint32_t channel)
{
// update other configuration registers before start transmitting
dev->chnconf0[channel].conf_update_chn = 1;
dev->chnconf0[channel].tx_start_chn = 1;
}
/**
* @brief Stop transmitting for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
*/
__attribute__((always_inline))
static inline void rmt_ll_tx_stop(rmt_dev_t *dev, uint32_t channel)
{
dev->chnconf0[channel].tx_stop_chn = 1;
// stop won't take place until configurations updated
dev->chnconf0[channel].conf_update_chn = 1;
}
/**
* @brief Set memory block number for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param block_num memory block number
*/
static inline void rmt_ll_tx_set_mem_blocks(rmt_dev_t *dev, uint32_t channel, uint8_t block_num)
{
dev->chnconf0[channel].mem_size_chn = block_num;
}
/**
* @brief Enable TX wrap
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_tx_enable_wrap(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->chnconf0[channel].mem_tx_wrap_en_chn = enable;
}
/**
* @brief Enable transmitting in a loop
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param enable True to enable, False to disable
*/
__attribute__((always_inline))
static inline void rmt_ll_tx_enable_loop(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->chnconf0[channel].tx_conti_mode_chn = enable;
}
/**
* @brief Set loop count for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param count TX loop count
*/
__attribute__((always_inline))
static inline void rmt_ll_tx_set_loop_count(rmt_dev_t *dev, uint32_t channel, uint32_t count)
{
HAL_ASSERT(count <= RMT_LL_MAX_LOOP_COUNT_PER_BATCH && "loop count out of range");
dev->chn_tx_lim[channel].tx_loop_num_chn = count;
}
/**
* @brief Reset loop count for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
*/
__attribute__((always_inline))
static inline void rmt_ll_tx_reset_loop_count(rmt_dev_t *dev, uint32_t channel)
{
dev->chn_tx_lim[channel].loop_count_reset_chn = 1;
dev->chn_tx_lim[channel].loop_count_reset_chn = 0;
}
/**
* @brief Enable loop count for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param enable True to enable, False to disable
*/
__attribute__((always_inline))
static inline void rmt_ll_tx_enable_loop_count(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->chn_tx_lim[channel].tx_loop_cnt_en_chn = enable;
}
/**
* @brief Enable loop stop at count value automatically
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param enable True to enable, False to disable
*/
__attribute__((always_inline))
static inline void rmt_ll_tx_enable_loop_autostop(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->chn_tx_lim[channel].loop_stop_en_chn = enable;
}
/**
* @brief Enable transmit multiple channels synchronously
*
* @param dev Peripheral instance address
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_tx_enable_sync(rmt_dev_t *dev, bool enable)
{
dev->tx_sim.tx_sim_en = enable;
}
/**
* @brief Clear the TX channels synchronous group
*
* @param dev Peripheral instance address
*/
static inline void rmt_ll_tx_clear_sync_group(rmt_dev_t *dev)
{
dev->tx_sim.val &= ~(0x03);
}
/**
* @brief Add TX channels to the synchronous group
*
* @param dev Peripheral instance address
* @param channel_mask Mask of TX channels to be added to the synchronous group
*/
static inline void rmt_ll_tx_sync_group_add_channels(rmt_dev_t *dev, uint32_t channel_mask)
{
dev->tx_sim.val |= (channel_mask & 0x03);
}
/**
* @brief Remove TX channels from the synchronous group
*
* @param dev Peripheral instance address
* @param channel_mask Mask of TX channels to be removed from the synchronous group
*/
static inline void rmt_ll_tx_sync_group_remove_channels(rmt_dev_t *dev, uint32_t channel_mask)
{
dev->tx_sim.val &= ~channel_mask;
}
/**
* @brief Fix the output level when TX channel is in IDLE state
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param level IDLE level (1 => high, 0 => low)
* @param enable True to fix the IDLE level, otherwise the IDLE level is determined by EOF encoder
*/
__attribute__((always_inline))
static inline void rmt_ll_tx_fix_idle_level(rmt_dev_t *dev, uint32_t channel, uint8_t level, bool enable)
{
dev->chnconf0[channel].idle_out_en_chn = enable;
dev->chnconf0[channel].idle_out_lv_chn = level;
}
/**
* @brief Set the amount of RMT symbols that can trigger the limitation interrupt
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param limit Specify the number of symbols
*/
static inline void rmt_ll_tx_set_limit(rmt_dev_t *dev, uint32_t channel, uint32_t limit)
{
dev->chn_tx_lim[channel].tx_lim_chn = limit;
}
/**
* @brief Set high and low duration of carrier signal
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param high_ticks Duration of high level
* @param low_ticks Duration of low level
*/
static inline void rmt_ll_tx_set_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t high_ticks, uint32_t low_ticks)
{
HAL_ASSERT(high_ticks >= 1 && high_ticks <= 65536 && low_ticks >= 1 && low_ticks <= 65536 && "out of range high/low ticks");
// ticks=0 means 65536 in hardware
if (high_ticks >= 65536) {
high_ticks = 0;
}
if (low_ticks >= 65536) {
low_ticks = 0;
}
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->chncarrier_duty[channel], carrier_high_chn, high_ticks);
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->chncarrier_duty[channel], carrier_low_chn, low_ticks);
}
/**
* @brief Enable modulating carrier signal to TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_tx_enable_carrier_modulation(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->chnconf0[channel].carrier_en_chn = enable;
}
/**
* @brief Set on high or low to modulate the carrier signal
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param level Which level to modulate on (0=>low level, 1=>high level)
*/
static inline void rmt_ll_tx_set_carrier_level(rmt_dev_t *dev, uint32_t channel, uint8_t level)
{
dev->chnconf0[channel].carrier_out_lv_chn = level;
}
/**
* @brief Enable to always output carrier signal, regardless of a valid data transmission
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param enable True to output carrier signal in all RMT state, False to only ouput carrier signal for effective data
*/
static inline void rmt_ll_tx_enable_carrier_always_on(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->chnconf0[channel].carrier_eff_en_chn = !enable;
}
////////////////////////////////////////RX Channel Specific/////////////////////////////////////////////////////////////
/**
* @brief Reset clock divider for RX channels by mask
*
* @param dev Peripheral instance address
* @param channel_mask Mask of RX channels
*/
static inline void rmt_ll_rx_reset_channels_clock_div(rmt_dev_t *dev, uint32_t channel_mask)
{
// write 1 to reset
dev->ref_cnt_rst.val |= ((channel_mask & 0x03) << 2);
}
/**
* @brief Set RX channel clock divider
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param div Division value
*/
static inline void rmt_ll_rx_set_channel_clock_div(rmt_dev_t *dev, uint32_t channel, uint32_t div)
{
HAL_ASSERT(div >= 1 && div <= 256 && "divider out of range");
// limit the maximum divider to 256
if (div >= 256) {
div = 0; // 0 means 256 division
}
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->chmconf[channel].conf0, div_cnt_chm, div);
}
/**
* @brief Reset RMT writing pointer for RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
*/
__attribute__((always_inline))
static inline void rmt_ll_rx_reset_pointer(rmt_dev_t *dev, uint32_t channel)
{
dev->chmconf[channel].conf1.mem_wr_rst_chm = 1;
dev->chmconf[channel].conf1.mem_wr_rst_chm = 0;
dev->chmconf[channel].conf1.apb_mem_rst_chm = 1;
dev->chmconf[channel].conf1.apb_mem_rst_chm = 0;
}
/**
* @brief Enable receiving for RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param enable True to enable, False to disable
*/
__attribute__((always_inline))
static inline void rmt_ll_rx_enable(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->chmconf[channel].conf1.rx_en_chm = enable;
// rx won't be enabled until configurations updated
dev->chmconf[channel].conf1.conf_update_chm = 1;
}
/**
* @brief Set memory block number for RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param block_num memory block number
*/
static inline void rmt_ll_rx_set_mem_blocks(rmt_dev_t *dev, uint32_t channel, uint8_t block_num)
{
dev->chmconf[channel].conf0.mem_size_chm = block_num;
}
/**
* @brief Set the time length for RX channel before going into IDLE state
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param thres Time length threshold
*/
__attribute__((always_inline))
static inline void rmt_ll_rx_set_idle_thres(rmt_dev_t *dev, uint32_t channel, uint32_t thres)
{
dev->chmconf[channel].conf0.idle_thres_chm = thres;
}
/**
* @brief Set RMT memory owner for RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param owner Memory owner
*/
__attribute__((always_inline))
static inline void rmt_ll_rx_set_mem_owner(rmt_dev_t *dev, uint32_t channel, rmt_ll_mem_owner_t owner)
{
dev->chmconf[channel].conf1.mem_owner_chm = owner;
}
/**
* @brief Enable filter for RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX chanenl number
* @param enable True to enable, False to disable
*/
__attribute__((always_inline))
static inline void rmt_ll_rx_enable_filter(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->chmconf[channel].conf1.rx_filter_en_chm = enable;
}
/**
* @brief Set RX channel filter threshold (i.e. the maximum width of one pulse signal that would be treated as a noise)
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param thres Filter threshold
*/
__attribute__((always_inline))
static inline void rmt_ll_rx_set_filter_thres(rmt_dev_t *dev, uint32_t channel, uint32_t thres)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->chmconf[channel].conf1, rx_filter_thres_chm, thres);
}
/**
* @brief Get RMT memory write cursor offset
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @return writer offset
*/
__attribute__((always_inline))
static inline uint32_t rmt_ll_rx_get_memory_writer_offset(rmt_dev_t *dev, uint32_t channel)
{
return dev->chmstatus[channel].mem_waddr_ex_chm - (channel + 2) * 48;
}
/**
* @brief Set the amount of RMT symbols that can trigger the limitation interrupt
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param limit Specify the number of symbols
*/
static inline void rmt_ll_rx_set_limit(rmt_dev_t *dev, uint32_t channel, uint32_t limit)
{
dev->chm_rx_lim[channel].rx_lim_chm = limit;
}
/**
* @brief Set high and low duration of carrier signal
*
* @param dev dev Peripheral instance address
* @param channel RMT TX channel number
* @param high_ticks Duration of high level
* @param low_ticks Duration of low level
*/
static inline void rmt_ll_rx_set_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t high_ticks, uint32_t low_ticks)
{
HAL_ASSERT(high_ticks >= 1 && high_ticks <= 65536 && low_ticks >= 1 && low_ticks <= 65536 && "out of range high/low ticks");
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->chm_rx_carrier_rm[channel], carrier_high_thres_chm, high_ticks - 1);
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->chm_rx_carrier_rm[channel], carrier_low_thres_chm, low_ticks - 1);
}
/**
* @brief Enable demodulating the carrier on RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_rx_enable_carrier_demodulation(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->chmconf[channel].conf0.carrier_en_chm = enable;
}
/**
* @brief Set on high or low to demodulate the carrier signal
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param level Which level to demodulate (0=>low level, 1=>high level)
*/
static inline void rmt_ll_rx_set_carrier_level(rmt_dev_t *dev, uint32_t channel, uint8_t level)
{
dev->chmconf[channel].conf0.carrier_out_lv_chm = level;
}
/**
* @brief Enable RX wrap
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_rx_enable_wrap(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->chmconf[channel].conf1.mem_rx_wrap_en_chm = enable;
}
//////////////////////////////////////////Interrupt Specific////////////////////////////////////////////////////////////
/**
* @brief Enable RMT interrupt for specific event mask
*
* @param dev Peripheral instance address
* @param mask Event mask
* @param enable True to enable, False to disable
*/
__attribute__((always_inline))
static inline void rmt_ll_enable_interrupt(rmt_dev_t *dev, uint32_t mask, bool enable)
{
if (enable) {
dev->int_ena.val |= mask;
} else {
dev->int_ena.val &= ~mask;
}
}
/**
* @brief Clear RMT interrupt status by mask
*
* @param dev Peripheral instance address
* @param mask Interupt status mask
*/
__attribute__((always_inline))
static inline void rmt_ll_clear_interrupt_status(rmt_dev_t *dev, uint32_t mask)
{
dev->int_clr.val = mask;
}
/**
* @brief Get interrupt status register address
*
* @param dev Peripheral instance address
* @return Register address
*/
static inline volatile void *rmt_ll_get_interrupt_status_reg(rmt_dev_t *dev)
{
return &dev->int_st;
}
/**
* @brief Get interrupt status for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @return Interrupt status
*/
__attribute__((always_inline))
static inline uint32_t rmt_ll_tx_get_interrupt_status(rmt_dev_t *dev, uint32_t channel)
{
return dev->int_st.val & RMT_LL_EVENT_TX_MASK(channel);
}
/**
* @brief Get interrupt raw status for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @return Interrupt raw status
*/
static inline uint32_t rmt_ll_tx_get_interrupt_status_raw(rmt_dev_t *dev, uint32_t channel)
{
return dev->int_raw.val & (RMT_LL_EVENT_TX_MASK(channel) | RMT_LL_EVENT_TX_ERROR(channel));
}
/**
* @brief Get interrupt raw status for RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @return Interrupt raw status
*/
static inline uint32_t rmt_ll_rx_get_interrupt_status_raw(rmt_dev_t *dev, uint32_t channel)
{
return dev->int_raw.val & (RMT_LL_EVENT_RX_MASK(channel) | RMT_LL_EVENT_RX_ERROR(channel));
}
/**
* @brief Get interrupt status for RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @return Interrupt status
*/
__attribute__((always_inline))
static inline uint32_t rmt_ll_rx_get_interrupt_status(rmt_dev_t *dev, uint32_t channel)
{
return dev->int_st.val & RMT_LL_EVENT_RX_MASK(channel);
}
//////////////////////////////////////////Deprecated Functions//////////////////////////////////////////////////////////
/////////////////////////////The following functions are only used by the legacy driver/////////////////////////////////
/////////////////////////////They might be removed in the next major release (ESP-IDF 6.0)//////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
__attribute__((always_inline))
static inline uint32_t rmt_ll_tx_get_status_word(rmt_dev_t *dev, uint32_t channel)
{
return dev->chnstatus[channel].val;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_rx_get_status_word(rmt_dev_t *dev, uint32_t channel)
{
return dev->chmstatus[channel].val;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_tx_get_channel_clock_div(rmt_dev_t *dev, uint32_t channel)
{
uint32_t div = HAL_FORCE_READ_U32_REG_FIELD(dev->chnconf0[channel], div_cnt_chn);
return div == 0 ? 256 : div;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_rx_get_channel_clock_div(rmt_dev_t *dev, uint32_t channel)
{
uint32_t div = HAL_FORCE_READ_U32_REG_FIELD(dev->chmconf[channel].conf0, div_cnt_chm);
return div == 0 ? 256 : div;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_rx_get_idle_thres(rmt_dev_t *dev, uint32_t channel)
{
return dev->chmconf[channel].conf0.idle_thres_chm;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_tx_get_mem_blocks(rmt_dev_t *dev, uint32_t channel)
{
return dev->chnconf0[channel].mem_size_chn;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_rx_get_mem_blocks(rmt_dev_t *dev, uint32_t channel)
{
return dev->chmconf[channel].conf0.mem_size_chm;
}
__attribute__((always_inline))
static inline bool rmt_ll_tx_is_loop_enabled(rmt_dev_t *dev, uint32_t channel)
{
return dev->chnconf0[channel].tx_conti_mode_chn;
}
__attribute__((always_inline))
static inline rmt_clock_source_t rmt_ll_get_group_clock_src(rmt_dev_t *dev, uint32_t channel)
{
rmt_clock_source_t clk_src = RMT_CLK_SRC_PLL_F80M;
switch (PCR.rmt_sclk_conf.rmt_sclk_sel) {
case 2:
clk_src = RMT_CLK_SRC_PLL_F80M;
break;
case 1:
clk_src = RMT_CLK_SRC_RC_FAST;
break;
case 0:
clk_src = RMT_CLK_SRC_XTAL;
break;
}
return clk_src;
}
__attribute__((always_inline))
static inline bool rmt_ll_tx_is_idle_enabled(rmt_dev_t *dev, uint32_t channel)
{
return dev->chnconf0[channel].idle_out_en_chn;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_tx_get_idle_level(rmt_dev_t *dev, uint32_t channel)
{
return dev->chnconf0[channel].idle_out_lv_chn;
}
static inline bool rmt_ll_is_mem_powered_down(rmt_dev_t *dev)
{
// the RTC domain can also power down RMT memory
// so it's probably not enough to detect whether it's powered down or not
// mem_force_pd has higher priority than mem_force_pu
return (dev->sys_conf.mem_force_pd) || !(dev->sys_conf.mem_force_pu);
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_rx_get_mem_owner(rmt_dev_t *dev, uint32_t channel)
{
return dev->chmconf[channel].conf1.mem_owner_chm;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_rx_get_limit(rmt_dev_t *dev, uint32_t channel)
{
return dev->chm_rx_lim[channel].rx_lim_chm;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_get_tx_end_interrupt_status(rmt_dev_t *dev)
{
return dev->int_st.val & 0x03;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_get_rx_end_interrupt_status(rmt_dev_t *dev)
{
return (dev->int_st.val >> 2) & 0x03;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_get_tx_err_interrupt_status(rmt_dev_t *dev)
{
return (dev->int_st.val >> 4) & 0x03;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_get_rx_err_interrupt_status(rmt_dev_t *dev)
{
return (dev->int_st.val >> 6) & 0x03;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_get_tx_thres_interrupt_status(rmt_dev_t *dev)
{
return (dev->int_st.val >> 8) & 0x03;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_get_rx_thres_interrupt_status(rmt_dev_t *dev)
{
return (dev->int_st.val >> 10) & 0x03;
}
__attribute__((always_inline))
static inline uint32_t rmt_ll_get_tx_loop_interrupt_status(rmt_dev_t *dev)
{
return (dev->int_st.val >> 12) & 0x03;
}
#ifdef __cplusplus
}
#endif

Wyświetl plik

@ -39,6 +39,10 @@ config SOC_RTC_MEM_SUPPORTED
bool
default y
config SOC_RMT_SUPPORTED
bool
default y
config SOC_GPSPI_SUPPORTED
bool
default y
@ -271,6 +275,58 @@ config SOC_MMU_DI_VADDR_SHARED
bool
default y
config SOC_RMT_GROUPS
int
default 1
config SOC_RMT_TX_CANDIDATES_PER_GROUP
int
default 2
config SOC_RMT_RX_CANDIDATES_PER_GROUP
int
default 2
config SOC_RMT_CHANNELS_PER_GROUP
int
default 4
config SOC_RMT_MEM_WORDS_PER_CHANNEL
int
default 48
config SOC_RMT_SUPPORT_RX_PINGPONG
bool
default y
config SOC_RMT_SUPPORT_RX_DEMODULATION
bool
default y
config SOC_RMT_SUPPORT_TX_ASYNC_STOP
bool
default y
config SOC_RMT_SUPPORT_TX_LOOP_COUNT
bool
default y
config SOC_RMT_SUPPORT_TX_LOOP_AUTO_STOP
bool
default y
config SOC_RMT_SUPPORT_TX_SYNCHRO
bool
default y
config SOC_RMT_SUPPORT_TX_CARRIER_DATA_ONLY
bool
default y
config SOC_RMT_SUPPORT_XTAL
bool
default y
config SOC_RSA_MAX_BIT_LEN
int
default 3072

Wyświetl plik

@ -193,12 +193,12 @@ typedef enum {
/**
* @brief Array initializer for all supported clock sources of RMT
*/
#define SOC_RMT_CLKS {SOC_MOD_CLK_PLL_F80M, SOC_MOD_CLK_RC_FAST, SOC_MOD_CLK_XTAL}
#define SOC_RMT_CLKS {SOC_MOD_CLK_PLL_F80M,/* SOC_MOD_CLK_RC_FAST,*/ SOC_MOD_CLK_XTAL}
/**
* @brief Type of RMT clock source
*/
typedef enum { // TODO: [ESP32C5] IDF-8726 (inherit from C6)
typedef enum {
RMT_CLK_SRC_PLL_F80M = SOC_MOD_CLK_PLL_F80M, /*!< Select PLL_F80M as the source clock */
RMT_CLK_SRC_RC_FAST = SOC_MOD_CLK_RC_FAST, /*!< Select RC_FAST as the source clock */
RMT_CLK_SRC_XTAL = SOC_MOD_CLK_XTAL, /*!< Select XTAL as the source clock */
@ -208,7 +208,7 @@ typedef enum { // TODO: [ESP32C5] IDF-8726 (inherit from C6)
/**
* @brief Type of RMT clock source, reserved for the legacy RMT driver
*/
typedef enum { // TODO: [ESP32C5] IDF-8726 (inherit from C6)
typedef enum {
RMT_BASECLK_PLL_F80M = SOC_MOD_CLK_PLL_F80M, /*!< RMT source clock is PLL_F80M */
RMT_BASECLK_XTAL = SOC_MOD_CLK_XTAL, /*!< RMT source clock is XTAL */
RMT_BASECLK_DEFAULT = SOC_MOD_CLK_PLL_F80M, /*!< RMT source clock default choice is PLL_F80M */

Wyświetl plik

@ -39,7 +39,7 @@
#define SOC_RTC_FAST_MEM_SUPPORTED 1
#define SOC_RTC_MEM_SUPPORTED 1
// #define SOC_I2S_SUPPORTED 1 // TODO: [ESP32C5] IDF-8713, IDF-8714
// #define SOC_RMT_SUPPORTED 1 // TODO: [ESP32C5] IDF-8726
#define SOC_RMT_SUPPORTED 1
// #define SOC_SDM_SUPPORTED 1 // TODO: [ESP32C5] IDF-8687
#define SOC_GPSPI_SUPPORTED 1
// #define SOC_LEDC_SUPPORTED 1 // TODO: [ESP32C5] IDF-8684
@ -246,7 +246,6 @@
#define SOC_I2C_SLAVE_CAN_GET_STRETCH_CAUSE (1)
#define SOC_I2C_SLAVE_SUPPORT_I2CRAM_ACCESS (1)
/*-------------------------- LP_I2C CAPS -------------------------------------*/
// ESP32-C5 has 1 LP_I2C
// #define SOC_LP_I2C_NUM (1U)
@ -297,19 +296,19 @@
// #define SOC_PCNT_SUPPORT_RUNTIME_THRES_UPDATE 1
/*--------------------------- RMT CAPS ---------------------------------------*/
// #define SOC_RMT_GROUPS 1U /*!< One RMT group */
// #define SOC_RMT_TX_CANDIDATES_PER_GROUP 2 /*!< Number of channels that capable of Transmit */
// #define SOC_RMT_RX_CANDIDATES_PER_GROUP 2 /*!< Number of channels that capable of Receive */
// #define SOC_RMT_CHANNELS_PER_GROUP 4 /*!< Total 4 channels */
// #define SOC_RMT_MEM_WORDS_PER_CHANNEL 48 /*!< Each channel owns 48 words memory (1 word = 4 Bytes) */
// #define SOC_RMT_SUPPORT_RX_PINGPONG 1 /*!< Support Ping-Pong mode on RX path */
// #define SOC_RMT_SUPPORT_RX_DEMODULATION 1 /*!< Support signal demodulation on RX path (i.e. remove carrier) */
// #define SOC_RMT_SUPPORT_TX_ASYNC_STOP 1 /*!< Support stop transmission asynchronously */
// #define SOC_RMT_SUPPORT_TX_LOOP_COUNT 1 /*!< Support transmit specified number of cycles in loop mode */
// #define SOC_RMT_SUPPORT_TX_LOOP_AUTO_STOP 1 /*!< Hardware support of auto-stop in loop mode */
// #define SOC_RMT_SUPPORT_TX_SYNCHRO 1 /*!< Support coordinate a group of TX channels to start simultaneously */
// #define SOC_RMT_SUPPORT_TX_CARRIER_DATA_ONLY 1 /*!< TX carrier can be modulated to data phase only */
// #define SOC_RMT_SUPPORT_XTAL 1 /*!< Support set XTAL clock as the RMT clock source */
#define SOC_RMT_GROUPS 1U /*!< One RMT group */
#define SOC_RMT_TX_CANDIDATES_PER_GROUP 2 /*!< Number of channels that capable of Transmit */
#define SOC_RMT_RX_CANDIDATES_PER_GROUP 2 /*!< Number of channels that capable of Receive */
#define SOC_RMT_CHANNELS_PER_GROUP 4 /*!< Total 4 channels */
#define SOC_RMT_MEM_WORDS_PER_CHANNEL 48 /*!< Each channel owns 48 words memory (1 word = 4 Bytes) */
#define SOC_RMT_SUPPORT_RX_PINGPONG 1 /*!< Support Ping-Pong mode on RX path */
#define SOC_RMT_SUPPORT_RX_DEMODULATION 1 /*!< Support signal demodulation on RX path (i.e. remove carrier) */
#define SOC_RMT_SUPPORT_TX_ASYNC_STOP 1 /*!< Support stop transmission asynchronously */
#define SOC_RMT_SUPPORT_TX_LOOP_COUNT 1 /*!< Support transmit specified number of cycles in loop mode */
#define SOC_RMT_SUPPORT_TX_LOOP_AUTO_STOP 1 /*!< Hardware support of auto-stop in loop mode */
#define SOC_RMT_SUPPORT_TX_SYNCHRO 1 /*!< Support coordinate a group of TX channels to start simultaneously */
#define SOC_RMT_SUPPORT_TX_CARRIER_DATA_ONLY 1 /*!< TX carrier can be modulated to data phase only */
#define SOC_RMT_SUPPORT_XTAL 1 /*!< Support set XTAL clock as the RMT clock source */
// #define SOC_RMT_SUPPORT_RC_FAST 1 /*!< Support set RC_FAST as the RMT clock source */
/*-------------------------- MCPWM CAPS --------------------------------------*/

Wyświetl plik

@ -12,6 +12,7 @@ PROVIDE ( SPIMEM1 = 0x60003000 );
PROVIDE ( I2C0 = 0x60004000 );
PROVIDE ( UHCI0 = 0x60005000 );
PROVIDE ( RMT = 0x60006000 );
PROVIDE ( RMTMEM = 0x60006400 );
PROVIDE ( LEDC = 0x60007000 );
PROVIDE ( TIMERG0 = 0x60008000 );
PROVIDE ( TIMERG1 = 0x60009000 );

Wyświetl plik

@ -0,0 +1,35 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "soc/rmt_periph.h"
#include "soc/gpio_sig_map.h"
const rmt_signal_conn_t rmt_periph_signals = {
.groups = {
[0] = {
.module = PERIPH_RMT_MODULE,
.irq = ETS_RMT_INTR_SOURCE,
.channels = {
[0] = {
.tx_sig = RMT_SIG_OUT0_IDX,
.rx_sig = -1
},
[1] = {
.tx_sig = RMT_SIG_OUT1_IDX,
.rx_sig = -1
},
[2] = {
.tx_sig = -1,
.rx_sig = RMT_SIG_IN0_IDX
},
[3] = {
.tx_sig = -1,
.rx_sig = RMT_SIG_IN1_IDX
},
}
}
}
};

Wyświetl plik

@ -151,6 +151,58 @@ config SOC_MMU_DI_VADDR_SHARED
bool
default y
config SOC_RMT_GROUPS
int
default 1
config SOC_RMT_TX_CANDIDATES_PER_GROUP
int
default 2
config SOC_RMT_RX_CANDIDATES_PER_GROUP
int
default 2
config SOC_RMT_CHANNELS_PER_GROUP
int
default 4
config SOC_RMT_MEM_WORDS_PER_CHANNEL
int
default 48
config SOC_RMT_SUPPORT_RX_PINGPONG
bool
default y
config SOC_RMT_SUPPORT_RX_DEMODULATION
bool
default y
config SOC_RMT_SUPPORT_TX_ASYNC_STOP
bool
default y
config SOC_RMT_SUPPORT_TX_LOOP_COUNT
bool
default y
config SOC_RMT_SUPPORT_TX_LOOP_AUTO_STOP
bool
default y
config SOC_RMT_SUPPORT_TX_SYNCHRO
bool
default y
config SOC_RMT_SUPPORT_TX_CARRIER_DATA_ONLY
bool
default y
config SOC_RMT_SUPPORT_XTAL
bool
default y
config SOC_RSA_MAX_BIT_LEN
int
default 3072

Wyświetl plik

@ -194,12 +194,12 @@ typedef enum {
/**
* @brief Array initializer for all supported clock sources of RMT
*/
#define SOC_RMT_CLKS {SOC_MOD_CLK_PLL_F80M, SOC_MOD_CLK_RC_FAST, SOC_MOD_CLK_XTAL}
#define SOC_RMT_CLKS {/*SOC_MOD_CLK_PLL_F80M, SOC_MOD_CLK_RC_FAST,*/ SOC_MOD_CLK_XTAL}
/**
* @brief Type of RMT clock source
*/
typedef enum { // TODO: [ESP32C5] IDF-8726 (inherit from C6)
typedef enum {
RMT_CLK_SRC_PLL_F80M = SOC_MOD_CLK_PLL_F80M, /*!< Select PLL_F80M as the source clock */
RMT_CLK_SRC_RC_FAST = SOC_MOD_CLK_RC_FAST, /*!< Select RC_FAST as the source clock */
RMT_CLK_SRC_XTAL = SOC_MOD_CLK_XTAL, /*!< Select XTAL as the source clock */
@ -209,7 +209,7 @@ typedef enum { // TODO: [ESP32C5] IDF-8726 (inherit from C6)
/**
* @brief Type of RMT clock source, reserved for the legacy RMT driver
*/
typedef enum { // TODO: [ESP32C5] IDF-8726 (inherit from C6)
typedef enum {
RMT_BASECLK_PLL_F80M = SOC_MOD_CLK_PLL_F80M, /*!< RMT source clock is PLL_F80M */
RMT_BASECLK_XTAL = SOC_MOD_CLK_XTAL, /*!< RMT source clock is XTAL */
RMT_BASECLK_DEFAULT = SOC_MOD_CLK_PLL_F80M, /*!< RMT source clock default choice is PLL_F80M */

Wyświetl plik

@ -293,19 +293,19 @@
// #define SOC_PCNT_SUPPORT_RUNTIME_THRES_UPDATE 1
/*--------------------------- RMT CAPS ---------------------------------------*/
// #define SOC_RMT_GROUPS 1U /*!< One RMT group */
// #define SOC_RMT_TX_CANDIDATES_PER_GROUP 2 /*!< Number of channels that capable of Transmit */
// #define SOC_RMT_RX_CANDIDATES_PER_GROUP 2 /*!< Number of channels that capable of Receive */
// #define SOC_RMT_CHANNELS_PER_GROUP 4 /*!< Total 4 channels */
// #define SOC_RMT_MEM_WORDS_PER_CHANNEL 48 /*!< Each channel owns 48 words memory (1 word = 4 Bytes) */
// #define SOC_RMT_SUPPORT_RX_PINGPONG 1 /*!< Support Ping-Pong mode on RX path */
// #define SOC_RMT_SUPPORT_RX_DEMODULATION 1 /*!< Support signal demodulation on RX path (i.e. remove carrier) */
// #define SOC_RMT_SUPPORT_TX_ASYNC_STOP 1 /*!< Support stop transmission asynchronously */
// #define SOC_RMT_SUPPORT_TX_LOOP_COUNT 1 /*!< Support transmit specified number of cycles in loop mode */
// #define SOC_RMT_SUPPORT_TX_LOOP_AUTO_STOP 1 /*!< Hardware support of auto-stop in loop mode */
// #define SOC_RMT_SUPPORT_TX_SYNCHRO 1 /*!< Support coordinate a group of TX channels to start simultaneously */
// #define SOC_RMT_SUPPORT_TX_CARRIER_DATA_ONLY 1 /*!< TX carrier can be modulated to data phase only */
// #define SOC_RMT_SUPPORT_XTAL 1 /*!< Support set XTAL clock as the RMT clock source */
#define SOC_RMT_GROUPS 1U /*!< One RMT group */
#define SOC_RMT_TX_CANDIDATES_PER_GROUP 2 /*!< Number of channels that capable of Transmit */
#define SOC_RMT_RX_CANDIDATES_PER_GROUP 2 /*!< Number of channels that capable of Receive */
#define SOC_RMT_CHANNELS_PER_GROUP 4 /*!< Total 4 channels */
#define SOC_RMT_MEM_WORDS_PER_CHANNEL 48 /*!< Each channel owns 48 words memory (1 word = 4 Bytes) */
#define SOC_RMT_SUPPORT_RX_PINGPONG 1 /*!< Support Ping-Pong mode on RX path */
#define SOC_RMT_SUPPORT_RX_DEMODULATION 1 /*!< Support signal demodulation on RX path (i.e. remove carrier) */
#define SOC_RMT_SUPPORT_TX_ASYNC_STOP 1 /*!< Support stop transmission asynchronously */
#define SOC_RMT_SUPPORT_TX_LOOP_COUNT 1 /*!< Support transmit specified number of cycles in loop mode */
#define SOC_RMT_SUPPORT_TX_LOOP_AUTO_STOP 1 /*!< Hardware support of auto-stop in loop mode */
#define SOC_RMT_SUPPORT_TX_SYNCHRO 1 /*!< Support coordinate a group of TX channels to start simultaneously */
#define SOC_RMT_SUPPORT_TX_CARRIER_DATA_ONLY 1 /*!< TX carrier can be modulated to data phase only */
#define SOC_RMT_SUPPORT_XTAL 1 /*!< Support set XTAL clock as the RMT clock source */
// #define SOC_RMT_SUPPORT_RC_FAST 1 /*!< Support set RC_FAST as the RMT clock source */
/*-------------------------- MCPWM CAPS --------------------------------------*/

Wyświetl plik

@ -11,6 +11,7 @@ PROVIDE ( SPIMEM1 = 0x60003000 );
PROVIDE ( I2C = 0x60004000 );
PROVIDE ( UHCI = 0x60005000 );
PROVIDE ( RMT = 0x60006000 );
PROVIDE ( RMTMEM = 0x60006400 );
PROVIDE ( LEDC = 0x60007000 );
PROVIDE ( TIMERG0 = 0x60008000 );
PROVIDE ( TIMERG1 = 0x60009000 );

Wyświetl plik

@ -0,0 +1,35 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "soc/rmt_periph.h"
#include "soc/gpio_sig_map.h"
const rmt_signal_conn_t rmt_periph_signals = {
.groups = {
[0] = {
.module = PERIPH_RMT_MODULE,
.irq = ETS_RMT_INTR_SOURCE,
.channels = {
[0] = {
.tx_sig = RMT_SIG_OUT0_IDX,
.rx_sig = -1
},
[1] = {
.tx_sig = RMT_SIG_OUT1_IDX,
.rx_sig = -1
},
[2] = {
.tx_sig = -1,
.rx_sig = RMT_SIG_IN0_IDX
},
[3] = {
.tx_sig = -1,
.rx_sig = RMT_SIG_IN1_IDX
},
}
}
}
};