Merge branch 'feature/support_adc_on_c6' into 'master'

adc: support adc on c6

Closes IDF-5310, IDF-5311, IDF-5917, and IDF-6567

See merge request espressif/esp-idf!21431
pull/10469/head
Kevin (Lao Kaiyao) 2022-12-27 21:01:43 +08:00
commit 4a86240b6e
61 zmienionych plików z 1246 dodań i 276 usunięć

Wyświetl plik

@ -1754,6 +1754,19 @@
- <<: *if-dev-push
changes: *patterns-component_ut
.rules:test:component_ut-esp32c6-adc:
rules:
- <<: *if-revert-branch
when: never
- <<: *if-protected
- <<: *if-label-build-only
when: never
- <<: *if-label-component_ut
- <<: *if-label-component_ut_esp32c6
- <<: *if-label-target_test
- <<: *if-dev-push
changes: *patterns-target_test-adc
.rules:test:component_ut-esp32h4-i154:
rules:
- <<: *if-revert-branch
@ -2072,6 +2085,19 @@
- <<: *if-dev-push
changes: *patterns-example_test
.rules:test:example_test-esp32c6-adc:
rules:
- <<: *if-revert-branch
when: never
- <<: *if-protected
- <<: *if-label-build-only
when: never
- <<: *if-label-example_test
- <<: *if-label-example_test_esp32c6
- <<: *if-label-target_test
- <<: *if-dev-push
changes: *patterns-target_test-adc
.rules:test:example_test-esp32s2:
rules:
- <<: *if-revert-branch

Wyświetl plik

@ -336,6 +336,14 @@ example_test_pytest_esp32c2_adc:
- build_pytest_examples_esp32c2
tags: [ esp32c2, adc, xtal_26mhz]
example_test_pytest_esp32c6_adc:
extends:
- .pytest_examples_dir_template
- .rules:test:example_test-esp32c6-adc
needs:
- build_pytest_examples_esp32c6
tags: [ esp32c6, adc ]
.pytest_components_dir_template:
extends: .pytest_template
variables:
@ -673,6 +681,14 @@ component_ut_pytest_esp32c6_generic_multi_device:
- build_pytest_components_esp32c6
tags: [ esp32c6, generic_multi_device ]
component_ut_pytest_esp32c6_adc:
extends:
- .pytest_components_dir_template
- .rules:test:component_ut-esp32c6-adc
needs:
- build_pytest_components_esp32c6
tags: [ esp32c6, adc ]
component_ut_pytest_esp32h4_i154:
extends:
- .pytest_components_dir_template

Wyświetl plik

@ -34,9 +34,7 @@ components/driver/test_apps/ledc:
components/driver/test_apps/legacy_adc_driver:
disable:
- if: IDF_TARGET == "esp32c6"
temporary: true
reason: target esp32c6 is not supported yet
- if: SOC_ADC_SUPPORTED != 1
components/driver/test_apps/legacy_mcpwm_driver:
disable:

Wyświetl plik

@ -129,7 +129,7 @@ finish:
dac_ll_digi_clk_inv(true);
dac_ll_digi_set_trigger_interval(interval); // secondary clock division
adc_ll_digi_controller_clk_div(clk_div - 1, b, a);
adc_ll_digi_clk_sel(is_apll);
adc_ll_digi_clk_sel(is_apll ? ADC_DIGI_CLK_SRC_APLL : ADC_DIGI_CLK_SRC_DEFAULT);
return ESP_OK;
}

Wyświetl plik

@ -617,11 +617,11 @@ esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio)
adc_power_acquire();
if (adc_unit == ADC_UNIT_1) {
VREF_ENTER(1);
adc_hal_vref_output(ADC_UNIT_1, ch, true);
adc_ll_vref_output(ADC_UNIT_1, ch, true);
VREF_EXIT(1);
} else if (adc_unit == ADC_UNIT_2) {
VREF_ENTER(2);
adc_hal_vref_output(ADC_UNIT_2, ch, true);
adc_ll_vref_output(ADC_UNIT_2, ch, true);
VREF_EXIT(2);
}
@ -706,11 +706,11 @@ esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio)
adc_power_acquire();
if (adc_unit == ADC_UNIT_1) {
RTC_ENTER_CRITICAL();
adc_hal_vref_output(ADC_UNIT_1, channel, true);
adc_ll_vref_output(ADC_UNIT_1, channel, true);
RTC_EXIT_CRITICAL();
} else { //ADC_UNIT_2
RTC_ENTER_CRITICAL();
adc_hal_vref_output(ADC_UNIT_2, channel, true);
adc_ll_vref_output(ADC_UNIT_2, channel, true);
RTC_EXIT_CRITICAL();
}
@ -756,7 +756,7 @@ int adc1_get_raw(adc1_channel_t channel)
periph_module_enable(PERIPH_SARADC_MODULE);
adc_power_acquire();
adc_ll_digi_clk_sel(0);
adc_ll_digi_clk_sel(ADC_DIGI_CLK_SRC_DEFAULT);
adc_atten_t atten = s_atten1_single[channel];
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
@ -764,7 +764,7 @@ int adc1_get_raw(adc1_channel_t channel)
#endif
ADC_REG_LOCK_ENTER();
adc_oneshot_ll_set_atten(ADC_UNIT_2, channel, atten);
adc_oneshot_ll_set_atten(ADC_UNIT_1, channel, atten);
adc_hal_convert(ADC_UNIT_1, channel, &raw_out);
ADC_REG_LOCK_EXIT();
@ -807,7 +807,7 @@ esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *
periph_module_enable(PERIPH_SARADC_MODULE);
adc_power_acquire();
adc_ll_digi_clk_sel(0);
adc_ll_digi_clk_sel(ADC_DIGI_CLK_SRC_DEFAULT);
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
adc_hal_arbiter_config(&config);

Wyświetl plik

@ -61,7 +61,7 @@ typedef enum {
ADC1_CHANNEL_9, /*!< ADC1 channel 9 is GPIO10 */
ADC1_CHANNEL_MAX,
} adc1_channel_t;
#elif CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32C2 || CONFIG_IDF_TARGET_ESP32H4 || CONFIG_IDF_TARGET_ESP32C6 // TODO: IDF-5310
#elif CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32C2 || CONFIG_IDF_TARGET_ESP32H4
typedef enum {
ADC1_CHANNEL_0 = 0, /*!< ADC1 channel 0 is GPIO0 */
ADC1_CHANNEL_1, /*!< ADC1 channel 1 is GPIO1 */
@ -70,6 +70,17 @@ typedef enum {
ADC1_CHANNEL_4, /*!< ADC1 channel 4 is GPIO4 */
ADC1_CHANNEL_MAX,
} adc1_channel_t;
#elif CONFIG_IDF_TARGET_ESP32C6
typedef enum {
ADC1_CHANNEL_0 = 0, /*!< ADC1 channel 0 is GPIO0 */
ADC1_CHANNEL_1, /*!< ADC1 channel 1 is GPIO1 */
ADC1_CHANNEL_2, /*!< ADC1 channel 2 is GPIO2 */
ADC1_CHANNEL_3, /*!< ADC1 channel 3 is GPIO3 */
ADC1_CHANNEL_4, /*!< ADC1 channel 4 is GPIO4 */
ADC1_CHANNEL_5, /*!< ADC1 channel 5 is GPIO5 */
ADC1_CHANNEL_6, /*!< ADC1 channel 6 is GPIO6 */
ADC1_CHANNEL_MAX,
} adc1_channel_t;
#endif // CONFIG_IDF_TARGET_*
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
@ -86,7 +97,8 @@ typedef enum {
ADC2_CHANNEL_9, /*!< ADC2 channel 9 is GPIO26 (ESP32), GPIO20 (ESP32-S2) */
ADC2_CHANNEL_MAX,
} adc2_channel_t;
#elif CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32C2 || CONFIG_IDF_TARGET_ESP32H4 || CONFIG_IDF_TARGET_ESP32C6 // TODO: IDF-5310
#elif CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32C2 || CONFIG_IDF_TARGET_ESP32H4
// ESP32C6 has no ADC2
typedef enum {
ADC2_CHANNEL_0 = 0, /*!< ADC2 channel 0 is GPIO5 */
ADC2_CHANNEL_MAX,

Wyświetl plik

@ -82,7 +82,7 @@ esp_err_t dac_digi_controller_config(const dac_digi_config_t *cfg)
dac_ll_digi_set_convert_mode(cfg->mode == DAC_CONV_ALTER);
dac_ll_digi_set_trigger_interval(cfg->interval);
adc_ll_digi_controller_clk_div(cfg->dig_clk.div_num, cfg->dig_clk.div_b, cfg->dig_clk.div_a);
adc_ll_digi_clk_sel(cfg->dig_clk.use_apll);
adc_ll_digi_clk_sel(cfg->dig_clk.use_apll ? ADC_DIGI_CLK_SRC_APLL : ADC_DIGI_CLK_SRC_DEFAULT);
DAC_EXIT_CRITICAL();
return ESP_OK;

Wyświetl plik

@ -1,2 +1,2 @@
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- |
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C6 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- |

Wyświetl plik

@ -53,6 +53,13 @@
#define ADC_TEST_HIGH_VAL 3400
#define ADC_TEST_HIGH_THRESH 200
#elif CONFIG_IDF_TARGET_ESP32C6 // TODO: IDF-5312
#define ADC_TEST_LOW_VAL 2144
#define ADC_TEST_LOW_THRESH 200
#define ADC_TEST_HIGH_VAL 4081
#define ADC_TEST_HIGH_THRESH 200
#endif
//ADC Channels

Wyświetl plik

@ -9,6 +9,7 @@ from pytest_embedded import Dut
@pytest.mark.esp32s2
@pytest.mark.esp32s3
@pytest.mark.esp32c3
@pytest.mark.esp32c6
@pytest.mark.adc
@pytest.mark.parametrize(
'config',

Wyświetl plik

@ -2,6 +2,4 @@
components/esp_adc/test_apps/adc:
disable:
- if: IDF_TARGET == "esp32c6"
temporary: true
reason: target esp32c6 is not supported yet
- if: SOC_ADC_SUPPORTED != 1

Wyświetl plik

@ -32,15 +32,6 @@ if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/deprecated/${target}/esp_adc_cal_legacy.c
list(APPEND srcs "deprecated/${target}/esp_adc_cal_legacy.c")
endif()
# ESP32C6-TODO
if(CONFIG_IDF_TARGET_ESP32C6)
list(REMOVE_ITEM srcs
"adc_cali_curve_fitting.c" # TODO: IDF-5312
"adc_oneshot.c" # TODO: IDF-5310
"adc_common.c"
)
endif()
idf_component_register(SRCS ${srcs}
INCLUDE_DIRS ${includes}
PRIV_REQUIRES driver efuse

Wyświetl plik

@ -1,2 +1,2 @@
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- |
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C6 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- |

Wyświetl plik

@ -70,6 +70,14 @@ extern "C" {
#define ADC_TEST_HIGH_VAL 3400
#define ADC_TEST_HIGH_THRESH 200
#elif CONFIG_IDF_TARGET_ESP32C6 // TODO: IDF-5312
#define ADC_TEST_LOW_VAL 2144
#define ADC_TEST_LOW_THRESH 200
#define ADC_TEST_HIGH_VAL 4081
#define ADC_TEST_HIGH_VAL_DMA 4081
#define ADC_TEST_HIGH_THRESH 200
#endif

Wyświetl plik

@ -9,6 +9,7 @@ from pytest_embedded import Dut
@pytest.mark.esp32s2
@pytest.mark.esp32s3
@pytest.mark.esp32c3
@pytest.mark.esp32c6
@pytest.mark.adc
@pytest.mark.parametrize('config', [
'iram_safe',

Wyświetl plik

@ -70,13 +70,6 @@ if(NOT BOOTLOADER_BUILD)
list(APPEND srcs "esp_ds.c")
endif()
# ESP32C6-TODO
if(CONFIG_IDF_TARGET_ESP32C6)
list(REMOVE_ITEM srcs
"adc_share_hw_ctrl.c" # TODO: IDF-5312
)
endif()
else()
# Requires "_esp_error_check_failed()" function
list(APPEND priv_requires "esp_system")

Wyświetl plik

@ -13,8 +13,10 @@
void rtc_init(rtc_config_t cfg)
{
/* Peripheral reg i2c power up */
SET_PERI_REG_MASK(PMU_RF_PWC_REG, PMU_PERIF_I2C_RSTB);
SET_PERI_REG_MASK(PMU_RF_PWC_REG, PMU_XPD_PERIF_I2C);
REGI2C_WRITE_MASK(I2C_DIG_REG, I2C_DIG_REG_ENIF_RTC_DREG, 1);
REGI2C_WRITE_MASK(I2C_DIG_REG, I2C_DIG_REG_ENIF_DIG_DREG, 1);
REGI2C_WRITE_MASK(I2C_DIG_REG, I2C_DIG_REG_XPD_RTC_REG, 0);

Wyświetl plik

@ -191,11 +191,6 @@ if(NOT BOOTLOADER_BUILD)
"esp32c6/brownout_hal.c"
"esp32c6/rtc_cntl_hal.c")
# TODO: IDF-5310
list(REMOVE_ITEM srcs
"adc_oneshot_hal.c"
"adc_hal_common.c"
)
endif()
if(${target} STREQUAL "esp32h2")

Wyświetl plik

@ -141,11 +141,8 @@ void adc_hal_digi_deinit(adc_hal_dma_ctx_t *hal)
---------------------------------------------------------------*/
static adc_ll_digi_convert_mode_t get_convert_mode(adc_digi_convert_mode_t convert_mode)
{
#if CONFIG_IDF_TARGET_ESP32
#if CONFIG_IDF_TARGET_ESP32 || SOC_ADC_DIGI_CONTROLLER_NUM == 1
return ADC_LL_DIGI_CONV_ONLY_ADC1;
#endif
#if (SOC_ADC_DIGI_CONTROLLER_NUM == 1)
return ADC_LL_DIGI_CONV_ALTER_UNIT;
#elif (SOC_ADC_DIGI_CONTROLLER_NUM >= 2)
switch (convert_mode) {
case ADC_CONV_SINGLE_UNIT_1:
@ -177,7 +174,7 @@ static void adc_hal_digi_sample_freq_config(adc_hal_dma_ctx_t *hal, uint32_t fre
adc_ll_digi_set_trigger_interval(interval);
//Here we set the clock divider factor to make the digital clock to 5M Hz
adc_ll_digi_controller_clk_div(ADC_LL_CLKM_DIV_NUM_DEFAULT, ADC_LL_CLKM_DIV_B_DEFAULT, ADC_LL_CLKM_DIV_A_DEFAULT);
adc_ll_digi_clk_sel(0); //use APB
adc_ll_digi_clk_sel(ADC_DIGI_CLK_SRC_DEFAULT); // use default clock source for ADC digital controller
#else
i2s_ll_rx_clk_set_src(hal->dev, I2S_CLK_SRC_DEFAULT); /*!< Clock from PLL_D2_CLK(160M)*/
uint32_t bclk_div = 16;

Wyświetl plik

@ -57,7 +57,7 @@ void adc_oneshot_hal_setup(adc_oneshot_hal_ctx_t *hal, adc_channel_t chan)
#endif
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
adc_ll_digi_clk_sel(0);
adc_ll_digi_clk_sel(ADC_DIGI_CLK_SRC_DEFAULT);
#else
adc_ll_set_sar_clk_div(unit, ADC_HAL_SAR_CLK_DIV_DEFAULT(unit));
if (unit == ADC_UNIT_2) {

Wyświetl plik

@ -13,8 +13,10 @@
#include "soc/adc_periph.h"
#include "soc/rtc_io_struct.h"
#include "soc/sens_struct.h"
#include "soc/sens_reg.h"
#include "soc/syscon_struct.h"
#include "soc/rtc_cntl_struct.h"
#include "soc/clk_tree_defs.h"
#ifdef __cplusplus
extern "C" {

Wyświetl plik

@ -14,6 +14,7 @@
#include "soc/apb_saradc_reg.h"
#include "soc/rtc_cntl_struct.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/clk_tree_defs.h"
#include "hal/misc.h"
#include "hal/assert.h"
#include "hal/adc_types.h"
@ -33,9 +34,9 @@ extern "C" {
#define ADC_LL_EVENT_ADC2_ONESHOT_DONE BIT(30)
typedef enum {
ADC_POWER_BY_FSM, /*!< ADC XPD controled by FSM. Used for polling mode */
ADC_POWER_SW_ON, /*!< ADC XPD controled by SW. power on. Used for DMA mode */
ADC_POWER_SW_OFF, /*!< ADC XPD controled by SW. power off. */
ADC_POWER_BY_FSM, /*!< ADC XPD controlled by FSM. Used for polling mode */
ADC_POWER_SW_ON, /*!< ADC XPD controlled by SW. power on. Used for DMA mode */
ADC_POWER_SW_OFF, /*!< ADC XPD controlled by SW. power off. */
ADC_POWER_MAX, /*!< For parameter check. */
} adc_ll_power_t;
@ -93,7 +94,7 @@ static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
*/
static inline void adc_ll_digi_set_clk_div(uint32_t div)
{
/* ADC clock devided from digital controller clock clk */
/* ADC clock divided from digital controller clock clk */
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.saradc_ctrl, saradc_saradc_sar_clk_div, div);
}
@ -141,15 +142,11 @@ static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div
/**
* Enable clock and select clock source for ADC digital controller.
*
* @param use_apll true: use APLL clock; false: use APB clock.
* @param clk_src clock source for ADC digital controller.
*/
static inline void adc_ll_digi_clk_sel(bool use_apll)
static inline void adc_ll_digi_clk_sel(adc_continuous_clk_src_t clk_src)
{
if (use_apll) {
APB_SARADC.saradc_apb_adc_clkm_conf.saradc_reg_clk_sel = 1; // APLL clock
} else {
APB_SARADC.saradc_apb_adc_clkm_conf.saradc_reg_clk_sel = 2; // APB clock
}
APB_SARADC.saradc_apb_adc_clkm_conf.saradc_reg_clk_sel = 2;
APB_SARADC.saradc_ctrl.saradc_saradc_sar_clk_gated = 1;
}

Wyświetl plik

@ -14,6 +14,7 @@
#include "soc/apb_saradc_reg.h"
#include "soc/rtc_cntl_struct.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/clk_tree_defs.h"
#include "hal/misc.h"
#include "hal/assert.h"
#include "hal/adc_types.h"
@ -35,14 +36,14 @@ extern "C" {
#define ADC_LL_EVENT_ADC1_ONESHOT_DONE BIT(31)
#define ADC_LL_EVENT_ADC2_ONESHOT_DONE BIT(30)
#define ADC_LL_EVENT_THRES0_HIGH BIT(29)
#define ADC_LL_event_THRES1_HIGH BIT(28)
#define ADC_LL_event_THRES0_LOW BIT(27)
#define ADC_LL_EVENT_THRES1_HIGH BIT(28)
#define ADC_LL_EVENT_THRES0_LOW BIT(27)
#define ADC_LL_EVENT_THRES1_LOW BIT(26)
typedef enum {
ADC_POWER_BY_FSM, /*!< ADC XPD controled by FSM. Used for polling mode */
ADC_POWER_SW_ON, /*!< ADC XPD controled by SW. power on. Used for DMA mode */
ADC_POWER_SW_OFF, /*!< ADC XPD controled by SW. power off. */
ADC_POWER_BY_FSM, /*!< ADC XPD controlled by FSM. Used for polling mode */
ADC_POWER_SW_ON, /*!< ADC XPD controlled by SW. power on. Used for DMA mode */
ADC_POWER_SW_OFF, /*!< ADC XPD controlled by SW. power off. */
ADC_POWER_MAX, /*!< For parameter check. */
} adc_ll_power_t;
@ -62,11 +63,11 @@ typedef enum {
* @brief ADC digital controller (DMA mode) work mode.
*
* @note The conversion mode affects the sampling frequency:
* ESP32C3 only support ALTER_UNIT mode
* ALTER_UNIT : When the measurement is triggered, ADC1 or ADC2 samples alternately.
* ESP32C3 only support ONLY_ADC1 mode
* SINGLE_UNIT_1: When the measurement is triggered, only ADC1 is sampled once.
*/
typedef enum {
ADC_LL_DIGI_CONV_ALTER_UNIT = 0, // Use both ADC1 and ADC2 for conversion by turn. e.g. ADC1 -> ADC2 -> ADC1 -> ADC2 .....
ADC_LL_DIGI_CONV_ONLY_ADC1 = 0, // Only use ADC1 for conversion
} adc_ll_digi_convert_mode_t;
typedef struct {
@ -124,7 +125,7 @@ static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
*/
static inline void adc_ll_digi_set_clk_div(uint32_t div)
{
/* ADC clock devided from digital controller clock clk */
/* ADC clock divided from digital controller clock clk */
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.ctrl, sar_clk_div, div);
}
@ -159,7 +160,7 @@ static inline void adc_ll_digi_convert_limit_enable(bool enable)
*/
static inline void adc_ll_digi_set_convert_mode(adc_ll_digi_convert_mode_t mode)
{
//ESP32C3 only supports ADC_CONV_ALTER_UNIT mode
//ESP32C3 only supports ADC_LL_DIGI_CONV_ONLY_ADC1 mode
}
/**
@ -283,15 +284,12 @@ static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div
/**
* Enable clock and select clock source for ADC digital controller.
*
* @param use_apll true: use APLL clock; false: use APB clock.
* @param clk_src clock source for ADC digital controller.
*/
static inline void adc_ll_digi_clk_sel(bool use_apll)
static inline void adc_ll_digi_clk_sel(adc_continuous_clk_src_t clk_src)
{
if (use_apll) {
APB_SARADC.apb_adc_clkm_conf.clk_sel = 1; // APLL clock
} else {
APB_SARADC.apb_adc_clkm_conf.clk_sel = 2; // APB clock
}
// Only support APB clock, should always set to 1 or 2
APB_SARADC.apb_adc_clkm_conf.clk_sel = 2;
APB_SARADC.ctrl.sar_clk_gated = 1;
}

Wyświetl plik

@ -0,0 +1,28 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
/*---------------------------------------------------------------
Single Read
---------------------------------------------------------------*/
#define ADC_HAL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_HAL_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) (2)
/*---------------------------------------------------------------
DMA Read
---------------------------------------------------------------*/
#define ADC_HAL_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_HAL_FSM_RSTB_WAIT_DEFAULT (8)
#define ADC_HAL_FSM_START_WAIT_DEFAULT (5)
#define ADC_HAL_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_HAL_SAMPLE_CYCLE_DEFAULT (2)
#define ADC_HAL_DIGI_SAR_CLK_DIV_DEFAULT (1)
/*---------------------------------------------------------------
PWDET (Power Detect)
---------------------------------------------------------------*/
#define ADC_HAL_PWDET_CCT_DEFAULT (4)

Wyświetl plik

@ -0,0 +1,741 @@
/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdbool.h>
#include <stdlib.h>
#include "esp_attr.h"
#include "soc/adc_periph.h"
#include "soc/apb_saradc_struct.h"
#include "soc/apb_saradc_reg.h"
#include "soc/pmu_reg.h"
#include "soc/clk_tree_defs.h"
#include "soc/pcr_struct.h"
#include "hal/misc.h"
#include "hal/assert.h"
#include "hal/adc_types.h"
#include "hal/adc_types_private.h"
#include "hal/regi2c_ctrl.h"
#include "hal/sar_ctrl_ll.h"
#include "soc/regi2c_saradc.h"
#ifdef __cplusplus
extern "C" {
#endif
#define ADC_LL_CLKM_DIV_NUM_DEFAULT 15
#define ADC_LL_CLKM_DIV_B_DEFAULT 1
#define ADC_LL_CLKM_DIV_A_DEFAULT 0
#define ADC_LL_DEFAULT_CONV_LIMIT_EN 0
#define ADC_LL_DEFAULT_CONV_LIMIT_NUM 10
#define ADC_LL_EVENT_ADC1_ONESHOT_DONE BIT(31)
#define ADC_LL_EVENT_ADC2_ONESHOT_DONE BIT(30)
#define ADC_LL_EVENT_THRES0_HIGH BIT(29)
#define ADC_LL_EVENT_THRES1_HIGH BIT(28)
#define ADC_LL_EVENT_THRES0_LOW BIT(27)
#define ADC_LL_EVENT_THRES1_LOW BIT(26)
typedef enum {
ADC_POWER_BY_FSM = SAR_CTRL_LL_POWER_FSM, /*!< ADC XPD controlled by FSM. Used for polling mode */
ADC_POWER_SW_ON = SAR_CTRL_LL_POWER_ON, /*!< ADC XPD controlled by SW. power on. Used for DMA mode */
ADC_POWER_SW_OFF = SAR_CTRL_LL_POWER_OFF, /*!< ADC XPD controlled by SW. power off. */
ADC_POWER_MAX, /*!< For parameter check. */
} adc_ll_power_t;
typedef enum {
ADC_LL_CTRL_DIG = 0, ///< ADC digital controller
} adc_ll_controller_t;
/**
* @brief ADC digital controller (DMA mode) work mode.
*
* @note The conversion mode affects the sampling frequency:
* ESP32C6 only support ONLY_ADC1 mode
* SINGLE_UNIT_1: When the measurement is triggered, only ADC1 is sampled once.
*/
typedef enum {
ADC_LL_DIGI_CONV_ONLY_ADC1 = 0, // Only use ADC1 for conversion
} adc_ll_digi_convert_mode_t;
typedef struct {
union {
struct {
uint8_t atten: 2;
uint8_t channel: 3;
uint8_t unit: 1;
uint8_t reserved: 2;
};
uint8_t val;
};
} __attribute__((packed)) adc_ll_digi_pattern_table_t;
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
/**
* Set adc fsm interval parameter for digital controller. These values are fixed for same platforms.
*
* @param rst_wait cycles between DIG ADC controller reset ADC sensor and start ADC sensor.
* @param start_wait Delay time after open xpd.
* @param standby_wait Delay time to close xpd.
*/
static inline void adc_ll_digi_set_fsm_time(uint32_t rst_wait, uint32_t start_wait, uint32_t standby_wait)
{
// Internal FSM reset wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.saradc_fsm_wait, saradc_saradc_rstb_wait, rst_wait);
// Internal FSM start wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.saradc_fsm_wait, saradc_saradc_xpd_wait, start_wait);
// Internal FSM standby wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.saradc_fsm_wait, saradc_saradc_standby_wait, standby_wait);
}
/**
* Set adc sample cycle for digital controller.
*
* @note Normally, please use default value.
* @param sample_cycle Cycles between DIG ADC controller start ADC sensor and beginning to receive data from sensor.
* Range: 2 ~ 0xFF.
*/
static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
{
/* Peripheral reg i2c has powered up in rtc_init, write directly */
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_SAMPLE_CYCLE_ADDR, sample_cycle);
}
/**
* Set SAR ADC module clock division factor.
* SAR ADC clock divided from digital controller clock.
*
* @param div Division factor.
*/
static inline void adc_ll_digi_set_clk_div(uint32_t div)
{
/* ADC clock divided from digital controller clock clk */
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.saradc_ctrl, saradc_saradc_sar_clk_div, div);
}
/**
* Set adc max conversion number for digital controller.
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
*
* @param meas_num Max conversion number. Range: 0 ~ 255.
*/
static inline void adc_ll_digi_set_convert_limit_num(uint32_t meas_num)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.saradc_ctrl2, saradc_saradc_max_meas_num, meas_num);
}
/**
* Enable max conversion number detection for digital controller.
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
*
* @param enable true: enable; false: disable
*/
static inline void adc_ll_digi_convert_limit_enable(bool enable)
{
APB_SARADC.saradc_ctrl2.saradc_saradc_meas_num_limit = enable;
}
/**
* Set adc conversion mode for digital controller.
*
* @note ESP32C6 only support ADC1 single mode.
*
* @param mode Conversion mode select.
*/
static inline void adc_ll_digi_set_convert_mode(adc_ll_digi_convert_mode_t mode)
{
//ESP32C6 only supports ADC_LL_DIGI_CONV_ONLY_ADC1 mode
}
/**
* Set pattern table length for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 4 items, in which channel selection,
* and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 8 different rules before repeating itself.
*
* @param adc_n ADC unit.
* @param patt_len Items range: 1 ~ 8.
*/
static inline void adc_ll_digi_set_pattern_table_len(adc_unit_t adc_n, uint32_t patt_len)
{
APB_SARADC.saradc_ctrl.saradc_saradc_sar_patt_len = patt_len - 1;
}
/**
* Set pattern table for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 4 items, in which channel selection,
* resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 8 different rules before repeating itself.
*
* @param adc_n ADC unit.
* @param pattern_index Items index. Range: 0 ~ 7.
* @param pattern Stored conversion rules.
*/
static inline void adc_ll_digi_set_pattern_table(adc_unit_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
{
uint32_t tab;
uint8_t index = pattern_index / 4;
uint8_t offset = (pattern_index % 4) * 6;
adc_ll_digi_pattern_table_t pattern = {0};
pattern.val = (table.atten & 0x3) | ((table.channel & 0x7) << 2) | ((table.unit & 0x1) << 5);
if (index == 0) {
tab = APB_SARADC.saradc_sar_patt_tab1.saradc_saradc_sar_patt_tab1; // Read old register value
tab &= (~(0xFC0000 >> offset)); // Clear old data
tab |= ((uint32_t)(pattern.val & 0x3F) << 18) >> offset; // Fill in the new data
APB_SARADC.saradc_sar_patt_tab1.saradc_saradc_sar_patt_tab1 = tab; // Write back
} else {
tab = APB_SARADC.saradc_sar_patt_tab2.saradc_saradc_sar_patt_tab2; // Read old register value
tab &= (~(0xFC0000 >> offset)); // Clear old data
tab |= ((uint32_t)(pattern.val & 0x3F) << 18) >> offset; // Fill in the new data
APB_SARADC.saradc_sar_patt_tab2.saradc_saradc_sar_patt_tab2 = tab; // Write back
}
}
/**
* Reset the pattern table pointer, then take the measurement rule from table header in next measurement.
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_clear_pattern_table(adc_unit_t adc_n)
{
APB_SARADC.saradc_ctrl.saradc_saradc_sar_patt_p_clear = 1;
APB_SARADC.saradc_ctrl.saradc_saradc_sar_patt_p_clear = 0;
}
/**
* Sets the number of cycles required for the conversion to complete and wait for the arbiter to stabilize.
*
* @note Only ADC2 have arbiter function.
* @param cycle range: 0 ~ 4.
*/
static inline void adc_ll_digi_set_arbiter_stable_cycle(uint32_t cycle)
{
APB_SARADC.saradc_ctrl.saradc_saradc_wait_arb_cycle = cycle;
}
/**
* ADC Digital controller output data invert or not.
*
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_ll_digi_output_invert(adc_unit_t adc_n, bool inv_en)
{
if (adc_n == ADC_UNIT_1) {
APB_SARADC.saradc_ctrl2.saradc_saradc_sar1_inv = inv_en; // Enable / Disable ADC data invert
}
}
/**
* Set the interval clock cycle for the digital controller to trigger the measurement.
* Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval.
*
* @note The trigger interval should not be smaller than the sampling time of the SAR ADC.
* @param cycle The clock cycle (trigger interval) of the measurement. Range: 30 ~ 4095.
*/
static inline void adc_ll_digi_set_trigger_interval(uint32_t cycle)
{
APB_SARADC.saradc_ctrl2.saradc_saradc_timer_target = cycle;
}
/**
* Enable digital controller timer to trigger the measurement.
*/
static inline void adc_ll_digi_trigger_enable(void)
{
APB_SARADC.saradc_ctrl2.saradc_saradc_timer_en = 1;
}
/**
* Disable digital controller timer to trigger the measurement.
*/
static inline void adc_ll_digi_trigger_disable(void)
{
APB_SARADC.saradc_ctrl2.saradc_saradc_timer_en = 0;
}
/**
* Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
* Expression: controller_clk = (APLL or APB) / (div_num + div_a / div_b + 1).
*
* @param div_num Division factor. Range: 0 ~ 255.
* @param div_b Division factor. Range: 1 ~ 63.
* @param div_a Division factor. Range: 0 ~ 63.
*/
static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div_b, uint32_t div_a)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(PCR.saradc_clkm_conf, saradc_clkm_div_num, div_num);
PCR.saradc_clkm_conf.saradc_clkm_div_b = div_b;
PCR.saradc_clkm_conf.saradc_clkm_div_a = div_a;
}
/**
* Enable clock and select clock source for ADC digital controller.
*
* @param clk_src clock source for ADC digital controller.
*/
static inline void adc_ll_digi_clk_sel(adc_continuous_clk_src_t clk_src)
{
switch (clk_src) {
case ADC_DIGI_CLK_SRC_XTAL:
PCR.saradc_clkm_conf.saradc_clkm_sel = 0;
break;
case ADC_DIGI_CLK_SRC_PLL_F80M:
PCR.saradc_clkm_conf.saradc_clkm_sel = 1;
break;
case ADC_DIGI_CLK_SRC_RC_FAST:
PCR.saradc_clkm_conf.saradc_clkm_sel = 2;
break;
default:
HAL_ASSERT(false && "unsupported clock");
}
// Enable ADC_CTRL_CLK (i.e. digital domain clock)
APB_SARADC.saradc_ctrl.saradc_saradc_sar_clk_gated = 1;
}
/**
* Disable clock for ADC digital controller.
*/
static inline void adc_ll_digi_controller_clk_disable(void)
{
APB_SARADC.saradc_ctrl.saradc_saradc_sar_clk_gated = 0;
}
/**
* Reset adc digital controller filter.
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_reset(adc_unit_t adc_n)
{
APB_SARADC.saradc_filter_ctrl0.saradc_apb_saradc_filter_reset = 1;
}
/**
* Set adc digital controller filter factor.
*
* @note If the channel info is not supported, the filter function will not be enabled.
* @param idx ADC filter unit.
* @param filter Filter config. Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
static inline void adc_ll_digi_filter_set_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter)
{
if (idx == ADC_DIGI_FILTER_IDX0) {
APB_SARADC.saradc_filter_ctrl0.saradc_apb_saradc_filter_channel0 = (filter->adc_unit << 3) | (filter->channel & 0x7);
APB_SARADC.saradc_filter_ctrl1.saradc_apb_saradc_filter_factor0 = filter->mode;
} else if (idx == ADC_DIGI_FILTER_IDX1) {
APB_SARADC.saradc_filter_ctrl0.saradc_apb_saradc_filter_channel1 = (filter->adc_unit << 3) | (filter->channel & 0x7);
APB_SARADC.saradc_filter_ctrl1.saradc_apb_saradc_filter_factor1 = filter->mode;
}
}
/**
* Get adc digital controller filter factor.
*
* @param adc_n ADC unit.
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
static inline void adc_ll_digi_filter_get_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter)
{
if (idx == ADC_DIGI_FILTER_IDX0) {
filter->adc_unit = (APB_SARADC.saradc_filter_ctrl0.saradc_apb_saradc_filter_channel0 >> 3) & 0x1;
filter->channel = APB_SARADC.saradc_filter_ctrl0.saradc_apb_saradc_filter_channel0 & 0x7;
filter->mode = APB_SARADC.saradc_filter_ctrl1.saradc_apb_saradc_filter_factor0;
} else if (idx == ADC_DIGI_FILTER_IDX1) {
filter->adc_unit = (APB_SARADC.saradc_filter_ctrl0.saradc_apb_saradc_filter_channel1 >> 3) & 0x1;
filter->channel = APB_SARADC.saradc_filter_ctrl0.saradc_apb_saradc_filter_channel1 & 0x7;
filter->mode = APB_SARADC.saradc_filter_ctrl1.saradc_apb_saradc_filter_factor1;
}
}
/**
* Disable adc digital controller filter.
* Filtering the ADC data to obtain smooth data at higher sampling rates.
*
* @note If the channel info is not supported, the filter function will not be enabled.
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_disable(adc_digi_filter_idx_t idx)
{
if (idx == ADC_DIGI_FILTER_IDX0) {
APB_SARADC.saradc_filter_ctrl0.saradc_apb_saradc_filter_channel0 = 0xF;
APB_SARADC.saradc_filter_ctrl1.saradc_apb_saradc_filter_factor0 = 0;
} else if (idx == ADC_DIGI_FILTER_IDX1) {
APB_SARADC.saradc_filter_ctrl0.saradc_apb_saradc_filter_channel1 = 0xF;
APB_SARADC.saradc_filter_ctrl1.saradc_apb_saradc_filter_factor1 = 0;
}
}
/**
* Set monitor mode of adc digital controller.
*
* @note If the channel info is not supported, the monitor function will not be enabled.
* @param adc_n ADC unit.
* @param is_larger true: If ADC_OUT > threshold, Generates monitor interrupt.
* false: If ADC_OUT < threshold, Generates monitor interrupt.
*/
static inline void adc_ll_digi_monitor_set_mode(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *cfg)
{
if (idx == ADC_DIGI_MONITOR_IDX0) {
APB_SARADC.saradc_thres0_ctrl.saradc_apb_saradc_thres0_channel = (cfg->adc_unit << 3) | (cfg->channel & 0x7);
APB_SARADC.saradc_thres0_ctrl.saradc_apb_saradc_thres0_high = cfg->h_threshold;
APB_SARADC.saradc_thres0_ctrl.saradc_apb_saradc_thres0_low = cfg->l_threshold;
} else { // ADC_DIGI_MONITOR_IDX1
APB_SARADC.saradc_thres1_ctrl.saradc_apb_saradc_thres1_channel = (cfg->adc_unit << 3) | (cfg->channel & 0x7);
APB_SARADC.saradc_thres1_ctrl.saradc_apb_saradc_thres1_low = cfg->h_threshold;
APB_SARADC.saradc_thres1_ctrl.saradc_apb_saradc_thres1_low = cfg->l_threshold;
}
}
/**
* Enable/disable monitor of adc digital controller.
*
* @note If the channel info is not supported, the monitor function will not be enabled.
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_monitor_disable(adc_digi_monitor_idx_t idx)
{
if (idx == ADC_DIGI_MONITOR_IDX0) {
APB_SARADC.saradc_thres0_ctrl.saradc_apb_saradc_thres0_channel = 0xF;
} else { // ADC_DIGI_MONITOR_IDX1
APB_SARADC.saradc_thres1_ctrl.saradc_apb_saradc_thres1_channel = 0xF;
}
}
/**
* Set DMA eof num of adc digital controller.
* If the number of measurements reaches `dma_eof_num`, then `dma_in_suc_eof` signal is generated.
*
* @param num eof num of DMA.
*/
static inline void adc_ll_digi_dma_set_eof_num(uint32_t num)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.saradc_dma_conf, saradc_apb_adc_eof_num, num);
}
/**
* Enable output data to DMA from adc digital controller.
*/
static inline void adc_ll_digi_dma_enable(void)
{
APB_SARADC.saradc_dma_conf.saradc_apb_adc_trans = 1;
}
/**
* Disable output data to DMA from adc digital controller.
*/
static inline void adc_ll_digi_dma_disable(void)
{
APB_SARADC.saradc_dma_conf.saradc_apb_adc_trans = 0;
}
/**
* Reset adc digital controller.
*/
static inline void adc_ll_digi_reset(void)
{
APB_SARADC.saradc_dma_conf.saradc_apb_adc_reset_fsm = 1;
APB_SARADC.saradc_dma_conf.saradc_apb_adc_reset_fsm = 0;
}
/*---------------------------------------------------------------
PWDET(Power detect) controller setting
---------------------------------------------------------------*/
/**
* Set adc cct for PWDET controller.
*
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
* @param cct Range: 0 ~ 7.
*/
static inline void adc_ll_pwdet_set_cct(uint32_t cct)
{
(void)cct;
}
/**
* Get adc cct for PWDET controller.
*
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
* @return cct Range: 0 ~ 7.
*/
static inline uint32_t adc_ll_pwdet_get_cct(void)
{
return 0;
}
/*---------------------------------------------------------------
Common setting
---------------------------------------------------------------*/
/**
* Set ADC module power management.
*
* @param manage Set ADC power status.
*/
static inline void adc_ll_set_power_manage(adc_ll_power_t manage)
{
/* Bit1 0:Fsm 1: SW mode
Bit0 0:SW mode power down 1: SW mode power on */
if (manage == ADC_POWER_SW_ON) {
APB_SARADC.saradc_ctrl.saradc_saradc_sar_clk_gated = 1;
APB_SARADC.saradc_ctrl.saradc_saradc_xpd_sar_force = 3;
} else if (manage == ADC_POWER_BY_FSM) {
APB_SARADC.saradc_ctrl.saradc_saradc_sar_clk_gated = 1;
APB_SARADC.saradc_ctrl.saradc_saradc_xpd_sar_force = 0;
} else if (manage == ADC_POWER_SW_OFF) {
APB_SARADC.saradc_ctrl.saradc_saradc_sar_clk_gated = 0;
APB_SARADC.saradc_ctrl.saradc_saradc_xpd_sar_force = 2;
}
}
__attribute__((always_inline))
static inline void adc_ll_set_controller(adc_unit_t adc_n, adc_ll_controller_t ctrl)
{
//Not used on ESP32C6
}
/* ADC calibration code. */
/**
* @brief Set common calibration configuration. Should be shared with other parts (PWDET).
*/
__attribute__((always_inline))
static inline void adc_ll_calibration_init(adc_unit_t adc_n)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_DREF_ADDR, 1);
}
/**
* Configure the registers for ADC calibration. You need to call the ``adc_ll_calibration_finish`` interface to resume after calibration.
*
* @note Different ADC units and different attenuation options use different calibration data (initial data).
*
* @param adc_n ADC index number.
* @param internal_gnd true: Disconnect from the IO port and use the internal GND as the calibration voltage.
* false: Use IO external voltage as calibration voltage.
*/
static inline void adc_ll_calibration_prepare(adc_unit_t adc_n, bool internal_gnd)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
/* Enable/disable internal connect GND (for calibration). */
if (internal_gnd) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 1);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
}
}
/**
* Resume register status after calibration.
*
* @param adc_n ADC index number.
*/
static inline void adc_ll_calibration_finish(adc_unit_t adc_n)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
}
/**
* Set the calibration result to ADC.
*
* @note Different ADC units and different attenuation options use different calibration data (initial data).
*
* @param adc_n ADC index number.
*/
__attribute__((always_inline))
static inline void adc_ll_set_calibration_param(adc_unit_t adc_n, uint32_t param)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
uint8_t msb = param >> 8;
uint8_t lsb = param & 0xFF;
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_HIGH_ADDR, msb);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_LOW_ADDR, lsb);
}
/*---------------------------------------------------------------
Oneshot Read
---------------------------------------------------------------*/
/**
* Set adc output data format for oneshot mode
*
* @note ESP32C6 Oneshot mode only supports 12bit.
* @param adc_n ADC unit.
* @param bits Output data bits width option.
*/
static inline void adc_oneshot_ll_set_output_bits(adc_unit_t adc_n, adc_bitwidth_t bits)
{
//ESP32C6 only supports 12bit, leave here for compatibility
HAL_ASSERT(bits == ADC_BITWIDTH_12 || bits == ADC_BITWIDTH_DEFAULT);
}
/**
* Enable adc channel to start convert.
*
* @note Only one channel can be selected for measurement.
*
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_oneshot_ll_set_channel(adc_unit_t adc_n, adc_channel_t channel)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
APB_SARADC.saradc_onetime_sample.saradc_saradc_onetime_channel = ((adc_n << 3) | channel);
}
/**
* Disable adc channel to start convert.
*
* @note Only one channel can be selected in once measurement.
*
* @param adc_n ADC unit.
*/
static inline void adc_oneshot_ll_disable_channel(adc_unit_t adc_n)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
APB_SARADC.saradc_onetime_sample.saradc_saradc_onetime_channel = ((adc_n << 3) | 0xF);
}
/**
* Start oneshot conversion by software
*
* @param val Usage: set to 1 to start the ADC conversion. The step signal should at least keep 3 ADC digital controller clock cycle,
* otherwise the step signal may not be captured by the ADC digital controller when its frequency is slow.
* This hardware limitation will be removed in future versions.
*/
static inline void adc_oneshot_ll_start(bool val)
{
APB_SARADC.saradc_onetime_sample.saradc_saradc_onetime_start = val;
}
/**
* Clear the event for each ADCn for Oneshot mode
*
* @param event ADC event
*/
static inline void adc_oneshot_ll_clear_event(uint32_t event_mask)
{
APB_SARADC.saradc_int_clr.val |= event_mask;
}
/**
* Check the event for each ADCn for Oneshot mode
*
* @param event ADC event
*
* @return
* -true : The conversion process is finish.
* -false : The conversion process is not finish.
*/
static inline bool adc_oneshot_ll_get_event(uint32_t event_mask)
{
return (APB_SARADC.saradc_int_raw.val & event_mask);
}
/**
* Get the converted value for each ADCn for controller.
*
* @param adc_n ADC unit.
* @return
* - Converted value.
*/
static inline uint32_t adc_oneshot_ll_get_raw_result(adc_unit_t adc_n)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
uint32_t ret_val = 0;
ret_val = APB_SARADC.saradc_sar1data_status.saradc_apb_saradc1_data & 0xfff;
return ret_val;
}
/**
* Analyze whether the obtained raw data is correct.
* ADC2 can use arbiter. The arbitration result is stored in the channel information of the returned data.
*
* @param adc_n ADC unit.
* @param raw_data ADC raw data input (convert value).
* @return
* - 1: The data is correct to use.
* - 0: The data is invalid.
*/
static inline bool adc_oneshot_ll_raw_check_valid(adc_unit_t adc_n, uint32_t raw_data)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
return true;
}
/**
* ADC module RTC output data invert or not.
*
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_oneshot_ll_output_invert(adc_unit_t adc_n, bool inv_en)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
(void)inv_en;
//For compatibility
}
/**
* Enable oneshot conversion trigger
*
* @param adc_n ADC unit
*/
static inline void adc_oneshot_ll_enable(adc_unit_t adc_n)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
APB_SARADC.saradc_onetime_sample.saradc_saradc1_onetime_sample = 1;
}
/**
* Disable oneshot conversion trigger for all the ADC units
*/
static inline void adc_oneshot_ll_disable_all_unit(void)
{
APB_SARADC.saradc_onetime_sample.saradc_saradc1_onetime_sample = 0;
APB_SARADC.saradc_onetime_sample.saradc_saradc2_onetime_sample = 0;
}
/**
* Set attenuation
*
* @note Attenuation is for all channels
*
* @param adc_n ADC unit
* @param channel ADC channel
* @param atten ADC attenuation
*/
static inline void adc_oneshot_ll_set_atten(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
(void)channel;
// Attenuation is for all channels, unit and channel are for compatibility
APB_SARADC.saradc_onetime_sample.saradc_saradc_onetime_atten = atten;
}
/**
* Get the attenuation of a particular channel on ADCn.
*
* @param adc_n ADC unit.
* @param channel ADCn channel number.
* @return atten The attenuation option.
*/
__attribute__((always_inline))
static inline adc_atten_t adc_ll_get_atten(adc_unit_t adc_n, adc_channel_t channel)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
(void)channel;
return (adc_atten_t)APB_SARADC.saradc_onetime_sample.saradc_saradc_onetime_atten;
}
#ifdef __cplusplus
}
#endif

Wyświetl plik

@ -16,6 +16,7 @@
#include "soc/apb_saradc_reg.h"
#include "soc/rtc_cntl_struct.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/clk_tree_defs.h"
#include "hal/misc.h"
#include "hal/regi2c_ctrl.h"
@ -35,9 +36,9 @@ extern "C" {
#define ADC_LL_EVENT_ADC2_ONESHOT_DONE BIT(30)
typedef enum {
ADC_POWER_BY_FSM, /*!< ADC XPD controled by FSM. Used for polling mode */
ADC_POWER_SW_ON, /*!< ADC XPD controled by SW. power on. Used for DMA mode */
ADC_POWER_SW_OFF, /*!< ADC XPD controled by SW. power off. */
ADC_POWER_BY_FSM, /*!< ADC XPD controlled by FSM. Used for polling mode */
ADC_POWER_SW_ON, /*!< ADC XPD controlled by SW. power on. Used for DMA mode */
ADC_POWER_SW_OFF, /*!< ADC XPD controlled by SW. power off. */
ADC_POWER_MAX, /*!< For parameter check. */
} adc_ll_power_t;
@ -57,11 +58,11 @@ typedef enum {
* @brief ADC digital controller (DMA mode) work mode.
*
* @note The conversion mode affects the sampling frequency:
* ESP32H4 only support ALTER_UNIT mode
* ALTER_UNIT : When the measurement is triggered, ADC1 or ADC2 samples alternately.
* ESP32H4 only support ONLY_ADC1 mode
* SINGLE_UNIT_1: When the measurement is triggered, only ADC1 is sampled once.
*/
typedef enum {
ADC_LL_DIGI_CONV_ALTER_UNIT = 0, // Use both ADC1 and ADC2 for conversion by turn. e.g. ADC1 -> ADC2 -> ADC1 -> ADC2 .....
ADC_LL_DIGI_CONV_ONLY_ADC1 = 0, // Only use ADC1 for conversion
} adc_ll_digi_convert_mode_t;
//These values should be set according to the HW
@ -130,7 +131,7 @@ static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
*/
static inline void adc_ll_digi_set_clk_div(uint32_t div)
{
/* ADC clock devided from digital controller clock clk */
/* ADC clock divided from digital controller clock clk */
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.ctrl, sar_clk_div, div);
}
@ -165,7 +166,7 @@ static inline void adc_ll_digi_convert_limit_enable(bool enable)
*/
static inline void adc_ll_digi_set_convert_mode(adc_ll_digi_convert_mode_t mode)
{
//ESP32H4 only supports ADC_CONV_ALTER_UNIT mode
//ESP32H4 only supports ADC_LL_DIGI_CONV_ONLY_ADC1 mode
}
/**
@ -289,15 +290,12 @@ static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div
/**
* Enable clock and select clock source for ADC digital controller.
*
* @param use_apll true: use APLL clock; false: use APB clock.
* @param clk_src clock source for ADC digital controller.
*/
static inline void adc_ll_digi_clk_sel(bool use_apll)
static inline void adc_ll_digi_clk_sel(adc_continuous_clk_src_t clk_src)
{
if (use_apll) {
APB_SARADC.apb_adc_clkm_conf.clk_sel = 1; // APLL clock
} else {
APB_SARADC.apb_adc_clkm_conf.clk_sel = 2; // APB clock
}
// TODO: temporary support
APB_SARADC.apb_adc_clkm_conf.clk_sel = 0;
APB_SARADC.ctrl.sar_clk_gated = 1;
}
@ -674,22 +672,6 @@ static inline void adc_ll_set_calibration_param(adc_unit_t adc_n, uint32_t param
}
/* Temp code end. */
/**
* Output ADCn inter reference voltage to ADC2 channels.
*
* This function routes the internal reference voltage of ADCn to one of
* ADC1's channels. This reference voltage can then be manually measured
* for calibration purposes.
*
* @param[in] adc ADC unit select
* @param[in] channel ADC1 channel number
* @param[in] en Enable/disable the reference voltage output
*/
static inline void adc_ll_vref_output(adc_unit_t adc, adc_channel_t channel, bool en)
{
abort();
}
/*---------------------------------------------------------------
Single Read
---------------------------------------------------------------*/

Wyświetl plik

@ -14,10 +14,12 @@
#include "hal/assert.h"
#include "soc/apb_saradc_struct.h"
#include "soc/sens_struct.h"
#include "soc/sens_reg.h"
#include "soc/apb_saradc_reg.h"
#include "soc/rtc_cntl_struct.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/regi2c_defs.h"
#include "soc/clk_tree_defs.h"
#include "hal/regi2c_ctrl.h"
#include "soc/regi2c_saradc.h"
@ -35,9 +37,9 @@ extern "C" {
#define ADC_LL_EVENT_ADC2_ONESHOT_DONE (1 << 1)
typedef enum {
ADC_POWER_BY_FSM, /*!< ADC XPD controled by FSM. Used for polling mode */
ADC_POWER_SW_ON, /*!< ADC XPD controled by SW. power on. Used for DMA mode */
ADC_POWER_SW_OFF, /*!< ADC XPD controled by SW. power off. */
ADC_POWER_BY_FSM, /*!< ADC XPD controlled by FSM. Used for polling mode */
ADC_POWER_SW_ON, /*!< ADC XPD controlled by SW. power on. Used for DMA mode */
ADC_POWER_SW_OFF, /*!< ADC XPD controlled by SW. power off. */
ADC_POWER_MAX, /*!< For parameter check. */
} adc_ll_power_t;
@ -145,7 +147,7 @@ static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
*/
static inline void adc_ll_digi_set_clk_div(uint32_t div)
{
/* ADC clock devided from digital controller clock clk */
/* ADC clock divided from digital controller clock clk */
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.ctrl, sar_clk_div, div);
}
@ -335,15 +337,11 @@ static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div
/**
* Enable clock and select clock source for ADC digital controller.
*
* @param use_apll true: use APLL clock; false: use APB clock.
* @param clk_src clock source for ADC digital controller.
*/
static inline void adc_ll_digi_clk_sel(bool use_apll)
static inline void adc_ll_digi_clk_sel(adc_continuous_clk_src_t clk_src)
{
if (use_apll) {
APB_SARADC.apb_adc_clkm_conf.clk_sel = 1; // APLL clock
} else {
APB_SARADC.apb_adc_clkm_conf.clk_sel = 2; // APB clock
}
APB_SARADC.apb_adc_clkm_conf.clk_sel = (clk_src == ADC_DIGI_CLK_SRC_APLL) ? 1 : 2;
APB_SARADC.ctrl.sar_clk_gated = 1;
}
@ -568,7 +566,7 @@ static inline uint32_t adc_ll_pwdet_get_cct(void)
RTC controller setting
---------------------------------------------------------------*/
/**
* ADC SAR clock division factor setting. ADC SAR clock devided from `RTC_FAST_CLK`.
* ADC SAR clock division factor setting. ADC SAR clock divided from `RTC_FAST_CLK`.
*
* @param div Division factor.
*/
@ -798,7 +796,7 @@ static inline void adc_ll_rtc_set_arbiter_stable_cycle(uint32_t cycle)
*
* When VDD_A is 3.3V:
*
* - 0dB attenuaton (ADC_ATTEN_DB_0) gives full-scale voltage 1.1V
* - 0dB attenuation (ADC_ATTEN_DB_0) gives full-scale voltage 1.1V
* - 2.5dB attenuation (ADC_ATTEN_DB_2_5) gives full-scale voltage 1.5V
* - 6dB attenuation (ADC_ATTEN_DB_6) gives full-scale voltage 2.2V
* - 11dB attenuation (ADC_ATTEN_DB_11) gives full-scale voltage 3.9V (see note below)
@ -810,7 +808,7 @@ static inline void adc_ll_rtc_set_arbiter_stable_cycle(uint32_t cycle)
*
* Due to ADC characteristics, most accurate results are obtained within the following approximate voltage ranges:
*
* - 0dB attenuaton (ADC_ATTEN_DB_0) between 100 and 950mV
* - 0dB attenuation (ADC_ATTEN_DB_0) between 100 and 950mV
* - 2.5dB attenuation (ADC_ATTEN_DB_2_5) between 100 and 1250mV
* - 6dB attenuation (ADC_ATTEN_DB_6) between 150 to 1750mV
* - 11dB attenuation (ADC_ATTEN_DB_11) between 150 to 2450mV

Wyświetl plik

@ -19,6 +19,7 @@
#include "soc/rtc_cntl_struct.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/regi2c_defs.h"
#include "soc/clk_tree_defs.h"
#include "hal/regi2c_ctrl.h"
#include "soc/regi2c_saradc.h"
@ -36,9 +37,9 @@ extern "C" {
#define ADC_LL_EVENT_ADC2_ONESHOT_DONE (1 << 1)
typedef enum {
ADC_POWER_BY_FSM, /*!< ADC XPD controled by FSM. Used for polling mode */
ADC_POWER_SW_ON, /*!< ADC XPD controled by SW. power on. Used for DMA mode */
ADC_POWER_SW_OFF, /*!< ADC XPD controled by SW. power off. */
ADC_POWER_BY_FSM, /*!< ADC XPD controlled by FSM. Used for polling mode */
ADC_POWER_SW_ON, /*!< ADC XPD controlled by SW. power on. Used for DMA mode */
ADC_POWER_SW_OFF, /*!< ADC XPD controlled by SW. power off. */
ADC_POWER_MAX, /*!< For parameter check. */
} adc_ll_power_t;
@ -341,15 +342,11 @@ static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div
/**
* Enable clock and select clock source for ADC digital controller.
*
* @param use_apll true: use APLL clock; false: use APB clock.
* @param clk_src clock source for ADC digital controller.
*/
static inline void adc_ll_digi_clk_sel(bool use_apll)
static inline void adc_ll_digi_clk_sel(adc_continuous_clk_src_t clk_src)
{
if (use_apll) {
APB_SARADC.apb_adc_clkm_conf.clk_sel = 1; // APLL clock
} else {
APB_SARADC.apb_adc_clkm_conf.clk_sel = 2; // APB clock
}
APB_SARADC.apb_adc_clkm_conf.clk_sel = (clk_src == ADC_DIGI_CLK_SRC_APB) ? 2 : 1;
APB_SARADC.ctrl.sar_clk_gated = 1;
}
@ -787,7 +784,7 @@ static inline void adc_ll_vref_output(adc_unit_t adc, adc_channel_t channel, boo
RTC controller setting
---------------------------------------------------------------*/
/**
* ADC SAR clock division factor setting. ADC SAR clock devided from `RTC_FAST_CLK`.
* ADC SAR clock division factor setting. ADC SAR clock divided from `RTC_FAST_CLK`.
*
* @param div Division factor.
*/
@ -1017,7 +1014,7 @@ static inline void adc_ll_rtc_set_arbiter_stable_cycle(uint32_t cycle)
*
* When VDD_A is 3.3V:
*
* - 0dB attenuaton (ADC_ATTEN_DB_0) gives full-scale voltage 1.1V
* - 0dB attenuation (ADC_ATTEN_DB_0) gives full-scale voltage 1.1V
* - 2.5dB attenuation (ADC_ATTEN_DB_2_5) gives full-scale voltage 1.5V
* - 6dB attenuation (ADC_ATTEN_DB_6) gives full-scale voltage 2.2V
* - 11dB attenuation (ADC_ATTEN_DB_11) gives full-scale voltage 3.9V (see note below)
@ -1029,7 +1026,7 @@ static inline void adc_ll_rtc_set_arbiter_stable_cycle(uint32_t cycle)
*
* Due to ADC characteristics, most accurate results are obtained within the following approximate voltage ranges:
*
* - 0dB attenuaton (ADC_ATTEN_DB_0) between 100 and 950mV
* - 0dB attenuation (ADC_ATTEN_DB_0) between 100 and 950mV
* - 2.5dB attenuation (ADC_ATTEN_DB_2_5) between 100 and 1250mV
* - 6dB attenuation (ADC_ATTEN_DB_6) between 150 to 1750mV
* - 11dB attenuation (ADC_ATTEN_DB_11) between 150 to 2450mV

Wyświetl plik

@ -116,20 +116,6 @@ typedef struct adc_hal_digi_ctrlr_cfg_t {
*/
#define adc_hal_pwdet_get_cct() adc_ll_pwdet_get_cct()
/**
* Enable/disable the output of ADCn's internal reference voltage to one of ADC2's channels.
*
* This function routes the internal reference voltage of ADCn to one of
* ADC2's channels. This reference voltage can then be manually measured
* for calibration purposes.
*
* @note ESP32 only supports output of ADC2's internal reference voltage.
* @param[in] adc ADC unit select
* @param[in] channel ADC2 channel number
* @param[in] en Enable/disable the reference voltage output
*/
#define adc_hal_vref_output(adc, channel, en) adc_ll_vref_output(adc, channel, en)
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/

Wyświetl plik

@ -9,6 +9,7 @@
#include <stdint.h>
#include "sdkconfig.h"
#include "soc/soc_caps.h"
#include "soc/clk_tree_defs.h"
#include "esp_attr.h"
/**
@ -78,6 +79,14 @@ typedef enum {
ADC_DIGI_OUTPUT_FORMAT_TYPE2, ///< See `adc_digi_output_data_t.type2`
} adc_digi_output_format_t;
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
typedef soc_periph_adc_digi_clk_src_t adc_oneshot_clk_src_t; ///< Clock source type of oneshot mode which uses digital controller
typedef soc_periph_adc_digi_clk_src_t adc_continuous_clk_src_t; ///< Clock source type of continuous mode which uses digital controller
#elif SOC_ADC_RTC_CTRL_SUPPORTED
typedef soc_periph_adc_rtc_clk_src_t adc_oneshot_clk_src_t; ///< Clock source type of oneshot mode which uses RTC controller
typedef soc_periph_adc_digi_clk_src_t adc_continuous_clk_src_t; ///< Clock source type of continuous mode which uses digital controller
#endif
/**
* @brief ADC digital controller pattern configuration
*/
@ -155,6 +164,26 @@ typedef struct {
uint32_t val; /*!<Raw data value */
};
} adc_digi_output_data_t;
#elif CONFIG_IDF_TARGET_ESP32C6
/**
* @brief ADC digital controller (DMA mode) output data format.
* Used to analyze the acquired ADC (DMA) data.
*/
typedef struct {
union {
struct {
uint32_t data: 12; /*!<ADC real output data info. Resolution: 12 bit. */
uint32_t reserved12: 1; /*!<Reserved12. */
uint32_t channel: 4; /*!<ADC channel index info.
If (channel < ADC_CHANNEL_MAX), The data is valid.
If (channel > ADC_CHANNEL_MAX), The data is invalid. */
uint32_t reserved17_31: 15; /*!<Reserved 17-31. */
} type2; /*!<When the configured output format is 12bit. */
uint32_t val; /*!<Raw data value */
};
} adc_digi_output_data_t;
#endif
#if CONFIG_IDF_TARGET_ESP32S2

Wyświetl plik

@ -133,8 +133,6 @@ typedef enum {
/**
* @brief ADC digital controller (DMA mode) monitor configuration.
*
* @note For ESP32-S2, The monitor object of the ADC is fixed.
* @note For ESP32-S2, The monitor object is always all enabled channels.
*/
typedef struct {
adc_unit_t adc_unit; /*!<Set adc unit number for monitor.
@ -142,12 +140,8 @@ typedef struct {
adc_channel_t channel; /*!<Set adc channel number for monitor.
For ESP32-S2, it's always `ADC_CHANNEL_MAX` */
adc_digi_monitor_mode_t mode; /*!<Set adc monitor mode. See ``adc_digi_monitor_mode_t``. */
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32H4 || CONFIG_IDF_TARGET_ESP32C2
uint32_t h_threshold; /*!<Set monitor threshold of adc digital controller. */
uint32_t l_threshold; /*!<Set monitor threshold of adc digital controller. */
#else
uint32_t threshold; /*!<Set monitor threshold of adc digital controller. */
#endif
uint32_t h_threshold; /*!<Set monitor threshold of adc digital controller. */
uint32_t l_threshold; /*!<Set monitor threshold of adc digital controller. */
} adc_digi_monitor_t;
#endif //#if SOC_ADC_MONITOR_SUPPORTED

Wyświetl plik

@ -332,6 +332,37 @@ typedef enum {
TWAI_CLK_SRC_DEFAULT = SOC_MOD_CLK_APB, /*!< Select APB as the default clock choice */
} soc_periph_twai_clk_src_t;
//////////////////////////////////////////////////ADC///////////////////////////////////////////////////////////////////
/**
* @brief Array initializer for all supported clock sources of ADC digital controller
*/
#define SOC_ADC_DIGI_CLKS {SOC_MOD_CLK_APLL, SOC_MOD_CLK_PLL_F160M}
/**
* @brief ADC digital controller clock source
* @note ADC DMA mode is clocked from I2S on ESP32, using `ADC_DIGI_` here for compatibility
* Its clock source is same as I2S
*/
typedef enum {
ADC_DIGI_CLK_SRC_PLL_F160M = SOC_MOD_CLK_PLL_F160M, /*!< Select F160M as the source clock */
ADC_DIGI_CLK_SRC_APLL = SOC_MOD_CLK_APLL, /*!< Select APLL as the source clock */
ADC_DIGI_CLK_SRC_DEFAULT = SOC_MOD_CLK_PLL_F160M, /*!< Select F160M as the default clock choice */
} soc_periph_adc_digi_clk_src_t;
/**
* @brief Array initializer for all supported clock sources of ADC RTC controller
*/
#define SOC_ADC_RTC_CLKS {SOC_MOD_CLK_RC_FAST}
/**
* @brief ADC RTC controller clock source
*/
typedef enum {
ADC_RTC_CLK_SRC_RC_FAST = SOC_MOD_CLK_RC_FAST, /*!< Select RC_FAST as the source clock */
ADC_RTC_CLK_SRC_DEFAULT = SOC_MOD_CLK_RC_FAST, /*!< Select RC_FAST as the default clock choice */
} soc_periph_adc_rtc_clk_src_t;
#ifdef __cplusplus
}
#endif

Wyświetl plik

@ -194,11 +194,27 @@ typedef enum {
* @brief Type of I2C clock source.
*/
typedef enum {
I2C_CLK_SRC_XTAL = SOC_MOD_CLK_XTAL,
I2C_CLK_SRC_RC_FAST = SOC_MOD_CLK_RC_FAST,
I2C_CLK_SRC_DEFAULT = SOC_MOD_CLK_XTAL,
I2C_CLK_SRC_XTAL = SOC_MOD_CLK_XTAL, /*!< Select XTAL as the source clock */
I2C_CLK_SRC_RC_FAST = SOC_MOD_CLK_RC_FAST, /*!< Select RC_FAST as the source clock */
I2C_CLK_SRC_DEFAULT = SOC_MOD_CLK_XTAL, /*!< Select XTAL as the default clock choice */
} soc_periph_i2c_clk_src_t;
//////////////////////////////////////////////////ADC///////////////////////////////////////////////////////////////////
/**
* @brief Array initializer for all supported clock sources of ADC digital controller
*/
#define SOC_ADC_DIGI_CLKS {SOC_MOD_CLK_XTAL, SOC_MOD_CLK_PLL_F80M}
/**
* @brief ADC digital controller clock source
*/
typedef enum {
ADC_DIGI_CLK_SRC_XTAL = SOC_MOD_CLK_XTAL, /*!< Select XTAL as the source clock */
ADC_DIGI_CLK_SRC_PLL_F80M = SOC_MOD_CLK_PLL_F80M, /*!< Select PLL_F80M as the source clock */
ADC_DIGI_CLK_SRC_DEFAULT = SOC_MOD_CLK_PLL_F80M, /*!< Select PLL_F80M as the default clock choice */
} soc_periph_adc_digi_clk_src_t;
#ifdef __cplusplus
}
#endif

Wyświetl plik

@ -65,7 +65,7 @@
#define SOC_ADC_DIGI_MAX_BITWIDTH (12)
#define SOC_ADC_DIGI_FILTER_NUM (2)
#define SOC_ADC_DIGI_MONITOR_NUM (2)
/*!< F_sample = F_digi_con / 2 / interval. F_digi_con = 5M for now. 30 <= interva <= 4095 */
/*!< F_sample = F_digi_con / 2 / interval. F_digi_con = 5M for now. 30 <= interval<= 4095 */
#define SOC_ADC_SAMPLE_FREQ_THRES_HIGH 83333
#define SOC_ADC_SAMPLE_FREQ_THRES_LOW 611

Wyświetl plik

@ -273,6 +273,21 @@ typedef enum {
TWAI_CLK_SRC_DEFAULT = SOC_MOD_CLK_APB, /*!< Select APB as the default clock choice */
} soc_periph_twai_clk_src_t;
//////////////////////////////////////////////////ADC///////////////////////////////////////////////////////////////////
/**
* @brief Array initializer for all supported clock sources of ADC digital controller
*/
#define SOC_ADC_DIGI_CLKS {SOC_MOD_CLK_APB}
/**
* @brief ADC digital controller clock source
*/
typedef enum {
ADC_DIGI_CLK_SRC_APB = SOC_MOD_CLK_APB, /*!< Select APB as the source clock */
ADC_DIGI_CLK_SRC_DEFAULT = SOC_MOD_CLK_APB, /*!< Select APB as the default clock choice */
} soc_periph_adc_digi_clk_src_t;
#ifdef __cplusplus
}
#endif

Wyświetl plik

@ -93,7 +93,7 @@
#define SOC_ADC_DIGI_DATA_BYTES_PER_CONV (4)
#define SOC_ADC_DIGI_FILTER_NUM (2)
#define SOC_ADC_DIGI_MONITOR_NUM (2)
/*!< F_sample = F_digi_con / 2 / interval. F_digi_con = 5M for now. 30 <= interva <= 4095 */
/*!< F_sample = F_digi_con / 2 / interval. F_digi_con = 5M for now. 30 <= interval <= 4095 */
#define SOC_ADC_SAMPLE_FREQ_THRES_HIGH 83333
#define SOC_ADC_SAMPLE_FREQ_THRES_LOW 611

Wyświetl plik

@ -18,11 +18,6 @@ set(srcs
"timer_periph.c"
"twai_periph.c")
# ESP32C6-TODO
list(REMOVE_ITEM srcs
"adc_periph.c" # TODO: IDF-5310
)
add_prefix(srcs "${CMAKE_CURRENT_LIST_DIR}/" "${srcs}")
target_sources(${COMPONENT_LIB} PRIVATE "${srcs}")

Wyświetl plik

@ -10,10 +10,12 @@
const int adc_channel_io_map[SOC_ADC_PERIPH_NUM][SOC_ADC_MAX_CHANNEL_NUM] = {
/* ADC1 */
{
ADC1_CHANNEL_0_GPIO_NUM, ADC1_CHANNEL_1_GPIO_NUM, ADC1_CHANNEL_2_GPIO_NUM, ADC1_CHANNEL_3_GPIO_NUM, ADC1_CHANNEL_4_GPIO_NUM
ADC1_CHANNEL_0_GPIO_NUM,
ADC1_CHANNEL_1_GPIO_NUM,
ADC1_CHANNEL_2_GPIO_NUM,
ADC1_CHANNEL_3_GPIO_NUM,
ADC1_CHANNEL_4_GPIO_NUM,
ADC1_CHANNEL_5_GPIO_NUM,
ADC1_CHANNEL_6_GPIO_NUM,
},
/* ADC2 */
{
ADC2_CHANNEL_0_GPIO_NUM, -1, -1, -1, -1
}
};

Wyświetl plik

@ -3,6 +3,10 @@
# using gen_soc_caps_kconfig.py, do not edit manually
#####################################################
config SOC_ADC_SUPPORTED
bool
default y
config SOC_DEDICATED_GPIO_SUPPORTED
bool
default y
@ -127,10 +131,6 @@ config SOC_ADC_DIG_CTRL_SUPPORTED
bool
default y
config SOC_ADC_ARBITER_SUPPORTED
bool
default y
config SOC_ADC_FILTER_SUPPORTED
bool
default y
@ -139,13 +139,17 @@ config SOC_ADC_MONITOR_SUPPORTED
bool
default y
config SOC_ADC_DMA_SUPPORTED
bool
default y
config SOC_ADC_PERIPH_NUM
int
default 2
default 1
config SOC_ADC_MAX_CHANNEL_NUM
int
default 5
default 7
config SOC_ADC_ATTEN_NUM
int
@ -163,6 +167,10 @@ config SOC_ADC_DIGI_MAX_BITWIDTH
int
default 12
config SOC_ADC_DIGI_MIN_BITWIDTH
int
default 12
config SOC_ADC_DIGI_FILTER_NUM
int
default 2
@ -171,6 +179,14 @@ config SOC_ADC_DIGI_MONITOR_NUM
int
default 2
config SOC_ADC_DIGI_RESULT_BYTES
int
default 4
config SOC_ADC_DIGI_DATA_BYTES_PER_CONV
int
default 4
config SOC_ADC_SAMPLE_FREQ_THRES_HIGH
int
default 83333

Wyświetl plik

@ -21,5 +21,8 @@
#define ADC1_GPIO4_CHANNEL ADC1_CHANNEL_4
#define ADC1_CHANNEL_4_GPIO_NUM 4
#define ADC2_GPIO5_CHANNEL ADC2_CHANNEL_0
#define ADC2_CHANNEL_0_GPIO_NUM 5
#define ADC1_GPIO5_CHANNEL ADC1_CHANNEL_5
#define ADC1_CHANNEL_5_GPIO_NUM 5
#define ADC1_GPIO6_CHANNEL ADC1_CHANNEL_6
#define ADC1_CHANNEL_6_GPIO_NUM 6

Wyświetl plik

@ -316,6 +316,23 @@ typedef enum {
TWAI_CLK_SRC_DEFAULT = SOC_MOD_CLK_XTAL, /*!< Select XTAL as the default clock choice */
} soc_periph_twai_clk_src_t;
//////////////////////////////////////////////////ADC///////////////////////////////////////////////////////////////////
/**
* @brief Array initializer for all supported clock sources of ADC digital controller
*/
#define SOC_ADC_DIGI_CLKS {SOC_MOD_CLK_XTAL, SOC_MOD_CLK_PLL_F80M, SOC_MOD_CLK_RC_FAST}
/**
* @brief ADC digital controller clock source
*/
typedef enum {
ADC_DIGI_CLK_SRC_XTAL = SOC_MOD_CLK_XTAL, /*!< Select XTAL as the source clock */
ADC_DIGI_CLK_SRC_PLL_F80M = SOC_MOD_CLK_PLL_F80M, /*!< Select PLL_F80M as the source clock */
ADC_DIGI_CLK_SRC_RC_FAST = SOC_MOD_CLK_RC_FAST, /*!< Select RC_FAST as the source clock */
ADC_DIGI_CLK_SRC_DEFAULT = SOC_MOD_CLK_PLL_F80M, /*!< Select PLL_F80M as the default clock choice */
} soc_periph_adc_digi_clk_src_t;
#ifdef __cplusplus
}
#endif

Wyświetl plik

@ -751,7 +751,7 @@ typedef union {
*/
uint32_t saradc_clkm_div_num:8;
/** saradc_clkm_sel : R/W; bitpos: [21:20]; default: 0;
* set this field to select clock-source. 0(default): XTAL, 1: 240MHz, 2: FOSC, 3:
* set this field to select clock-source. 0(default): XTAL, 1: 80MHz, 2: FOSC, 3:
* reserved.
*/
uint32_t saradc_clkm_sel:2;

Wyświetl plik

@ -25,7 +25,7 @@
#pragma once
/*-------------------------- COMMON CAPS ---------------------------------------*/
// #define SOC_ADC_SUPPORTED 1 // TODO: IDF-5310
#define SOC_ADC_SUPPORTED 1
#define SOC_DEDICATED_GPIO_SUPPORTED 1
#define SOC_GDMA_SUPPORTED 1
#define SOC_PCNT_SUPPORTED 1
@ -72,25 +72,28 @@
#define SOC_AES_SUPPORT_AES_128 (1)
#define SOC_AES_SUPPORT_AES_256 (1)
// TODO: IDF-5310 (Copy from esp32c3, need check)
/*-------------------------- ADC CAPS -------------------------------*/
/*!< SAR ADC Module*/
#define SOC_ADC_DIG_CTRL_SUPPORTED 1
#define SOC_ADC_ARBITER_SUPPORTED 1
#define SOC_ADC_FILTER_SUPPORTED 1
#define SOC_ADC_MONITOR_SUPPORTED 1
#define SOC_ADC_PERIPH_NUM (2)
#define SOC_ADC_CHANNEL_NUM(PERIPH_NUM) ((PERIPH_NUM==0)? 5 : 1)
#define SOC_ADC_MAX_CHANNEL_NUM (5)
#define SOC_ADC_DIG_SUPPORTED_UNIT(UNIT) 1 //Digital controller supported ADC unit
#define SOC_ADC_DMA_SUPPORTED 1
#define SOC_ADC_PERIPH_NUM (1U)
#define SOC_ADC_CHANNEL_NUM(PERIPH_NUM) (7)
#define SOC_ADC_MAX_CHANNEL_NUM (7)
#define SOC_ADC_ATTEN_NUM (4)
/*!< Digital */
#define SOC_ADC_DIGI_CONTROLLER_NUM (1U)
#define SOC_ADC_PATT_LEN_MAX (8) /*!< One pattern table, each contains 8 items. Each item takes 1 byte */
#define SOC_ADC_PATT_LEN_MAX (8) /*!< Two pattern tables, each contains 4 items. Each item takes 1 byte */
#define SOC_ADC_DIGI_MAX_BITWIDTH (12)
#define SOC_ADC_DIGI_MIN_BITWIDTH (12)
#define SOC_ADC_DIGI_FILTER_NUM (2)
#define SOC_ADC_DIGI_MONITOR_NUM (2)
/*!< F_sample = F_digi_con / 2 / interval. F_digi_con = 5M for now. 30 <= interva <= 4095 */
#define SOC_ADC_DIGI_RESULT_BYTES (4)
#define SOC_ADC_DIGI_DATA_BYTES_PER_CONV (4)
/*!< F_sample = F_digi_con / 2 / interval. F_digi_con = 5M for now. 30 <= interval <= 4095 */
#define SOC_ADC_SAMPLE_FREQ_THRES_HIGH 83333
#define SOC_ADC_SAMPLE_FREQ_THRES_LOW 611

Wyświetl plik

@ -338,6 +338,28 @@ typedef enum {
TWAI_CLK_SRC_DEFAULT = SOC_MOD_CLK_XTAL, /*!< Select XTAL as the default clock choice */
} soc_periph_twai_clk_src_t;
//////////////////////////////////////////////////ADC///////////////////////////////////////////////////////////////////
/**
* @brief Array initializer for all supported clock sources of ADC digital controller
*/
// TODO: temporary support, need to check while supporting
#define SOC_ADC_DIGI_CLKS {SOC_MOD_CLK_XTAL, SOC_MOD_CLK_PLL_F80M}
/**
* @brief ADC digital controller clock source
*/
// TODO: temporary support, need to check while supporting
typedef enum {
ADC_DIGI_CLK_SRC_XTAL = SOC_MOD_CLK_XTAL, /*!< Select XTAL as the source clock */
ADC_DIGI_CLK_SRC_PLL_F80M = SOC_MOD_CLK_PLL_F80M, /*!< Select PLL_F80M as the source clock */
#if CONFIG_IDF_ENV_FPGA
ADC_DIGI_CLK_SRC_DEFAULT = SOC_MOD_CLK_XTAL, /*!< Select XTAL as the default clock choice */
#else
ADC_DIGI_CLK_SRC_DEFAULT = SOC_MOD_CLK_PLL_F80M, /*!< Select PLL_F80M as the default clock choice */
#endif
} soc_periph_adc_digi_clk_src_t;
#ifdef __cplusplus
}
#endif

Wyświetl plik

@ -86,7 +86,7 @@
#define SOC_ADC_DIGI_MAX_BITWIDTH (12)
#define SOC_ADC_DIGI_FILTER_NUM (2)
#define SOC_ADC_DIGI_MONITOR_NUM (2)
/*!< F_sample = F_digi_con / 2 / interval. F_digi_con = 5M for now. 30 <= interva <= 4095 */
/*!< F_sample = F_digi_con / 2 / interval. F_digi_con = 5M for now. 30 <= interval<= 4095 */
#define SOC_ADC_SAMPLE_FREQ_THRES_HIGH 83333
#define SOC_ADC_SAMPLE_FREQ_THRES_LOW 611

Wyświetl plik

@ -112,6 +112,7 @@ typedef enum {
// For digital domain: peripherals, WIFI, BLE
SOC_MOD_CLK_AHB, /*< AHB_CLK sources from CPU with a configurable divider */
SOC_MOD_CLK_APB, /*< APB_CLK source is derived from AHB clock */
SOC_MOD_CLK_PLL_F80M, /*!< PLL_F80M_CLK is derived from PLL, and has a fixed frequency of 80MHz */
SOC_MOD_CLK_XTAL32K, /*< XTAL32K_CLK comes from the external 32kHz crystal, passing a clock gating to the peripherals */
SOC_MOD_CLK_RC_FAST, /*< RC_FAST_CLK comes from the internal 8MHz rc oscillator, passing a clock gating to the peripherals */
SOC_MOD_CLK_XTAL, /*< XTAL_CLK comes from the external 32MHz crystal */
@ -277,6 +278,24 @@ typedef enum {
TWAI_CLK_SRC_DEFAULT = SOC_MOD_CLK_APB, /*!< Select APB as the default clock choice */
} soc_periph_twai_clk_src_t;
//////////////////////////////////////////////////ADC///////////////////////////////////////////////////////////////////
/**
* @brief Array initializer for all supported clock sources of ADC digital controller
*/
// TODO: temporary support, need to check while supporting
#define SOC_ADC_DIGI_CLKS {SOC_MOD_CLK_XTAL, SOC_MOD_CLK_PLL_F80M}
/**
* @brief ADC digital controller clock source
*/
// TODO: temporary support, need to check while supporting
typedef enum {
ADC_DIGI_CLK_SRC_XTAL = SOC_MOD_CLK_XTAL, /*!< Select XTAL as the source clock */
ADC_DIGI_CLK_SRC_PLL_F80M = SOC_MOD_CLK_PLL_F80M, /*!< Select PLL_F80M as the source clock */
ADC_DIGI_CLK_SRC_DEFAULT = SOC_MOD_CLK_PLL_F80M, /*!< Select PLL_F80M as the default clock choice */
} soc_periph_adc_digi_clk_src_t;
#ifdef __cplusplus
}
#endif

Wyświetl plik

@ -95,7 +95,7 @@
#define SOC_ADC_DIGI_DATA_BYTES_PER_CONV (4)
#define SOC_ADC_DIGI_FILTER_NUM (2)
#define SOC_ADC_DIGI_MONITOR_NUM (2)
/*!< F_sample = F_digi_con / 2 / interval. F_digi_con = 5M for now. 30 <= interva <= 4095 */
/*!< F_sample = F_digi_con / 2 / interval. F_digi_con = 5M for now. 30 <= interval<= 4095 */
#define SOC_ADC_SAMPLE_FREQ_THRES_HIGH 83333
#define SOC_ADC_SAMPLE_FREQ_THRES_LOW 611

Wyświetl plik

@ -320,6 +320,35 @@ typedef enum {
TWAI_CLK_SRC_DEFAULT = SOC_MOD_CLK_APB, /*!< Select APB as the default clock choice */
} soc_periph_twai_clk_src_t;
//////////////////////////////////////////////////ADC///////////////////////////////////////////////////////////////////
/**
* @brief Array initializer for all supported clock sources of ADC digital controller
*/
#define SOC_ADC_DIGI_CLKS {SOC_MOD_CLK_APB, SOC_MOD_CLK_APLL}
/**
* @brief ADC digital controller clock source
*/
typedef enum {
ADC_DIGI_CLK_SRC_APB = SOC_MOD_CLK_APB, /*!< Select APB as the source clock */
ADC_DIGI_CLK_SRC_APLL = SOC_MOD_CLK_APLL, /*!< Select APLL as the source clock */
ADC_DIGI_CLK_SRC_DEFAULT = SOC_MOD_CLK_APB, /*!< Select APB as the default clock choice */
} soc_periph_adc_digi_clk_src_t;
/**
* @brief Array initializer for all supported clock sources of ADC RTC controller
*/
#define SOC_ADC_RTC_CLKS {SOC_MOD_CLK_RC_FAST}
/**
* @brief ADC RTC controller clock source
*/
typedef enum {
ADC_RTC_CLK_SRC_RC_FAST = SOC_MOD_CLK_RC_FAST, /*!< Select RC_FAST as the source clock */
ADC_RTC_CLK_SRC_DEFAULT = SOC_MOD_CLK_RC_FAST, /*!< Select RC_FAST as the default clock choice */
} soc_periph_adc_rtc_clk_src_t;
#ifdef __cplusplus
}
#endif

Wyświetl plik

@ -101,7 +101,7 @@
#define SOC_ADC_DIGI_MAX_BITWIDTH (12)
#define SOC_ADC_DIGI_RESULT_BYTES (2)
#define SOC_ADC_DIGI_DATA_BYTES_PER_CONV (2)
/*!< F_sample = F_digi_con / 2 / interval. F_digi_con = 5M for now. 30 <= interva <= 4095 */
/*!< F_sample = F_digi_con / 2 / interval. F_digi_con = 5M for now. 30 <= interval<= 4095 */
#define SOC_ADC_SAMPLE_FREQ_THRES_HIGH 83333
#define SOC_ADC_SAMPLE_FREQ_THRES_LOW 611

Wyświetl plik

@ -318,6 +318,35 @@ typedef enum {
TWAI_CLK_SRC_DEFAULT = SOC_MOD_CLK_APB, /*!< Select APB as the default clock choice */
} soc_periph_twai_clk_src_t;
//////////////////////////////////////////////////ADC///////////////////////////////////////////////////////////////////
/**
* @brief Array initializer for all supported clock sources of ADC digital controller
*/
#define SOC_ADC_DIGI_CLKS {SOC_MOD_CLK_APB, SOC_MOD_CLK_PLL_D2}
/**
* @brief ADC digital controller clock source
*/
typedef enum {
ADC_DIGI_CLK_SRC_APB = SOC_MOD_CLK_APB, /*!< Select APB as the source clock */
ADC_DIGI_CLK_SRC_PLL_F240M = SOC_MOD_CLK_PLL_D2, /*!< Select PLL_D2 (default value PLL_F240M) as the source clock */
ADC_DIGI_CLK_SRC_DEFAULT = SOC_MOD_CLK_APB, /*!< Select APB as the default clock choice */
} soc_periph_adc_digi_clk_src_t;
/**
* @brief Array initializer for all supported clock sources of ADC RTC controller
*/
#define SOC_ADC_RTC_CLKS {SOC_MOD_CLK_RC_FAST}
/**
* @brief ADC RTC controller clock source
*/
typedef enum {
ADC_RTC_CLK_SRC_RC_FAST = SOC_MOD_CLK_RC_FAST, /*!< Select RC_FAST as the source clock */
ADC_RTC_CLK_SRC_DEFAULT = SOC_MOD_CLK_RC_FAST, /*!< Select RC_FAST as the default clock choice */
} soc_periph_adc_rtc_clk_src_t;
#ifdef __cplusplus
}
#endif

Wyświetl plik

@ -94,7 +94,7 @@
#define SOC_ADC_DIGI_MAX_BITWIDTH (12)
#define SOC_ADC_DIGI_RESULT_BYTES (4)
#define SOC_ADC_DIGI_DATA_BYTES_PER_CONV (4)
/*!< F_sample = F_digi_con / 2 / interval. F_digi_con = 5M for now. 30 <= interva <= 4095 */
/*!< F_sample = F_digi_con / 2 / interval. F_digi_con = 5M for now. 30 <= interval<= 4095 */
#define SOC_ADC_SAMPLE_FREQ_THRES_HIGH 83333
#define SOC_ADC_SAMPLE_FREQ_THRES_LOW 611

Wyświetl plik

@ -8,23 +8,7 @@
#include "soc/soc.h"
#include "soc/soc_caps.h"
#if !CONFIG_IDF_TARGET_ESP32C6 // TODO: IDF-5310
#include "soc/syscon_struct.h"
#endif
#if SOC_ADC_RTC_CTRL_SUPPORTED
#include "soc/sens_reg.h"
#include "soc/sens_struct.h"
#endif
#if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED
#include "soc/rtc_io_struct.h"
#endif
#if !CONFIG_IDF_TARGET_ESP32C6 // TODO: IDF-5310
#include "soc/rtc_cntl_struct.h"
#endif
#include "soc/adc_channel.h"
#include "soc/soc_caps.h"
#ifdef __cplusplus
extern "C" {

Wyświetl plik

@ -91,8 +91,6 @@ api-reference/storage/sdmmc
api-reference/storage/mass_mfg
api-reference/storage/index
api-reference/peripherals
api-reference/peripherals/adc_continuous
api-reference/peripherals/adc_oneshot
api-reference/peripherals/usb_host
api-reference/peripherals/hmac
api-reference/peripherals/usb_device

Wyświetl plik

@ -1,13 +1,14 @@
Analog to Digital Converter (ADC) Continuous Mode Driver
========================================================
{IDF_TARGET_ADC_NUM:default="two", esp32c2="one", esp32c6="one", esp32h4="one"}
Introduction
------------
The Analog to Digital Converter is an on-chip sensor which is able to measure analog signals from specific analog IO pads.
The ADC on {IDF_TARGET_NAME} can be used in scenario(s) like:
{IDF_TARGET_NAME} has {IDF_TARGET_ADC_NUM} ADC unit(s), which can be used in scenario(s) like:
- Generate one-shot ADC conversion result
- Generate continuous ADC conversion results

Wyświetl plik

@ -1,13 +1,14 @@
Analog to Digital Converter (ADC) Oneshot Mode Driver
=====================================================
{IDF_TARGET_ADC_NUM:default="two", esp32c2="one", esp32c6="one", esp32h4="one"}
Introduction
------------
The Analog to Digital Converter is an on-chip sensor which is able to measure analog signals from dedicated analog IO pads.
The ADC on {IDF_TARGET_NAME} can be used in scenario(s) like:
{IDF_TARGET_NAME} has {IDF_TARGET_ADC_NUM} ADC unit(s), which can be used in scenario(s) like:
- Generate one-shot ADC conversion result

Wyświetl plik

@ -2,15 +2,11 @@
examples/peripherals/adc/continuous_read:
disable:
- if: IDF_TARGET == "esp32c2" or IDF_TARGET == "esp32c6"
temporary: true
reason: adc dma mode isn't supported on these targets
- if: SOC_ADC_DMA_SUPPORTED != 1
examples/peripherals/adc/oneshot_read:
disable:
- if: IDF_TARGET == "esp32c6"
temporary: true
reason: target esp32c6 is not supported yet
- if: SOC_ADC_SUPPORTED != 1
examples/peripherals/dac:
disable:

Wyświetl plik

@ -1,5 +1,5 @@
| Supported Targets | ESP32 | ESP32-C3 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- |
| Supported Targets | ESP32 | ESP32-C3 | ESP32-C6 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- |
# ADC DMA Example
@ -39,24 +39,25 @@ See the Getting Started Guide for full steps to configure and use ESP-IDF to bui
Running this example, you will see the following log output on the serial monitor:
```
I (338) ADC DMA: adc_pattern[0].atten is :0
I (348) ADC DMA: adc_pattern[0].channel is :2
I (348) ADC DMA: adc_pattern[0].unit is :0
I (358) ADC DMA: adc_pattern[1].atten is :0
I (358) ADC DMA: adc_pattern[1].channel is :3
I (368) ADC DMA: adc_pattern[1].unit is :0
I (368) ADC DMA: adc_pattern[2].atten is :0
I (378) ADC DMA: adc_pattern[2].channel is :0
I (378) ADC DMA: adc_pattern[2].unit is :1
I (388) TASK: ret is 0, ret_num is 256
I (388) ADC DMA: Unit: 1,_Channel: 2, Value: bec
I (398) ADC DMA: Unit: 2,_Channel: 0, Value: 9cb
I (398) ADC DMA: Unit: 1,_Channel: 3, Value: acb
I (408) ADC DMA: Unit: 2,_Channel: 0, Value: 966
I (408) ADC DMA: Unit: 1,_Channel: 2, Value: b63
I (418) ADC DMA: Unit: 2,_Channel: 0, Value: 8ff
I (418) ADC DMA: Unit: 1,_Channel: 3, Value: a6b
I (428) ADC DMA: Unit: 2,_Channel: 0, Value: 8a2
I (367) EXAMPLE: adc_pattern[0].atten is :0
I (377) EXAMPLE: adc_pattern[0].channel is :2
I (377) EXAMPLE: adc_pattern[0].unit is :0
I (387) EXAMPLE: adc_pattern[1].atten is :0
I (387) EXAMPLE: adc_pattern[1].channel is :3
I (397) EXAMPLE: adc_pattern[1].unit is :0
I (397) gpio: GPIO[3]| InputEn: 0| OutputEn: 0| OpenDrain: 0| Pullup: 0| Pulldown: 0| Intr:0
I (407) gpio: GPIO[4]| InputEn: 0| OutputEn: 0| OpenDrain: 0| Pullup: 0| Pulldown: 0| Intr:0
I (417) TASK: ret is 0, ret_num is 256
I (427) EXAMPLE: Unit: ADC-1, Channel: 2, Value: 819
I (427) EXAMPLE: Unit: ADC-1, Channel: 3, Value: 7b9
I (437) EXAMPLE: Unit: ADC-1, Channel: 2, Value: 7ab
I (437) EXAMPLE: Unit: ADC-1, Channel: 3, Value: 74b
I (447) EXAMPLE: Unit: ADC-1, Channel: 2, Value: 74d
I (447) EXAMPLE: Unit: ADC-1, Channel: 3, Value: 6e5
I (457) EXAMPLE: Unit: ADC-1, Channel: 2, Value: 6ee
I (467) EXAMPLE: Unit: ADC-1, Channel: 3, Value: 680
I (467) EXAMPLE: Unit: ADC-1, Channel: 2, Value: 69a
I (477) EXAMPLE: Unit: ADC-1, Channel: 3, Value: 62f
...
```

Wyświetl plik

@ -13,16 +13,25 @@
#include "freertos/semphr.h"
#include "esp_adc/adc_continuous.h"
#define EXAMPLE_READ_LEN 256
#define EXAMPLE_ADC_CONV_MODE ADC_CONV_SINGLE_UNIT_1
#define EXAMPLE_ADC_UNIT ADC_UNIT_1
#define _EXAMPLE_ADC_UNIT_STR(unit) #unit
#define EXAMPLE_ADC_UNIT_STR(unit) _EXAMPLE_ADC_UNIT_STR(unit)
#define EXAMPLE_ADC_CONV_MODE ADC_CONV_SINGLE_UNIT_1
#define EXAMPLE_ADC_ATTEN ADC_ATTEN_DB_0
#define EXAMPLE_ADC_BIT_WIDTH SOC_ADC_DIGI_MAX_BITWIDTH
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2
#define EXAMPLE_ADC_USE_OUTPUT_TYPE1 1
#define EXAMPLE_ADC_OUTPUT_TYPE ADC_DIGI_OUTPUT_FORMAT_TYPE1
#define EXAMPLE_ADC_OUTPUT_TYPE ADC_DIGI_OUTPUT_FORMAT_TYPE1
#define EXAMPLE_ADC_GET_CHANNEL(p_data) ((p_data)->type1.channel)
#define EXAMPLE_ADC_GET_DATA(p_data) ((p_data)->type1.data)
#else
#define EXAMPLE_ADC_OUTPUT_TYPE ADC_DIGI_OUTPUT_FORMAT_TYPE2
#define EXAMPLE_ADC_OUTPUT_TYPE ADC_DIGI_OUTPUT_FORMAT_TYPE2
#define EXAMPLE_ADC_GET_CHANNEL(p_data) ((p_data)->type2.channel)
#define EXAMPLE_ADC_GET_DATA(p_data) ((p_data)->type2.data)
#endif
#define EXAMPLE_READ_LEN 256
#if CONFIG_IDF_TARGET_ESP32
static adc_channel_t channel[2] = {ADC_CHANNEL_6, ADC_CHANNEL_7};
#else
@ -61,16 +70,14 @@ static void continuous_adc_init(adc_channel_t *channel, uint8_t channel_num, adc
adc_digi_pattern_config_t adc_pattern[SOC_ADC_PATT_LEN_MAX] = {0};
dig_cfg.pattern_num = channel_num;
for (int i = 0; i < channel_num; i++) {
uint8_t unit = ADC_UNIT_1;
uint8_t ch = channel[i] & 0x7;
adc_pattern[i].atten = ADC_ATTEN_DB_0;
adc_pattern[i].channel = ch;
adc_pattern[i].unit = unit;
adc_pattern[i].bit_width = SOC_ADC_DIGI_MAX_BITWIDTH;
adc_pattern[i].atten = EXAMPLE_ADC_ATTEN;
adc_pattern[i].channel = channel[i] & 0x7;
adc_pattern[i].unit = EXAMPLE_ADC_UNIT;
adc_pattern[i].bit_width = EXAMPLE_ADC_BIT_WIDTH;
ESP_LOGI(TAG, "adc_pattern[%d].atten is :%x", i, adc_pattern[i].atten);
ESP_LOGI(TAG, "adc_pattern[%d].channel is :%x", i, adc_pattern[i].channel);
ESP_LOGI(TAG, "adc_pattern[%d].unit is :%x", i, adc_pattern[i].unit);
ESP_LOGI(TAG, "adc_pattern[%d].atten is :%"PRIx8, i, adc_pattern[i].atten);
ESP_LOGI(TAG, "adc_pattern[%d].channel is :%"PRIx8, i, adc_pattern[i].channel);
ESP_LOGI(TAG, "adc_pattern[%d].unit is :%"PRIx8, i, adc_pattern[i].unit);
}
dig_cfg.adc_pattern = adc_pattern;
ESP_ERROR_CHECK(adc_continuous_config(handle, &dig_cfg));
@ -78,21 +85,6 @@ static void continuous_adc_init(adc_channel_t *channel, uint8_t channel_num, adc
*out_handle = handle;
}
static bool check_valid_data(const adc_digi_output_data_t *data)
{
#if EXAMPLE_ADC_USE_OUTPUT_TYPE1
if (data->type1.channel >= SOC_ADC_CHANNEL_NUM(ADC_UNIT_1)) {
return false;
}
#else
if (data->type2.channel >= SOC_ADC_CHANNEL_NUM(ADC_UNIT_1)) {
return false;
}
#endif
return true;
}
void app_main(void)
{
esp_err_t ret;
@ -123,20 +115,21 @@ void app_main(void)
*/
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
char unit[] = EXAMPLE_ADC_UNIT_STR(EXAMPLE_ADC_UNIT);
while (1) {
ret = adc_continuous_read(handle, result, EXAMPLE_READ_LEN, &ret_num, 0);
if (ret == ESP_OK) {
ESP_LOGI("TASK", "ret is %x, ret_num is %"PRIu32, ret, ret_num);
for (int i = 0; i < ret_num; i += SOC_ADC_DIGI_RESULT_BYTES) {
adc_digi_output_data_t *p = (void*)&result[i];
if (check_valid_data(p)) {
#if EXAMPLE_ADC_USE_OUTPUT_TYPE1
ESP_LOGI(TAG, "Unit: %d, Channel: %d, Value: %x", 1, p->type1.channel, p->type1.data);
#else
ESP_LOGI(TAG, "Unit: %d,_Channel: %d, Value: %x", 1, p->type2.channel, p->type2.data);
#endif
uint32_t chan_num = EXAMPLE_ADC_GET_CHANNEL(p);
uint32_t data = EXAMPLE_ADC_GET_DATA(p);
/* Check the channel number validation, the data is invalid if the channel num exceed the maximum channel */
if (chan_num < SOC_ADC_CHANNEL_NUM(EXAMPLE_ADC_UNIT)) {
ESP_LOGI(TAG, "Unit: %s, Channel: %"PRIu32", Value: %"PRIx32, unit, chan_num, data);
} else {
ESP_LOGI(TAG, "Invalid data");
ESP_LOGW(TAG, "Invalid data [%s_%"PRIu32"_%"PRIx32"]", unit, chan_num, data);
}
}
/**

Wyświetl plik

@ -9,6 +9,7 @@ from pytest_embedded.dut import Dut
@pytest.mark.esp32s2
@pytest.mark.esp32s3
@pytest.mark.esp32c3
@pytest.mark.esp32c6
@pytest.mark.adc
def test_adc_continuous(dut: Dut) -> None:
res = dut.expect(r'TASK: ret is 0, ret_num is (\d+)')

Wyświetl plik

@ -1,5 +1,5 @@
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- |
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C6 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- |
# ADC Single Read Example

Wyświetl plik

@ -9,6 +9,7 @@ from pytest_embedded.dut import Dut
@pytest.mark.esp32s2
@pytest.mark.esp32s3
@pytest.mark.esp32c3
@pytest.mark.esp32c6
@pytest.mark.adc
def test_adc_oneshot(dut: Dut) -> None:
dut.expect(r'EXAMPLE: ADC1 Channel\[(\d+)\] Raw Data: (\d+)', timeout=5)