esp_partition: fixed esp_partition_get_sha256() test for big partitions

esp_partition_get_sha256() test for big partitions has been improved in allocation of MMU pages
pull/8689/merge
Martin Vychodil 2022-11-24 22:21:09 +01:00
rodzic 6a450c4113
commit 537aca747b
1 zmienionych plików z 51 dodań i 13 usunięć

Wyświetl plik

@ -118,25 +118,63 @@ TEST_CASE("Test esp_partition_get_sha256() with app", "[spi_flash]")
TEST_CASE("Test esp_partition_get_sha256() that it can handle a big partition", "[spi_flash]")
{
esp_partition_t partition;
const void *ptr;
spi_flash_mmap_handle_t handle;
/* This test verifies the function 'esp_partition_get_sha256()' working correctly under the following conditions:
* - there is only 1 MMU page left for memory mapping (ideal case)
* - the partition to hash is significantly larger than a common use-case partition size
* The test case is implemented as follows:
* 1. SPI Flash space is mmapped by MMU page size chunks, one by one
* 2. the iteration stops when either whole SPI Flash range is exhausted or the MMU page pool is fully occupied (ESP_ERR_NO_MEM)
* 3. the last successfully mmaped MMU page is released, all the rest remains occupied
* 4. pseudo partition of DATA type is created over all the SPI Flash capacity
* 5. esp_partition_get_sha256() is calculated for the partition defined in 4. (printed to standard output on successful completion)
* 6. all the resources allocated directly by the test are released
* NOTE: the test is chip-agnostic
* */
uint8_t sha256[32] = { 0 };
uint32_t size_flash_chip;
esp_flash_get_size(NULL, &size_flash_chip);
TEST_ESP_OK(esp_flash_get_size(NULL, &size_flash_chip));
printf("flash size = %d bytes\n", size_flash_chip);
printf("size_flash_chip = %d bytes\n", size_flash_chip);
uint32_t page_reservation_count = spi_flash_mmap_get_free_pages(SPI_FLASH_MMAP_DATA);
printf("available page pool = %d pages\n", page_reservation_count);
ESP_ERROR_CHECK(spi_flash_mmap(0x00000000, size_flash_chip * 7 / 10, SPI_FLASH_MMAP_DATA, &ptr, &handle));
TEST_ASSERT_NOT_NULL(ptr);
spi_flash_mmap_handle_t* handles = malloc(page_reservation_count * sizeof(spi_flash_mmap_handle_t));
TEST_ASSERT_NOT_NULL(handles);
partition.address = 0x00000000;
partition.size = size_flash_chip;
partition.type = ESP_PARTITION_TYPE_DATA;
const void *ptr = NULL;
size_t flash_offset = 0;
size_t mapped_pages_count = 0;
ESP_ERROR_CHECK(esp_partition_get_sha256(&partition, sha256));
esp_err_t err = ESP_FAIL;
for (; mapped_pages_count<page_reservation_count && flash_offset<size_flash_chip; mapped_pages_count++, flash_offset+=SPI_FLASH_MMU_PAGE_SIZE) {
err = spi_flash_mmap(flash_offset, SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMAP_DATA, &ptr, &handles[mapped_pages_count]);
if (err != ESP_OK) break;
TEST_ASSERT_NOT_NULL(ptr);
ptr = NULL;
}
if (err == ESP_OK || err == ESP_ERR_NO_MEM) {
TEST_ASSERT(mapped_pages_count>0);
mapped_pages_count--;
spi_flash_munmap(handles[mapped_pages_count]);
}
else {
TEST_ESP_OK(err);
}
esp_partition_t partition = {
.address = 0x00000000,
.size = size_flash_chip,
.type = ESP_PARTITION_TYPE_DATA
};
uint8_t sha256[32] = {0};
TEST_ESP_OK(esp_partition_get_sha256(&partition, sha256));
ESP_LOG_BUFFER_HEX("sha", sha256, sizeof(sha256));
spi_flash_munmap(handle);
for(size_t y=0; y<mapped_pages_count; y++) {
spi_flash_munmap(handles[y]);
}
free(handles);
}