Merge branch 'feature/gptimer_ll_enable_reset' into 'master'

HW-Support: Add Atomic Code Block for Reset and Clock Control

See merge request espressif/esp-idf!25401
pull/12164/head
morris 2023-08-23 15:11:42 +08:00
commit 3b50c716d8
39 zmienionych plików z 785 dodań i 160 usunięć

Wyświetl plik

@ -34,6 +34,12 @@ static const char *TIMER_TAG = "timer_group";
#define TIMER_ENTER_CRITICAL(mux) portENTER_CRITICAL_SAFE(mux);
#define TIMER_EXIT_CRITICAL(mux) portEXIT_CRITICAL_SAFE(mux);
#if CONFIG_IDF_TARGET_ESP32P4
#define GPTIMER_CLOCK_SRC_ATOMIC() PERIPH_RCC_ATOMIC()
#else
#define GPTIMER_CLOCK_SRC_ATOMIC()
#endif
typedef struct {
timer_isr_t fn; /*!< isr function */
void *args; /*!< isr function args */
@ -305,7 +311,12 @@ esp_err_t timer_init(timer_group_t group_num, timer_idx_t timer_num, const timer
}
timer_hal_context_t *hal = &p_timer_obj[group_num][timer_num]->hal;
periph_module_enable(timer_group_periph_signals.groups[group_num].module);
PERIPH_RCC_ACQUIRE_ATOMIC(timer_group_periph_signals.groups[group_num].module, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(group_num, true);
timer_ll_reset_register(group_num);
}
}
TIMER_ENTER_CRITICAL(&timer_spinlock[group_num]);
timer_hal_init(hal, group_num, timer_num);
@ -315,9 +326,12 @@ esp_err_t timer_init(timer_group_t group_num, timer_idx_t timer_num, const timer
if (config->clk_src) {
clk_src = config->clk_src;
}
// although `clk_src` is of `timer_src_clk_t` type, but it's binary compatible with `gptimer_clock_source_t`,
// as the underlying enum entries come from the same `soc_module_clk_t`
timer_ll_set_clock_source(p_timer_obj[group_num][timer_num]->hal.dev, timer_num, (gptimer_clock_source_t)clk_src);
GPTIMER_CLOCK_SRC_ATOMIC() {
// although `clk_src` is of `timer_src_clk_t` type, but it's binary compatible with `gptimer_clock_source_t`,
// as the underlying enum entries come from the same `soc_module_clk_t`
timer_ll_set_clock_source(p_timer_obj[group_num][timer_num]->hal.dev, timer_num, (gptimer_clock_source_t)clk_src);
timer_ll_enable_clock(hal->dev, timer_num, true);
}
timer_ll_set_clock_prescale(hal->dev, timer_num, config->divider);
timer_ll_set_count_direction(p_timer_obj[group_num][timer_num]->hal.dev, timer_num, config->counter_dir);
timer_ll_enable_intr(hal->dev, TIMER_LL_EVENT_ALARM(timer_num), false);
@ -343,12 +357,22 @@ esp_err_t timer_deinit(timer_group_t group_num, timer_idx_t timer_num)
ESP_RETURN_ON_FALSE(p_timer_obj[group_num][timer_num] != NULL, ESP_ERR_INVALID_ARG, TIMER_TAG, TIMER_NEVER_INIT_ERROR);
timer_hal_context_t *hal = &p_timer_obj[group_num][timer_num]->hal;
// disable the source clock
GPTIMER_CLOCK_SRC_ATOMIC() {
timer_ll_enable_clock(hal->dev, hal->timer_id, false);
}
TIMER_ENTER_CRITICAL(&timer_spinlock[group_num]);
timer_ll_enable_intr(hal->dev, TIMER_LL_EVENT_ALARM(timer_num), false);
timer_ll_clear_intr_status(hal->dev, TIMER_LL_EVENT_ALARM(timer_num));
timer_hal_deinit(hal);
TIMER_EXIT_CRITICAL(&timer_spinlock[group_num]);
PERIPH_RCC_RELEASE_ATOMIC(timer_group_periph_signals.groups[group_num].module, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(group_num, false);
}
}
free(p_timer_obj[group_num][timer_num]);
p_timer_obj[group_num][timer_num] = NULL;

Wyświetl plik

@ -32,6 +32,12 @@
static const char *TAG = "gptimer";
#if CONFIG_IDF_TARGET_ESP32P4
#define GPTIMER_CLOCK_SRC_ATOMIC() PERIPH_RCC_ATOMIC()
#else
#define GPTIMER_CLOCK_SRC_ATOMIC()
#endif
typedef struct gptimer_platform_t {
_lock_t mutex; // platform level mutex lock
gptimer_group_t *groups[SOC_TIMER_GROUPS]; // timer group pool
@ -163,8 +169,13 @@ esp_err_t gptimer_del_timer(gptimer_handle_t timer)
gptimer_clock_source_t clk_src = timer->clk_src;
int group_id = group->group_id;
int timer_id = timer->timer_id;
timer_hal_context_t *hal = &timer->hal;
ESP_LOGD(TAG, "del timer (%d,%d)", group_id, timer_id);
timer_hal_deinit(&timer->hal);
// disable the source clock
GPTIMER_CLOCK_SRC_ATOMIC() {
timer_ll_enable_clock(hal->dev, hal->timer_id, false);
}
timer_hal_deinit(hal);
// recycle memory resource
ESP_RETURN_ON_ERROR(gptimer_destroy(timer), TAG, "destroy gptimer failed");
@ -382,8 +393,6 @@ static gptimer_group_t *gptimer_acquire_group_handle(int group_id)
// initialize timer group members
group->group_id = group_id;
group->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
// enable APB access timer registers
periph_module_enable(timer_group_periph_signals.groups[group_id].module);
}
} else {
group = s_platform.groups[group_id];
@ -395,6 +404,15 @@ static gptimer_group_t *gptimer_acquire_group_handle(int group_id)
_lock_release(&s_platform.mutex);
if (new_group) {
// !!! HARDWARE SHARED RESOURCE !!!
// the gptimer and watchdog reside in the same the timer group
// we need to increase/decrease the reference count before enable/disable/reset the peripheral
PERIPH_RCC_ACQUIRE_ATOMIC(timer_group_periph_signals.groups[group_id].module, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(group_id, true);
timer_ll_reset_register(group_id);
}
}
ESP_LOGD(TAG, "new group (%d) @%p", group_id, group);
}
@ -412,11 +430,16 @@ static void gptimer_release_group_handle(gptimer_group_t *group)
assert(s_platform.groups[group_id]);
do_deinitialize = true;
s_platform.groups[group_id] = NULL;
periph_module_disable(timer_group_periph_signals.groups[group_id].module);
}
_lock_release(&s_platform.mutex);
if (do_deinitialize) {
// disable bus clock for the timer group
PERIPH_RCC_RELEASE_ATOMIC(timer_group_periph_signals.groups[group_id].module, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(group_id, false);
}
}
free(group);
ESP_LOGD(TAG, "del group (%d)", group_id);
}
@ -476,9 +499,15 @@ static esp_err_t gptimer_select_periph_clock(gptimer_t *timer, gptimer_clock_sou
}
#endif // CONFIG_PM_ENABLE
timer_ll_set_clock_source(timer->hal.dev, timer_id, src_clk);
// !!! HARDWARE SHARED RESOURCE !!!
// on some ESP chip, different peripheral's clock source setting are mixed in the same register
// so we need to make this done in an atomic way
GPTIMER_CLOCK_SRC_ATOMIC() {
timer_ll_set_clock_source(timer->hal.dev, timer_id, src_clk);
timer_ll_enable_clock(timer->hal.dev, timer_id, true);
}
timer->clk_src = src_clk;
unsigned int prescale = counter_src_hz / resolution_hz; // potential resolution loss here
uint32_t prescale = counter_src_hz / resolution_hz; // potential resolution loss here
timer_ll_set_clock_prescale(timer->hal.dev, timer_id, prescale);
timer->resolution_hz = counter_src_hz / prescale; // this is the real resolution
if (timer->resolution_hz != resolution_hz) {

Wyświetl plik

@ -1,16 +1,73 @@
/*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdint.h>
#include "soc/periph_defs.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup Reset and Clock Control APIs
* @{
*/
/**
* @brief Acquire the RCC lock for a peripheral module
*
* @note User code protected by this macro should be as short as possible, because it's a critical section
* @note This macro will increase the reference lock of that peripheral.
* You can get the value before the increment from the `rc_name` local variable
*/
#define PERIPH_RCC_ACQUIRE_ATOMIC(periph, rc_name) \
for (uint8_t rc_name, i = 1, __DECLARE_RCC_RC_ATOMIC_ENV; \
i ? (rc_name = periph_rcc_acquire_enter(periph), 1) : 0; \
periph_rcc_acquire_exit(periph, rc_name), i--)
/**
* @brief Release the RCC lock for a peripheral module
*
* @note User code protected by this macro should be as short as possible, because it's a critical section
* @note This macro will decrease the reference lock of that peripheral.
* You can get the value before the increment from the `rc_name` local variable
*/
#define PERIPH_RCC_RELEASE_ATOMIC(periph, rc_name) \
for (uint8_t rc_name, i = 1, __DECLARE_RCC_RC_ATOMIC_ENV; \
i ? (rc_name = periph_rcc_release_enter(periph), 1) : 0; \
periph_rcc_release_exit(periph, rc_name), i--)
/**
* @brief A simplified version of `PERIPH_RCC_ACQUIRE/RELEASE_ATOMIC`, without a reference count
*
* @note User code protected by this macro should be as short as possible, because it's a critical section
*/
#define PERIPH_RCC_ATOMIC() \
for (int i = 1, __DECLARE_RCC_ATOMIC_ENV; \
i ? (periph_rcc_enter(), 1) : 0; \
periph_rcc_exit(), i--)
/** @cond */
// The following functions are not intended to be used directly by the developers
uint8_t periph_rcc_acquire_enter(periph_module_t periph);
void periph_rcc_acquire_exit(periph_module_t periph, uint8_t ref_count);
uint8_t periph_rcc_release_enter(periph_module_t periph);
void periph_rcc_release_exit(periph_module_t periph, uint8_t ref_count);
void periph_rcc_enter(void);
void periph_rcc_exit(void);
/** @endcond */
/**
* @}
*/
/*************************************************************************************************************
* @note The following APIs are no longer supported since ESP32P4, please use the RCC lock macros instead.
*************************************************************************************************************/
/**
* @brief Enable peripheral module by un-gating the clock and de-asserting the reset signal.
*

Wyświetl plik

@ -13,10 +13,46 @@
#include "esp_private/esp_modem_clock.h"
#endif
/// @brief For simplicity and backward compatible, we are using the same spin lock for both bus clock on/off and reset
/// @note We may want to split them into two spin locks in the future
static portMUX_TYPE periph_spinlock = portMUX_INITIALIZER_UNLOCKED;
static uint8_t ref_counts[PERIPH_MODULE_MAX] = {0};
void periph_rcc_enter(void)
{
portENTER_CRITICAL_SAFE(&periph_spinlock);
}
void periph_rcc_exit(void)
{
portEXIT_CRITICAL_SAFE(&periph_spinlock);
}
uint8_t periph_rcc_acquire_enter(periph_module_t periph)
{
periph_rcc_enter();
return ref_counts[periph];
}
void periph_rcc_acquire_exit(periph_module_t periph, uint8_t ref_count)
{
ref_counts[periph] = ++ref_count;
periph_rcc_exit();
}
uint8_t periph_rcc_release_enter(periph_module_t periph)
{
periph_rcc_enter();
return ref_counts[periph] - 1;
}
void periph_rcc_release_exit(periph_module_t periph, uint8_t ref_count)
{
ref_counts[periph] = ref_count;
periph_rcc_exit();
}
void periph_module_enable(periph_module_t periph)
{
assert(periph < PERIPH_MODULE_MAX);

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -8,11 +8,13 @@
#include "esp_rom_sys.h"
#include "hal/clk_tree_ll.h"
#include "hal/rtc_cntl_ll.h"
#include "hal/timer_ll.h"
#include "soc/rtc.h"
#include "soc/timer_periph.h"
#include "esp_hw_log.h"
#include "esp_private/periph_ctrl.h"
static const char* TAG = "rtc_time";
static const char *TAG = "rtc_time";
/* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0.
* This feature counts the number of XTAL clock cycles within a given number of
@ -55,10 +57,10 @@ static uint32_t rtc_clk_cal_internal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cyc
uint32_t expected_freq;
soc_rtc_slow_clk_src_t slow_clk_src = rtc_clk_slow_src_get();
if (cal_clk == RTC_CAL_32K_XTAL ||
(cal_clk == RTC_CAL_RTC_MUX && slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K)) {
(cal_clk == RTC_CAL_RTC_MUX && slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K)) {
expected_freq = SOC_CLK_XTAL32K_FREQ_APPROX; /* standard 32k XTAL */
} else if (cal_clk == RTC_CAL_8MD256 ||
(cal_clk == RTC_CAL_RTC_MUX && slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC_FAST_D256)) {
(cal_clk == RTC_CAL_RTC_MUX && slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC_FAST_D256)) {
expected_freq = SOC_CLK_RC_FAST_D256_FREQ_APPROX;
} else {
expected_freq = SOC_CLK_RC_SLOW_FREQ_APPROX; /* 150k internal oscillator */
@ -185,3 +187,22 @@ uint32_t rtc_clk_freq_cal(uint32_t cal_val)
}
return 1000000ULL * (1 << RTC_CLK_CAL_FRACT) / cal_val;
}
/// @brief if the calibration is used, we need to enable the timer group0 first
__attribute__((constructor))
static void enable_timer_group0_for_calibration(void)
{
#ifndef BOOTLOADER_BUILD
PERIPH_RCC_ACQUIRE_ATOMIC(PERIPH_TIMG0_MODULE, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(0, true);
timer_ll_reset_register(0);
}
}
#else
// no critical section is needed for bootloader
int __DECLARE_RCC_RC_ATOMIC_ENV;
timer_ll_enable_bus_clock(0, true);
timer_ll_reset_register(0);
#endif
}

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2020-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -10,8 +10,10 @@
#include "soc/rtc_cntl_reg.h"
#include "hal/clk_tree_ll.h"
#include "hal/rtc_cntl_ll.h"
#include "hal/timer_ll.h"
#include "soc/timer_group_reg.h"
#include "esp_rom_sys.h"
#include "esp_private/periph_ctrl.h"
/* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0.
* This feature counts the number of XTAL clock cycles within a given number of
@ -185,3 +187,15 @@ uint32_t rtc_clk_freq_cal(uint32_t cal_val)
}
return 1000000ULL * (1 << RTC_CLK_CAL_FRACT) / cal_val;
}
/// @brief if the calibration is used, we need to enable the timer group0 first
__attribute__((constructor))
static void enable_timer_group0_for_calibration(void)
{
PERIPH_RCC_ACQUIRE_ATOMIC(PERIPH_TIMG0_MODULE, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(0, true);
timer_ll_reset_register(0);
}
}
}

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2020-2021 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2020-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -10,8 +10,10 @@
#include "soc/rtc_cntl_reg.h"
#include "hal/clk_tree_ll.h"
#include "hal/rtc_cntl_ll.h"
#include "hal/timer_ll.h"
#include "soc/timer_group_reg.h"
#include "esp_rom_sys.h"
#include "esp_private/periph_ctrl.h"
/* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0.
* This feature counts the number of XTAL clock cycles within a given number of
@ -49,7 +51,6 @@ uint32_t rtc_clk_cal_internal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
cal_clk = RTC_CAL_RTC_MUX;
}
/* Enable requested clock (150k clock is always on) */
bool dig_32k_xtal_enabled = clk_ll_xtal32k_digi_is_enabled();
if (cal_clk == RTC_CAL_32K_XTAL && !dig_32k_xtal_enabled) {
@ -72,7 +73,7 @@ uint32_t rtc_clk_cal_internal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
*/
REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, 1);
while (!GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY)
&& !GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT));
&& !GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT));
}
/* Prepare calibration */
@ -146,8 +147,9 @@ uint32_t rtc_clk_cal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
if ((cal_clk == RTC_CAL_32K_XTAL) && !rtc_clk_cal_32k_valid(xtal_freq, slowclk_cycles, xtal_cycles))
if ((cal_clk == RTC_CAL_32K_XTAL) && !rtc_clk_cal_32k_valid(xtal_freq, slowclk_cycles, xtal_cycles)) {
return 0;
}
uint64_t divider = ((uint64_t)xtal_freq) * slowclk_cycles;
uint64_t period_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT) + divider / 2 - 1) / divider;
@ -188,3 +190,15 @@ uint32_t rtc_clk_freq_cal(uint32_t cal_val)
}
return 1000000ULL * (1 << RTC_CLK_CAL_FRACT) / cal_val;
}
/// @brief if the calibration is used, we need to enable the timer group0 first
__attribute__((constructor))
static void enable_timer_group0_for_calibration(void)
{
PERIPH_RCC_ACQUIRE_ATOMIC(PERIPH_TIMG0_MODULE, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(0, true);
timer_ll_reset_register(0);
}
}
}

Wyświetl plik

@ -10,11 +10,13 @@
#include "soc/lp_timer_reg.h"
#include "hal/lp_timer_hal.h"
#include "hal/clk_tree_ll.h"
#include "hal/timer_ll.h"
#include "soc/timer_group_reg.h"
#include "esp_rom_sys.h"
#include "assert.h"
#include "hal/efuse_hal.h"
#include "soc/chip_revision.h"
#include "esp_private/periph_ctrl.h"
static const char *TAG = "rtc_time";
@ -262,3 +264,15 @@ uint32_t rtc_clk_freq_cal(uint32_t cal_val)
}
return 1000000ULL * (1 << RTC_CLK_CAL_FRACT) / cal_val;
}
/// @brief if the calibration is used, we need to enable the timer group0 first
__attribute__((constructor))
static void enable_timer_group0_for_calibration(void)
{
PERIPH_RCC_ACQUIRE_ATOMIC(PERIPH_TIMG0_MODULE, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(0, true);
timer_ll_reset_register(0);
}
}
}

Wyświetl plik

@ -9,11 +9,13 @@
#include "soc/rtc.h"
#include "soc/lp_timer_reg.h"
#include "hal/clk_tree_ll.h"
#include "hal/timer_ll.h"
#include "soc/timer_group_reg.h"
#include "esp_rom_sys.h"
#include "assert.h"
#include "hal/efuse_hal.h"
#include "soc/chip_revision.h"
#include "esp_private/periph_ctrl.h"
static const char *TAG = "rtc_time";
@ -264,3 +266,15 @@ uint32_t rtc_clk_freq_cal(uint32_t cal_val)
}
return 1000000ULL * (1 << RTC_CLK_CAL_FRACT) / cal_val;
}
/// @brief if the calibration is used, we need to enable the timer group0 first
__attribute__((constructor))
static void enable_timer_group0_for_calibration(void)
{
PERIPH_RCC_ACQUIRE_ATOMIC(PERIPH_TIMG0_MODULE, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(0, true);
timer_ll_reset_register(0);
}
}
}

Wyświetl plik

@ -5,14 +5,16 @@
*/
#include <stdint.h>
#include <assert.h>
#include "esp32p4/rom/ets_sys.h"
#include "soc/rtc.h"
#include "soc/lp_timer_reg.h"
#include "hal/lp_timer_hal.h"
#include "hal/clk_tree_ll.h"
#include "hal/timer_ll.h"
#include "soc/timer_group_reg.h"
#include "esp_rom_sys.h"
#include "assert.h"
#include "esp_private/periph_ctrl.h"
static const char *TAG = "rtc_time";
@ -225,3 +227,15 @@ uint32_t rtc_clk_freq_cal(uint32_t cal_val)
}
return 1000000ULL * (1 << RTC_CLK_CAL_FRACT) / cal_val;
}
/// @brief if the calibration is used, we need to enable the timer group0 first
__attribute__((constructor))
static void enable_timer_group0_for_calibration(void)
{
PERIPH_RCC_ACQUIRE_ATOMIC(PERIPH_TIMG0_MODULE, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(0, true);
timer_ll_reset_register(0);
}
}
}

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -10,7 +10,9 @@
#include "soc/rtc_cntl_reg.h"
#include "hal/clk_tree_ll.h"
#include "hal/rtc_cntl_ll.h"
#include "hal/timer_ll.h"
#include "soc/timer_group_reg.h"
#include "esp_private/periph_ctrl.h"
/* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0.
* This feature counts the number of XTAL clock cycles within a given number of
@ -253,3 +255,15 @@ uint32_t rtc_clk_freq_cal(uint32_t cal_val)
}
return 1000000ULL * (1 << RTC_CLK_CAL_FRACT) / cal_val;
}
/// @brief if the calibration is used, we need to enable the timer group0 first
__attribute__((constructor))
static void enable_timer_group0_for_calibration(void)
{
PERIPH_RCC_ACQUIRE_ATOMIC(PERIPH_TIMG0_MODULE, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(0, true);
timer_ll_reset_register(0);
}
}
}

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -9,8 +9,10 @@
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "hal/clk_tree_ll.h"
#include "hal/timer_ll.h"
#include "hal/rtc_cntl_ll.h"
#include "soc/timer_group_reg.h"
#include "esp_private/periph_ctrl.h"
/* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0.
* This feature counts the number of XTAL clock cycles within a given number of
@ -70,7 +72,7 @@ uint32_t rtc_clk_cal_internal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
*/
REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, 1);
while (!GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY)
&& !GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT));
&& !GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT));
}
/* Prepare calibration */
@ -187,3 +189,22 @@ uint32_t rtc_clk_freq_cal(uint32_t cal_val)
}
return 1000000ULL * (1 << RTC_CLK_CAL_FRACT) / cal_val;
}
/// @brief if the calibration is used, we need to enable the timer group0 first
__attribute__((constructor))
static void enable_timer_group0_for_calibration(void)
{
#ifndef BOOTLOADER_BUILD
PERIPH_RCC_ACQUIRE_ATOMIC(PERIPH_TIMG0_MODULE, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(0, true);
timer_ll_reset_register(0);
}
}
#else
// no critical section is needed for bootloader
int __DECLARE_RCC_RC_ATOMIC_ENV;
timer_ll_enable_bus_clock(0, true);
timer_ll_reset_register(0);
#endif
}

Wyświetl plik

@ -77,14 +77,6 @@ void esp_clk_init(void)
void esp_perip_clk_init(void)
{
/* Enable TimerGroup 0 clock to ensure its reference counter will never
* be decremented to 0 during normal operation and preventing it from
* being disabled.
* If the TimerGroup 0 clock is disabled and then reenabled, the watchdog
* registers (Flashboot protection included) will be reenabled, and some
* seconds later, will trigger an unintended reset.
*/
periph_module_enable(PERIPH_TIMG0_MODULE);
}
/**

Wyświetl plik

@ -11,6 +11,7 @@
#include "soc/soc_caps.h"
#include "hal/wdt_hal.h"
#include "hal/mwdt_ll.h"
#include "hal/timer_ll.h"
#include "freertos/FreeRTOS.h"
#include "esp_cpu.h"
#include "esp_err.h"
@ -30,6 +31,8 @@
#define IWDT_TICKS_PER_US 500
#define IWDT_INSTANCE WDT_MWDT1
#define IWDT_INITIAL_TIMEOUT_S 5
#define IWDT_PERIPH PERIPH_TIMG1_MODULE
#define IWDT_TIMER_GROUP 1
#else
@ -38,6 +41,8 @@
#define IWDT_TICKS_PER_US 500
#define IWDT_INSTANCE WDT_MWDT0
#define IWDT_INITIAL_TIMEOUT_S 5
#define IWDT_PERIPH PERIPH_TIMG0_MODULE
#define IWDT_TIMER_GROUP 0
#endif // SOC_TIMER_GROUPS > 1
@ -99,7 +104,12 @@ static void IRAM_ATTR tick_hook(void)
void esp_int_wdt_init(void)
{
periph_module_enable(PERIPH_TIMG1_MODULE);
PERIPH_RCC_ACQUIRE_ATOMIC(IWDT_PERIPH, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(IWDT_TIMER_GROUP, true);
timer_ll_reset_register(IWDT_TIMER_GROUP);
}
}
/*
* Initialize the WDT timeout stages. Note that the initial timeout is set to 5 seconds as variable startup times of
* each CPU can lead to a timeout. The tick hooks will set the WDT timers to the actual timeout.

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -300,15 +300,6 @@ __attribute__((weak)) void esp_perip_clk_init(void)
/* Enable RNG clock. */
periph_module_enable(PERIPH_RNG_MODULE);
/* Enable TimerGroup 0 clock to ensure its reference counter will never
* be decremented to 0 during normal operation and preventing it from
* being disabled.
* If the TimerGroup 0 clock is disabled and then reenabled, the watchdog
* registers (Flashboot protection included) will be reenabled, and some
* seconds later, will trigger an unintended reset.
*/
periph_module_enable(PERIPH_TIMG0_MODULE);
}
void rtc_clk_select_rtc_slow_clk(void)

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -251,13 +251,4 @@ __attribute__((weak)) void esp_perip_clk_init(void)
/* Enable RNG clock. */
periph_module_enable(PERIPH_RNG_MODULE);
/* Enable TimerGroup 0 clock to ensure its reference counter will never
* be decremented to 0 during normal operation and preventing it from
* being disabled.
* If the TimerGroup 0 clock is disabled and then reenabled, the watchdog
* registers (Flashboot protection included) will be reenabled, and some
* seconds later, will trigger an unintended reset.
*/
periph_module_enable(PERIPH_TIMG0_MODULE);
}

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -294,13 +294,4 @@ __attribute__((weak)) void esp_perip_clk_init(void)
/* Enable RNG clock. */
periph_module_enable(PERIPH_RNG_MODULE);
/* Enable TimerGroup 0 clock to ensure its reference counter will never
* be decremented to 0 during normal operation and preventing it from
* being disabled.
* If the TimerGroup 0 clock is disabled and then reenabled, the watchdog
* registers (Flashboot protection included) will be reenabled, and some
* seconds later, will trigger an unintended reset.
*/
periph_module_enable(PERIPH_TIMG0_MODULE);
}

Wyświetl plik

@ -294,13 +294,4 @@ __attribute__((weak)) void esp_perip_clk_init(void)
/* Enable RNG clock. */
periph_module_enable(PERIPH_RNG_MODULE);
#endif
/* Enable TimerGroup 0 clock to ensure its reference counter will never
* be decremented to 0 during normal operation and preventing it from
* being disabled.
* If the TimerGroup 0 clock is disabled and then reenabled, the watchdog
* registers (Flashboot protection included) will be reenabled, and some
* seconds later, will trigger an unintended reset.
*/
periph_module_enable(PERIPH_TIMG0_MODULE);
}

Wyświetl plik

@ -286,13 +286,4 @@ __attribute__((weak)) void esp_perip_clk_init(void)
/* Enable RNG clock. */
periph_module_enable(PERIPH_RNG_MODULE);
#endif
/* Enable TimerGroup 0 clock to ensure its reference counter will never
* be decremented to 0 during normal operation and preventing it from
* being disabled.
* If the TimerGroup 0 clock is disabled and then reenabled, the watchdog
* registers (Flashboot protection included) will be reenabled, and some
* seconds later, will trigger an unintended reset.
*/
periph_module_enable(PERIPH_TIMG0_MODULE);
}

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -312,13 +312,4 @@ __attribute__((weak)) void esp_perip_clk_init(void)
/* Enable RNG clock. */
periph_module_enable(PERIPH_RNG_MODULE);
/* Enable TimerGroup 0 clock to ensure its reference counter will never
* be decremented to 0 during normal operation and preventing it from
* being disabled.
* If the TimerGroup 0 clock is disabled and then reenabled, the watchdog
* registers (Flashboot protection included) will be reenabled, and some
* seconds later, will trigger an unintended reset.
*/
periph_module_enable(PERIPH_TIMG0_MODULE);
}

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -314,13 +314,4 @@ __attribute__((weak)) void esp_perip_clk_init(void)
/* Enable RNG clock. */
periph_module_enable(PERIPH_RNG_MODULE);
/* Enable TimerGroup 0 clock to ensure its reference counter will never
* be decremented to 0 during normal operation and preventing it from
* being disabled.
* If the TimerGroup 0 clock is disabled and then reenabled, the watchdog
* registers (Flashboot protection included) will be reenabled, and some
* seconds later, will trigger an unintended reset.
*/
periph_module_enable(PERIPH_TIMG0_MODULE);
}

Wyświetl plik

@ -10,6 +10,7 @@
#include "sdkconfig.h"
#include "hal/wdt_hal.h"
#include "hal/mwdt_ll.h"
#include "hal/timer_ll.h"
#include "esp_err.h"
#include "esp_attr.h"
#include "esp_intr_alloc.h"
@ -21,6 +22,7 @@
#define TWDT_TICKS_PER_US 500
#define TWDT_PRESCALER MWDT_LL_DEFAULT_CLK_PRESCALER // Tick period of 500us if WDT source clock is 80MHz
#define TWDT_PERIPH_MODULE PERIPH_TIMG0_MODULE
#define TWDT_TIMER_GROUP 0
#define TWDT_INTR_SOURCE ETS_TG0_WDT_LEVEL_INTR_SOURCE
/**
@ -55,7 +57,13 @@ esp_err_t esp_task_wdt_impl_timer_allocate(const esp_task_wdt_config_t *config,
}
if (ret == ESP_OK) {
periph_module_enable(TWDT_PERIPH_MODULE);
// enable bus clock for the timer group registers
PERIPH_RCC_ACQUIRE_ATOMIC(TWDT_PERIPH_MODULE, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(TWDT_TIMER_GROUP, true);
timer_ll_reset_register(TWDT_TIMER_GROUP);
}
}
wdt_hal_init(&ctx->hal, TWDT_INSTANCE, TWDT_PRESCALER, true);
wdt_hal_write_protect_disable(&ctx->hal);
@ -106,7 +114,11 @@ void esp_task_wdt_impl_timer_free(twdt_ctx_t obj)
ESP_ERROR_CHECK(esp_intr_disable(ctx->intr_handle));
/* Disable the Timer Group module */
periph_module_disable(TWDT_PERIPH_MODULE);
PERIPH_RCC_RELEASE_ATOMIC(TWDT_PERIPH_MODULE, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(TWDT_TIMER_GROUP, false);
}
}
/* Deregister interrupt */
ESP_ERROR_CHECK(esp_intr_free(ctx->intr_handle));

Wyświetl plik

@ -18,6 +18,7 @@
#include "soc/soc.h"
#include "soc/timer_group_reg.h"
#include "soc/rtc.h"
#include "hal/timer_ll.h"
#include "freertos/FreeRTOS.h"
/**
@ -245,7 +246,12 @@ void esp_timer_impl_advance(int64_t time_diff_us)
esp_err_t esp_timer_impl_early_init(void)
{
periph_module_enable(PERIPH_LACT);
PERIPH_RCC_ACQUIRE_ATOMIC(PERIPH_LACT, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(LACT_MODULE, true);
timer_ll_reset_register(LACT_MODULE);
}
}
REG_WRITE(CONFIG_REG, 0);
REG_WRITE(LOAD_LO_REG, 0);
@ -319,6 +325,11 @@ void esp_timer_impl_deinit(void)
}
}
s_alarm_handler = NULL;
PERIPH_RCC_RELEASE_ATOMIC(PERIPH_LACT, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(LACT_MODULE, false);
}
}
}
uint64_t esp_timer_impl_get_alarm_reg(void)

Wyświetl plik

@ -1,19 +1,75 @@
## `hal`
# `hal` (G0 component)
The `hal` component provides hardware abstraction and implementation for targets supported by ESP-IDF.
⚠️ The HAL component is still under heavy development at the moment, so we don't guarantee the stability and backward-compatibility among versions.
#### `include/hal`
The `hal` component provides a **Hardware Abstraction Layer** for all targets supported by ESP-IDF. It is designed to be a `G0` component so that it can be used by other components like `driver`, `esp_hw_support`, `esp_system` and so on.
In a broad sense, the HAL layer consists of two sub-layers: HAL (upper) and Low-Level(bottom). The HAL layer defines the steps and data that is required to operate a peripheral (e.g. initialization, start and stop). The low-level is a translation layer above the register files under the `soc` component, it only covers general conceptions to register configurations.
## Low-Level (`hal/<periph>_ll.h`)
Functions defined in the file must be static inlined. The first argument of an LL function is usually a pointer to the peripheral's base address [^1]. At the moment, each ESP target has its own set of Low-Level drivers. They're located under path e.g. `components/hal/<target>/include/hal/<periph>_ll.h`. We wish the the low-level functions could be as independent as possible, so that the caller doesn't need to worry about conflict between different sub-modules. For example, when resetting the driver of module A, the module B is also reset by accident. However, the digital design is not perfect, coupling happens from time to time.
### Handling Shared Registers
One of the biggest coupling is the so-called "hardware shared resource". Take the common `Reset and Clock Control` part as an example, the clock enable and disable logic of different peripherals are mixing in the same register. In RTOS environment, it's super easy to make a mistake when you enable peripheral A and then peripheral B is disabled by accident. A simple way to avoid such mistake is to using a critical section when accessing such shared registers. However from the point of the software architecture, it's not a good idea to add a **lock** in the Low-Level because it's a concept of the operating system.
One compromise is to **highlight** the LL function which needs the caller to use them in a critical section. e.g.
```c
/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_RC_ATOMIC_ENV variable in advance
#define timer_ll_reset_register(...) (void)__DECLARE_RCC_RC_ATOMIC_ENV; timer_ll_reset_register(__VA_ARGS__)
/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_ATOMIC_ENV variable in advance
#define timer_ll_set_clock_source(...) (void)__DECLARE_RCC_ATOMIC_ENV; timer_ll_set_clock_source(__VA_ARGS__)
```
By referencing a variable which is only declared in the critical section, the compiler will report an error if the caller forgets to use the critical section. The following macros are provided by `esp_private/periph_ctrl.h`, which contain the above *magic* variables.
| Macro | Private variables used to declare a critical section | Use condition |
| --- | --- | --- |
| `PERIPH_RCC_ACQUIRE_ATOMIC` | *__DECLARE_RCC_RC_ATOMIC_ENV* | This critical section not only protects the shared register accessing, but also **increases** a reference counter of the peripheral module. </br> You should use this critical section if the peripheral module has multiple independent sub-modules. |
| `PERIPH_RCC_RELEASE_ATOMIC` | *__DECLARE_RCC_RC_ATOMIC_ENV* | This critical section not only protects the shared register accessing, but also **decreases** a reference counter of the peripheral module. </br> You should use this critical section if the peripheral module has multiple independent sub-modules. |
| `PERIPH_RCC_ATOMIC` | *__DECLARE_RCC_ATOMIC_ENV* | This critical section only protects the shared register accessing. |
ESP-IDF driver developers then can use the above macros to call the special LL functions. e.g.
```c
static void enable_timer_group0_for_calibration(void)
{
PERIPH_RCC_ACQUIRE_ATOMIC(PERIPH_TIMG0_MODULE, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(0, true);
timer_ll_reset_register(0);
}
}
}
```
## HAL (`hal/<periph>_hal.h`)
This layer is a combination of Low-Level function calls, aiming to ease the load when porting a new chip to other platforms (e.g. Zephyr). This layer shouldn't rely on Operating System, i.e., don't use primitives that only offered by an Operating System, e.g., the lock and other blocking functions. Please don't introduce any *driver models* in the HAL layer so that the non-idf developers can customized their own drivers according to their platform requirement.
The first argument of a HAL function is usually a pointer to the **context object**. The context object is a structure which saves the necessary information that is used by the HAL driver (e.g. the base address of the peripheral). ⚡ Please note, the memory used by the HAL context object is allocated by the caller, so the HAL driver shouldn't free it.
## File Structure
### `include/hal`
`/include/hal` contains header files which provides a hardware-agnostic interface to the SoC. The interface consists of function declarations and abstracted types that other, higher level components can make use of in order to have code portable to all targets ESP-IDF supports.
It contains an abstraction layer for ineracting with/driving the hardware found in the SoC such as the peripherals and 'core' hardware such as the CPU, MPU, caches, etc. It contains for the abstracted types.
The abstraction design is actually two levels -- often somtimes `xxx_hal.h` includes a lower-level header from a `xxx_ll.h`, which resides in the implementation. More on this abstraction design in the [`hal/include/hal`'s Readme](include/hal/readme.md)
It contains an abstraction layer for interacting with/driving the hardware found in the SoC such as the peripherals and 'core' hardware such as the CPU, MPU, caches, etc. It contains for the abstracted types.
The abstraction design is actually two levels -- often sometimes `xxx_hal.h` includes a lower-level header from a `xxx_ll.h`, which resides in the implementation. More on this abstraction design in the [`hal/include/hal`'s Readme](include/hal/readme.md)
#### `target/include`
### `target/include`
Provides the implementation of the hardware-agnostic interface in the abstraction. Target-specific subdirectories exist for wildly different implementations among targets; while code that are common/very similar might be placed in the top-level of `/<target>/include`, using some amount of conditional preprocessors. It is up to the developers' discretion on which strategy to use. Code usually reside in source files with same names to header files whose interfaces they implement, ex. `xxx_hal.c` for `xxx_hal.h`.
Provides the implementation of the hardware-agnostic interface in the abstraction. Target-specific subdirectories exist for wildly different implementations among targets; while code that are common/very similar might be placed in the top-level of `/<target>/include`, using some amount of conditional preprocessor. It is up to the developers' discretion on which strategy to use. Code usually reside in source files with same names to header files whose interfaces they implement, ex. `xxx_hal.c` for `xxx_hal.h`.
As mentioned previously, the lower-level abstraction header `xxx_ll.h` resides in this directory, since they contain hardware-specific details.
However, what these can do is provide some abstraction among implementations, so that more code can be moved to the common, non-target-specific subdirectories.
This can also contain target-specific extensions to the HAL headers. These target-specific HAL headers have the same name and include the abstraction layer HAL header via `include_next`. These extensions might add more function declarations or override some things using macro magic.
This can also contain target-specific extensions to the HAL headers. These target-specific HAL headers have the same name and include the abstraction layer HAL header via `include_next`. These extensions might add more function declarations or override some things using macro magic.
[^1]: This is not a must. Sometimes if the LL is just operating some system level registers, you don't have to provide this argument.

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2021-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -13,6 +13,7 @@
#include "hal/misc.h"
#include "hal/timer_types.h"
#include "soc/timer_group_struct.h"
#include "soc/dport_reg.h"
#ifdef __cplusplus
extern "C" {
@ -22,6 +23,55 @@ extern "C" {
#define TIMER_LL_GET_HW(group_id) ((group_id == 0) ? (&TIMERG0) : (&TIMERG1))
#define TIMER_LL_EVENT_ALARM(timer_id) (1 << (timer_id))
/**
* @brief Enable the bus clock for timer group module
*
* @param group_id Group ID
* @param enable true to enable, false to disable
*/
static inline void timer_ll_enable_bus_clock(int group_id, bool enable)
{
uint32_t reg_val = DPORT_READ_PERI_REG(DPORT_PERIP_CLK_EN_REG);
if (group_id == 0) {
reg_val &= ~DPORT_TIMERGROUP_CLK_EN;
reg_val |= enable << 13;
} else {
reg_val &= ~DPORT_TIMERGROUP1_CLK_EN;
reg_val |= enable << 15;
}
DPORT_WRITE_PERI_REG(DPORT_PERIP_CLK_EN_REG, reg_val);
}
/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_RC_ATOMIC_ENV variable in advance
#define timer_ll_enable_bus_clock(...) (void)__DECLARE_RCC_RC_ATOMIC_ENV; timer_ll_enable_bus_clock(__VA_ARGS__)
/**
* @brief Reset the timer group module
*
* @note After reset the register, the "flash boot protection" will be enabled again.
* FLash boot protection is not used anymore after system boot up.
* This function will disable it by default in order to prevent the system from being reset unexpectedly.
*
* @param group_id Group ID
*/
static inline void timer_ll_reset_register(int group_id)
{
if (group_id == 0) {
DPORT_WRITE_PERI_REG(DPORT_PERIP_RST_EN_REG, DPORT_TIMERGROUP_RST);
DPORT_WRITE_PERI_REG(DPORT_PERIP_RST_EN_REG, 0);
TIMERG0.wdtconfig0.wdt_flashboot_mod_en = 0;
} else {
DPORT_WRITE_PERI_REG(DPORT_PERIP_RST_EN_REG, DPORT_TIMERGROUP1_RST);
DPORT_WRITE_PERI_REG(DPORT_PERIP_RST_EN_REG, 0);
TIMERG1.wdtconfig0.wdt_flashboot_mod_en = 0;
}
}
/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_RC_ATOMIC_ENV variable in advance
#define timer_ll_reset_register(...) (void)__DECLARE_RCC_RC_ATOMIC_ENV; timer_ll_reset_register(__VA_ARGS__)
/**
* @brief Set clock source for timer
*

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2021-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -13,6 +13,7 @@
#include "hal/misc.h"
#include "hal/timer_types.h"
#include "soc/timer_group_struct.h"
#include "soc/system_struct.h"
#ifdef __cplusplus
extern "C" {
@ -22,6 +23,43 @@ extern "C" {
#define TIMER_LL_GET_HW(group_id) (&TIMERG0)
#define TIMER_LL_EVENT_ALARM(timer_id) (1 << (timer_id))
/**
* @brief Enable the bus clock for timer group module
*
* @param group_id Group ID
* @param enable true to enable, false to disable
*/
static inline void timer_ll_enable_bus_clock(int group_id, bool enable)
{
(void)group_id;
SYSTEM.perip_clk_en0.timergroup_clk_en = enable;
}
/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_RC_ATOMIC_ENV variable in advance
#define timer_ll_enable_bus_clock(...) (void)__DECLARE_RCC_RC_ATOMIC_ENV; timer_ll_enable_bus_clock(__VA_ARGS__)
/**
* @brief Reset the timer group module
*
* @note After reset the register, the "flash boot protection" will be enabled again.
* FLash boot protection is not used anymore after system boot up.
* This function will disable it by default in order to prevent the system from being reset unexpectedly.
*
* @param group_id Group ID
*/
static inline void timer_ll_reset_register(int group_id)
{
(void)group_id;
SYSTEM.perip_rst_en0.timergroup_rst = 1;
SYSTEM.perip_rst_en0.timergroup_rst = 0;
TIMERG0.wdtconfig0.wdt_flashboot_mod_en = 0;
}
/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_RC_ATOMIC_ENV variable in advance
#define timer_ll_reset_register(...) (void)__DECLARE_RCC_RC_ATOMIC_ENV; timer_ll_reset_register(__VA_ARGS__)
/**
* @brief Set clock source for timer
*

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2021-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -13,6 +13,7 @@
#include "hal/misc.h"
#include "hal/timer_types.h"
#include "soc/timer_group_struct.h"
#include "soc/system_struct.h"
#ifdef __cplusplus
extern "C" {
@ -22,6 +23,51 @@ extern "C" {
#define TIMER_LL_GET_HW(group_id) ((group_id == 0) ? (&TIMERG0) : (&TIMERG1))
#define TIMER_LL_EVENT_ALARM(timer_id) (1 << (timer_id))
/**
* @brief Enable the bus clock for timer group module
*
* @param group_id Group ID
* @param enable true to enable, false to disable
*/
static inline void timer_ll_enable_bus_clock(int group_id, bool enable)
{
if (group_id == 0) {
SYSTEM.perip_clk_en0.reg_timergroup_clk_en = enable;
} else {
SYSTEM.perip_clk_en0.reg_timergroup1_clk_en = enable;
}
}
/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_RC_ATOMIC_ENV variable in advance
#define timer_ll_enable_bus_clock(...) (void)__DECLARE_RCC_RC_ATOMIC_ENV; timer_ll_enable_bus_clock(__VA_ARGS__)
/**
* @brief Reset the timer group module
*
* @note After reset the register, the "flash boot protection" will be enabled again.
* FLash boot protection is not used anymore after system boot up.
* This function will disable it by default in order to prevent the system from being reset unexpectedly.
*
* @param group_id Group ID
*/
static inline void timer_ll_reset_register(int group_id)
{
if (group_id == 0) {
SYSTEM.perip_rst_en0.reg_timergroup_rst = 1;
SYSTEM.perip_rst_en0.reg_timergroup_rst = 0;
TIMERG0.wdtconfig0.wdt_flashboot_mod_en = 0;
} else {
SYSTEM.perip_rst_en0.reg_timergroup1_rst = 1;
SYSTEM.perip_rst_en0.reg_timergroup1_rst = 0;
TIMERG1.wdtconfig0.wdt_flashboot_mod_en = 0;
}
}
/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_RC_ATOMIC_ENV variable in advance
#define timer_ll_reset_register(...) (void)__DECLARE_RCC_RC_ATOMIC_ENV; timer_ll_reset_register(__VA_ARGS__)
/**
* @brief Set clock source for timer
*

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -50,6 +50,51 @@ extern "C" {
}}, \
}[group][timer][event]
/**
* @brief Enable the bus clock for timer group module
*
* @param group_id Group ID
* @param enable true to enable, false to disable
*/
static inline void timer_ll_enable_bus_clock(int group_id, bool enable)
{
if (group_id == 0) {
PCR.timergroup0_conf.tg0_clk_en = enable;
} else {
PCR.timergroup1_conf.tg1_clk_en = enable;
}
}
/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_RC_ATOMIC_ENV variable in advance
#define timer_ll_enable_bus_clock(...) (void)__DECLARE_RCC_RC_ATOMIC_ENV; timer_ll_enable_bus_clock(__VA_ARGS__)
/**
* @brief Reset the timer group module
*
* @note After reset the register, the "flash boot protection" will be enabled again.
* FLash boot protection is not used anymore after system boot up.
* This function will disable it by default in order to prevent the system from being reset unexpectedly.
*
* @param group_id Group ID
*/
static inline void timer_ll_reset_register(int group_id)
{
if (group_id == 0) {
PCR.timergroup0_conf.tg0_rst_en = 1;
PCR.timergroup0_conf.tg0_rst_en = 0;
TIMERG0.wdtconfig0.wdt_flashboot_mod_en = 0;
} else {
PCR.timergroup1_conf.tg1_rst_en = 1;
PCR.timergroup1_conf.tg1_rst_en = 0;
TIMERG1.wdtconfig0.wdt_flashboot_mod_en = 0;
}
}
/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_RC_ATOMIC_ENV variable in advance
#define timer_ll_reset_register(...) (void)__DECLARE_RCC_RC_ATOMIC_ENV; timer_ll_reset_register(__VA_ARGS__)
/**
* @brief Set clock source for timer
*

Wyświetl plik

@ -50,6 +50,51 @@ extern "C" {
}}, \
}[group][timer][event]
/**
* @brief Enable the bus clock for timer group module
*
* @param group_id Group ID
* @param enable true to enable, false to disable
*/
static inline void timer_ll_enable_bus_clock(int group_id, bool enable)
{
if (group_id == 0) {
PCR.timergroup0_conf.tg0_clk_en = enable;
} else {
PCR.timergroup1_conf.tg1_clk_en = enable;
}
}
/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_RC_ATOMIC_ENV variable in advance
#define timer_ll_enable_bus_clock(...) (void)__DECLARE_RCC_RC_ATOMIC_ENV; timer_ll_enable_bus_clock(__VA_ARGS__)
/**
* @brief Reset the timer group module
*
* @note After reset the register, the "flash boot protection" will be enabled again.
* FLash boot protection is not used anymore after system boot up.
* This function will disable it by default in order to prevent the system from being reset unexpectedly.
*
* @param group_id Group ID
*/
static inline void timer_ll_reset_register(int group_id)
{
if (group_id == 0) {
PCR.timergroup0_conf.tg0_rst_en = 1;
PCR.timergroup0_conf.tg0_rst_en = 0;
TIMERG0.wdtconfig0.wdt_flashboot_mod_en = 0;
} else {
PCR.timergroup1_conf.tg1_rst_en = 1;
PCR.timergroup1_conf.tg1_rst_en = 0;
TIMERG1.wdtconfig0.wdt_flashboot_mod_en = 0;
}
}
/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_RC_ATOMIC_ENV variable in advance
#define timer_ll_reset_register(...) (void)__DECLARE_RCC_RC_ATOMIC_ENV; timer_ll_reset_register(__VA_ARGS__)
/**
* @brief Set clock source for timer
*

Wyświetl plik

@ -80,10 +80,6 @@ static inline uint32_t periph_ll_get_clk_en_mask(periph_module_t periph)
return HP_SYS_CLKRST_REG_MCPWM0_APB_CLK_EN;
case PERIPH_MCPWM1_MODULE:
return HP_SYS_CLKRST_REG_MCPWM1_APB_CLK_EN;
case PERIPH_TIMG0_MODULE:
return HP_SYS_CLKRST_REG_TIMERGRP0_T0_CLK_EN | HP_SYS_CLKRST_REG_TIMERGRP0_T1_CLK_EN | HP_SYS_CLKRST_REG_TIMERGRP0_WDT_CLK_EN;
case PERIPH_TIMG1_MODULE:
return HP_SYS_CLKRST_REG_TIMERGRP1_T0_CLK_EN | HP_SYS_CLKRST_REG_TIMERGRP1_T1_CLK_EN | HP_SYS_CLKRST_REG_TIMERGRP1_WDT_CLK_EN;
case PERIPH_SYSTIMER_MODULE:
return HP_SYS_CLKRST_REG_SYSTIMER_CLK_EN;
case PERIPH_LEDC_MODULE:
@ -148,10 +144,6 @@ static inline uint32_t periph_ll_get_rst_en_mask(periph_module_t periph, bool en
return HP_SYS_CLKRST_REG_RST_EN_AXI_PDMA;
case PERIPH_SYSTIMER_MODULE:
return HP_SYS_CLKRST_REG_RST_EN_STIMER;
case PERIPH_TIMG0_MODULE:
return HP_SYS_CLKRST_REG_RST_EN_TIMERGRP0;
case PERIPH_TIMG1_MODULE:
return HP_SYS_CLKRST_REG_RST_EN_TIMERGRP1;
case PERIPH_UART0_MODULE:
return HP_SYS_CLKRST_REG_RST_EN_UART0_CORE;
case PERIPH_UART1_MODULE:
@ -268,9 +260,6 @@ static inline uint32_t periph_ll_get_clk_en_reg(periph_module_t periph)
case PERIPH_MCPWM1_MODULE:
case PERIPH_PCNT_MODULE:
return HP_SYS_CLKRST_SOC_CLK_CTRL2_REG;
case PERIPH_TIMG0_MODULE:
return HP_SYS_CLKRST_PERI_CLK_CTRL20_REG;
case PERIPH_TIMG1_MODULE:
case PERIPH_SYSTIMER_MODULE:
case PERIPH_LEDC_MODULE:
case PERIPH_RMT_MODULE:
@ -312,8 +301,6 @@ static inline uint32_t periph_ll_get_rst_en_reg(periph_module_t periph)
case PERIPH_AHB_PDMA_MODULE:
case PERIPH_AXI_PDMA_MODULE:
case PERIPH_SYSTIMER_MODULE:
case PERIPH_TIMG0_MODULE:
case PERIPH_TIMG1_MODULE:
case PERIPH_UART0_MODULE:
case PERIPH_UART1_MODULE:
case PERIPH_UART2_MODULE:

Wyświetl plik

@ -24,6 +24,51 @@ extern "C" {
#define TIMER_LL_GET_HW(group_id) ((group_id == 0) ? (&TIMERG0) : (&TIMERG1))
#define TIMER_LL_EVENT_ALARM(timer_id) (1 << (timer_id))
/**
* @brief Enable the bus clock for timer group module
*
* @param group_id Group ID
* @param enable true to enable, false to disable
*/
static inline void timer_ll_enable_bus_clock(int group_id, bool enable)
{
if (group_id == 0) {
HP_SYS_CLKRST.soc_clk_ctrl2.reg_timergrp0_apb_clk_en = enable;
} else {
HP_SYS_CLKRST.soc_clk_ctrl2.reg_timergrp1_apb_clk_en = enable;
}
}
/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_RC_ATOMIC_ENV variable in advance
#define timer_ll_enable_bus_clock(...) (void)__DECLARE_RCC_RC_ATOMIC_ENV; timer_ll_enable_bus_clock(__VA_ARGS__)
/**
* @brief Reset the timer group module
*
* @note After reset the register, the "flash boot protection" will be enabled again.
* FLash boot protection is not used anymore after system boot up.
* This function will disable it by default in order to prevent the system from being reset unexpectedly.
*
* @param group_id Group ID
*/
static inline void timer_ll_reset_register(int group_id)
{
if (group_id == 0) {
HP_SYS_CLKRST.hp_rst_en1.reg_rst_en_timergrp0 = 1;
HP_SYS_CLKRST.hp_rst_en1.reg_rst_en_timergrp0 = 0;
TIMERG0.wdtconfig0.wdt_flashboot_mod_en = 0;
} else {
HP_SYS_CLKRST.hp_rst_en1.reg_rst_en_timergrp1 = 1;
HP_SYS_CLKRST.hp_rst_en1.reg_rst_en_timergrp1 = 0;
TIMERG1.wdtconfig0.wdt_flashboot_mod_en = 0;
}
}
/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_RC_ATOMIC_ENV variable in advance
#define timer_ll_reset_register(...) (void)__DECLARE_RCC_RC_ATOMIC_ENV; timer_ll_reset_register(__VA_ARGS__)
/**
* @brief Set clock source for timer
*
@ -63,6 +108,10 @@ static inline void timer_ll_set_clock_source(timg_dev_t *hw, uint32_t timer_num,
}
}
/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_ATOMIC_ENV variable in advance
#define timer_ll_set_clock_source(...) (void)__DECLARE_RCC_ATOMIC_ENV; timer_ll_set_clock_source(__VA_ARGS__)
/**
* @brief Enable Timer Group (GPTimer) module clock
*
@ -87,6 +136,10 @@ static inline void timer_ll_enable_clock(timg_dev_t *hw, uint32_t timer_num, boo
}
}
/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_ATOMIC_ENV variable in advance
#define timer_ll_enable_clock(...) (void)__DECLARE_RCC_ATOMIC_ENV; timer_ll_enable_clock(__VA_ARGS__)
/**
* @brief Enable alarm event
*

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2021-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -13,6 +13,7 @@
#include "hal/misc.h"
#include "hal/timer_types.h"
#include "soc/timer_group_struct.h"
#include "soc/system_reg.h"
#ifdef __cplusplus
extern "C" {
@ -22,6 +23,55 @@ extern "C" {
#define TIMER_LL_GET_HW(group_id) ((group_id == 0) ? (&TIMERG0) : (&TIMERG1))
#define TIMER_LL_EVENT_ALARM(timer_id) (1 << (timer_id))
/**
* @brief Enable the bus clock for timer group module
*
* @param group_id Group ID
* @param enable true to enable, false to disable
*/
static inline void timer_ll_enable_bus_clock(int group_id, bool enable)
{
uint32_t reg_val = READ_PERI_REG(DPORT_PERIP_CLK_EN0_REG);
if (group_id == 0) {
reg_val &= ~DPORT_TIMERGROUP_CLK_EN_M;
reg_val |= enable << DPORT_TIMERGROUP_CLK_EN_S;
} else {
reg_val &= ~DPORT_TIMERGROUP1_CLK_EN_M;
reg_val |= enable << DPORT_TIMERGROUP1_CLK_EN_S;
}
WRITE_PERI_REG(DPORT_PERIP_CLK_EN0_REG, reg_val);
}
/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_RC_ATOMIC_ENV variable in advance
#define timer_ll_enable_bus_clock(...) (void)__DECLARE_RCC_RC_ATOMIC_ENV; timer_ll_enable_bus_clock(__VA_ARGS__)
/**
* @brief Reset the timer group module
*
* @note After reset the register, the "flash boot protection" will be enabled again.
* FLash boot protection is not used anymore after system boot up.
* This function will disable it by default in order to prevent the system from being reset unexpectedly.
*
* @param group_id Group ID
*/
static inline void timer_ll_reset_register(int group_id)
{
if (group_id == 0) {
WRITE_PERI_REG(DPORT_PERIP_RST_EN0_REG, DPORT_TIMERGROUP_RST_M);
WRITE_PERI_REG(DPORT_PERIP_RST_EN0_REG, 0);
TIMERG0.wdtconfig0.wdt_flashboot_mod_en = 0;
} else {
WRITE_PERI_REG(DPORT_PERIP_RST_EN0_REG, DPORT_TIMERGROUP1_RST_M);
WRITE_PERI_REG(DPORT_PERIP_RST_EN0_REG, 0);
TIMERG1.wdtconfig0.wdt_flashboot_mod_en = 0;
}
}
/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_RC_ATOMIC_ENV variable in advance
#define timer_ll_reset_register(...) (void)__DECLARE_RCC_RC_ATOMIC_ENV; timer_ll_reset_register(__VA_ARGS__)
/**
* @brief Set clock source for timer
*

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2021-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -13,6 +13,7 @@
#include "hal/misc.h"
#include "hal/timer_types.h"
#include "soc/timer_group_struct.h"
#include "soc/system_struct.h"
#ifdef __cplusplus
extern "C" {
@ -22,6 +23,51 @@ extern "C" {
#define TIMER_LL_GET_HW(group_id) ((group_id == 0) ? (&TIMERG0) : (&TIMERG1))
#define TIMER_LL_EVENT_ALARM(timer_id) (1 << (timer_id))
/**
* @brief Enable the bus clock for timer group module
*
* @param group_id Group ID
* @param enable true to enable, false to disable
*/
static inline void timer_ll_enable_bus_clock(int group_id, bool enable)
{
if (group_id == 0) {
SYSTEM.perip_clk_en0.timergroup_clk_en = enable;
} else {
SYSTEM.perip_clk_en0.timergroup1_clk_en = enable;
}
}
/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_RC_ATOMIC_ENV variable in advance
#define timer_ll_enable_bus_clock(...) (void)__DECLARE_RCC_RC_ATOMIC_ENV; timer_ll_enable_bus_clock(__VA_ARGS__)
/**
* @brief Reset the timer group module
*
* @note After reset the register, the "flash boot protection" will be enabled again.
* FLash boot protection is not used anymore after system boot up.
* This function will disable it by default in order to prevent the system from being reset unexpectedly.
*
* @param group_id Group ID
*/
static inline void timer_ll_reset_register(int group_id)
{
if (group_id == 0) {
SYSTEM.perip_rst_en0.timergroup_rst = 1;
SYSTEM.perip_rst_en0.timergroup_rst = 0;
TIMERG0.wdtconfig0.wdt_flashboot_mod_en = 0;
} else {
SYSTEM.perip_rst_en0.timergroup1_rst = 1;
SYSTEM.perip_rst_en0.timergroup1_rst = 0;
TIMERG1.wdtconfig0.wdt_flashboot_mod_en = 0;
}
}
/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_RC_ATOMIC_ENV variable in advance
#define timer_ll_reset_register(...) (void)__DECLARE_RCC_RC_ATOMIC_ENV; timer_ll_reset_register(__VA_ARGS__)
/**
* @brief Set clock source for timer
*

Wyświetl plik

@ -1,25 +0,0 @@
# HAL Layer Readme
The HAL layer is designed to be used by the drivers. We don't guarantee the stability and back-compatibility among
versions. The HAL layer may update very frequently with the driver. Please don't use them in the applications or treat
them as stable APIs.
The HAL layer consists of two layers: HAL (upper) and Lowlevel(bottom). The HAL layer defines the steps and data
required by the peripheral. The lowlevel is a translation layer converting general conceptions to register configurations.
## Lowlevel
This layer should be all static inline. The first argument of LL functions is usually a pointer to the beginning address
of the peripheral register. Each chip should have its own LL layer. The functions in this layer should be atomic and
independent from each other so that the upper layer can change/perform one of the options/operation without touching the
others.
## HAL
This layer should depend on the operating system as little as possible. It's a wrapping of LL functions, so that the upper
layer can combine basic steps into different working ways (polling, non-polling, interrupt, etc.). Without using
queues/locks/delay/loop/etc., this layer can be easily port to other os or simulation systems.
To get better performance and better porting ability, ``context``s are used to hold sustainable data and pass the parameters.
To develop your own driver, it is suggested to copy the HAL layer to your own code and keep them until manual update.

Wyświetl plik

@ -13,8 +13,6 @@ void timer_hal_init(timer_hal_context_t *hal, uint32_t group_num, uint32_t timer
{
hal->dev = TIMER_LL_GET_HW(group_num);
hal->timer_id = timer_num;
// enable peripheral clock
timer_ll_enable_clock(hal->dev, timer_num, true);
// stop counter, alarm, auto-reload at first place
timer_ll_enable_counter(hal->dev, timer_num, false);
timer_ll_enable_auto_reload(hal->dev, timer_num, false);
@ -27,8 +25,6 @@ void timer_hal_init(timer_hal_context_t *hal, uint32_t group_num, uint32_t timer
void timer_hal_deinit(timer_hal_context_t *hal)
{
// disable peripheral clock
timer_ll_enable_clock(hal->dev, hal->timer_id, false);
// ensure counter, alarm, auto-reload are disabled
timer_ll_enable_counter(hal->dev, hal->timer_id, false);
timer_ll_enable_auto_reload(hal->dev, hal->timer_id, false);

Wyświetl plik

@ -905,6 +905,7 @@ typedef struct {
volatile system_reg_date_reg_t reg_date;
} system_dev_t;
extern system_dev_t SYSTEM;
#ifndef __cplusplus
_Static_assert(sizeof(system_dev_t) == 0x1000, "Invalid size of system_dev_t structure");

Wyświetl plik

@ -20,3 +20,4 @@ PROVIDE ( GPSPI3 = 0x60025000 );
PROVIDE ( SYSCON = 0x60026000 );
PROVIDE ( APB_SARADC = 0x60040000 );
PROVIDE ( GDMA = 0x6003F000 );
PROVIDE ( SYSTEM = 0x600c0000 );

Wyświetl plik

@ -33,3 +33,4 @@ PROVIDE ( GPSPI4 = 0x60037000 );
PROVIDE ( APB_SARADC = 0x60040000 );
PROVIDE ( USB_SERIAL_JTAG = 0x60043000 );
PROVIDE ( GDMA = 0x6003F000 );
PROVIDE ( SYSTEM = 0x600c0000 );

Wyświetl plik

@ -49,3 +49,4 @@ PROVIDE ( USB0 = 0x60080000 );
PROVIDE ( USB_DWC = 0x60080000 );
PROVIDE ( USB_WRAP = 0x60039000 );
PROVIDE ( WORLD_CONTROLLER = 0x600D0000 );
PROVIDE ( SYSTEM = 0x600C0000 );