adc: upgrade adc calibration algorithm to version 2 on c3

pull/8370/head
Armando 2022-01-20 20:34:37 +08:00
rodzic 2cad565781
commit 2f874dbf10
8 zmienionych plików z 187 dodań i 78 usunięć

Wyświetl plik

@ -1,7 +1,7 @@
idf_build_get_property(target IDF_TARGET)
set(srcs "esp_adc_cal_common.c")
set(src_target "esp_adc_cal_${target}.c")
set(src_target "${target}/esp_adc_cal.c")
if(EXISTS "${CMAKE_CURRENT_LIST_DIR}/${src_target}")
list(APPEND srcs ${src_target})
endif()

Wyświetl plik

@ -15,16 +15,47 @@
#include "hal/adc_ll.h"
#include "esp_efuse_rtc_calib.h"
#include "esp_adc_cal.h"
#include "../esp_adc_cal_internal.h"
const static char LOG_TAG[] = "adc_calib";
const static char LOG_TAG[] = "ADC_CALI";
/* ------------------------ Characterization Constants ---------------------- */
// coeff_a and coeff_b are actually floats
// they are scaled to put them into uint32_t so that the headers do not have to be changed
// coeff_a is actually a float number
// it is scaled to put them into uint32_t so that the headers do not have to be changed
static const int coeff_a_scaling = 65536;
static const int coeff_b_scaling = 1024;
/**
* @note Error Calculation
* Coefficients for calculating the reading voltage error.
* Four sets of coefficients for atten0 ~ atten3 respectively.
*
* For each item, first element is the Coefficient, second element is the Multiple. (Coefficient / Multiple) is the real coefficient.
*
* @note {0,0} stands for unused item
* @note In case of the overflow, these coeffcients are recorded as Absolute Value
* @note For atten0 ~ 2, error = (K0 * X^0) + (K1 * X^1) + (K2 * X^2); For atten3, error = (K0 * X^0) + (K1 * X^1) + (K2 * X^2) + (K3 * X^3) + (K4 * X^4);
* @note Above formula is rewritten from the original documentation, please note that the coefficients are re-ordered.
* @note ADC1 and ADC2 use same coeffients
*/
const static uint64_t adc_error_coef_atten[4][5][2] = {
{{225966470500043, 1e15}, {7265418501948, 1e16}, {109410402681, 1e16}, {0, 0}, {0, 0}}, //atten0
{{4229623392600516, 1e16}, {731527490903, 1e16}, {88166562521, 1e16}, {0, 0}, {0, 0}}, //atten1
{{1017859239236435, 1e15}, {97159265299153, 1e16}, {149794028038, 1e16}, {0, 0}, {0, 0}}, //atten2
{{14912262772850453, 1e16}, {228549975564099, 1e16}, {356391935717, 1e16}, {179964582, 1e16}, {42046, 1e16}} //atten3
};
/**
* Term sign
* @note ADC1 and ADC2 use same coeffients
*/
const static int32_t adc_error_sign[4][5] = {
{-1, -1, 1, 0, 0}, //atten0
{ 1, -1, 1, 0, 0}, //atten1
{-1, -1, 1, 0, 0}, //atten2
{-1, -1, 1, -1, 1} //atten3
};
/* -------------------- Characterization Helper Data Types ------------------ */
typedef struct {
uint32_t voltage;
@ -38,9 +69,9 @@ typedef struct {
union {
adc_calib_data_ver1 ver1;
} efuse_data;
} adc_calib_parsed_info;
} adc_calib_parsed_info_t;
static esp_err_t prepare_calib_data_for(int version_num, adc_unit_t adc_num, adc_atten_t atten, adc_calib_parsed_info *parsed_data_storage)
static esp_err_t prepare_calib_data_for(int version_num, adc_unit_t adc_num, adc_atten_t atten, adc_calib_parsed_info_t *parsed_data_storage)
{
assert(version_num == 1);
esp_err_t ret;
@ -64,7 +95,7 @@ static esp_err_t prepare_calib_data_for(int version_num, adc_unit_t adc_num, adc
* Estimate the (assumed) linear relationship btwn the measured raw value and the voltage
* with the previously done measurement when the chip was manufactured.
*/
static void calculate_characterization_coefficients(const adc_calib_parsed_info *parsed_data, esp_adc_cal_characteristics_t *chars)
static void calculate_characterization_coefficients(const adc_calib_parsed_info_t *parsed_data, esp_adc_cal_characteristics_t *chars)
{
ESP_LOGD(LOG_TAG, "Calib V1, Cal Voltage = %d, Digi out = %d\n", parsed_data->efuse_data.ver1.voltage, parsed_data->efuse_data.ver1.digi);
@ -93,7 +124,7 @@ esp_adc_cal_value_t esp_adc_cal_characterize(adc_unit_t adc_num,
esp_adc_cal_characteristics_t *chars)
{
esp_err_t ret;
adc_calib_parsed_info efuse_parsed_data = {0};
adc_calib_parsed_info_t efuse_parsed_data = {0};
// Check parameters
ESP_RETURN_ON_FALSE(adc_num == ADC_UNIT_1 || adc_num == ADC_UNIT_2, ESP_ADC_CAL_VAL_NOT_SUPPORTED, LOG_TAG, "Invalid unit num");
ESP_RETURN_ON_FALSE(chars != NULL, ESP_ADC_CAL_VAL_NOT_SUPPORTED, LOG_TAG, "Ivalid characteristic");
@ -126,5 +157,16 @@ esp_adc_cal_value_t esp_adc_cal_characterize(adc_unit_t adc_num,
uint32_t esp_adc_cal_raw_to_voltage(uint32_t adc_reading, const esp_adc_cal_characteristics_t *chars)
{
assert(chars != NULL);
return adc_reading * chars->coeff_a / coeff_a_scaling + chars->coeff_b / coeff_b_scaling;
int32_t error = 0;
uint64_t v_cali_1 = adc_reading * chars->coeff_a / coeff_a_scaling;
esp_adc_error_calc_param_t param = {
.v_cali_input = v_cali_1,
.term_num = (chars->atten == 3) ? 5 : 3,
.coeff = &adc_error_coef_atten,
.sign = &adc_error_sign,
};
error = esp_adc_cal_get_reading_error(&param, chars->atten);
return (int32_t)v_cali_1 - error;
}

Wyświetl plik

@ -15,6 +15,7 @@
#include "hal/adc_types.h"
#include "esp_efuse_rtc_calib.h"
#include "esp_adc_cal.h"
#include "../esp_adc_cal_internal.h"
const static char LOG_TAG[] = "ADC_CALI";
@ -33,33 +34,35 @@ static const int coeff_a_scaling = 1000000;
*
* @note {0,0} stands for unused item
* @note In case of the overflow, these coeffcients are recorded as Absolute Value
* @note For atten0 ~ 2, error = a1 * X^2 + a2 * X + a3; For atten3, error = a1 * X^4 + a2 * X^3 + a3 * X^2 + a4 * X + a5;
* @note For atten0 ~ 2, error = (K0 * X^0) + (K1 * X^1) + (K2 * X^2); For atten3, error = (K0 * X^0) + (K1 * X^1) + (K2 * X^2) + (K3 * X^3) + (K4 * X^4);
* @note Above formula is rewritten from the original documentation, please note that the coefficients are re-ordered.
*/
const static uint64_t adc_error_coef_atten[4][10][2] = {
{{9798249589, 1e15}, {50871540569528, 1e16}, {3, 1}, {0, 0}, {0, 0}, //ADC1 atten0
{36615265189, 1e16}, {1353548869615, 1e16}, {3, 1}, {0, 0}, {0, 0}}, //ADC2 atten0
{{101379430548, 1e16}, {49393185868806, 1e16}, {3, 1}, {0, 0}, {0, 0}, //ADC1 atten1
{118964995959, 1e16}, {66319894226185, 1e16}, {2, 1}, {0, 0}, {0, 0}}, //ADC2 atten1
{{208385525314, 1e16}, {147640181047414, 1e16}, {2, 1}, {0, 0}, {0, 0}, //ADC1 atten2
{259011467956, 1e16}, {200996773954387, 1e16}, {1, 1}, {0, 0}, {0, 0}}, //ADC2 atten2
{{13515, 1e15}, {70769718, 1e15}, {1297891447611, 1e16}, {644334888647536, 1e16}, {1,1}, //ADC1 atten3
{15038, 1e15}, {79672528, 1e15}, {1478791187119, 1e16}, {755717904943462, 1e16}, {1,1}} //ADC2 atten3
const static uint64_t adc1_error_coef_atten[4][5][2] = {
{{27856531419538344, 1e16}, {50871540569528, 1e16}, {9798249589, 1e15}, {0, 0}, {0, 0}}, //ADC1 atten0
{{29831022915028695, 1e16}, {49393185868806, 1e16}, {101379430548, 1e16}, {0, 0}, {0, 0}}, //ADC1 atten1
{{23285545746296417, 1e16}, {147640181047414, 1e16}, {208385525314, 1e16}, {0, 0}, {0, 0}}, //ADC1 atten2
{{644403418269478, 1e15}, {644334888647536, 1e16}, {1297891447611, 1e16}, {70769718, 1e15}, {13515, 1e15}} //ADC1 atten3
};
const static int32_t adc_error_sign[4][10] = {
{1, -1, -1, 0, 0, //ADC1 atten0
1, 1, -1, 0, 0}, //ADC2 atten0
{1, -1, -1, 0, 0, //ADC1 atten1
1, -1, -1, 0, 0}, //ADC2 atten1
{1, -1, -1, 0, 0, //ADC1 atten2
1, -1, -1, 0, 0}, //ADC2 atten2
{1, -1, 1, -1, -1, //ADC1 atten3
1, -1, 1, -1, 1} //ADC2 atten3
const static uint64_t adc2_error_coef_atten[4][5][2] = {
{{25668651654328927, 1e16}, {1353548869615, 1e16}, {36615265189, 1e16}, {0, 0}, {0, 0}}, //ADC2 atten0
{{23690184690298404, 1e16}, {66319894226185, 1e16}, {118964995959, 1e16}, {0, 0}, {0, 0}}, //ADC2 atten1
{{9452499397020617, 1e16}, {200996773954387, 1e16}, {259011467956, 1e16}, {0, 0}, {0, 0}}, //ADC2 atten2
{{12247719764336924,1e16}, {755717904943462, 1e16}, {1478791187119, 1e16}, {79672528, 1e15}, {15038, 1e15}} //ADC2 atten3
};
/**
* Term sign
*/
const static int32_t adc1_error_sign[4][5] = {
{-1, -1, 1, 0, 0}, //ADC1 atten0
{-1, -1, 1, 0, 0}, //ADC1 atten1
{-1, -1, 1, 0, 0}, //ADC1 atten2
{-1, -1, 1, -1, 1} //ADC1 atten3
};
const static int32_t adc2_error_sign[4][5] = {
{-1, 1, 1, 0, 0}, //ADC2 atten0
{-1, -1, 1, 0, 0}, //ADC2 atten1
{-1, -1, 1, 0, 0}, //ADC2 atten2
{ 1, -1, 1, -1, 1} //ADC2 atten3
};
/* -------------------- Characterization Helper Data Types ------------------ */
@ -151,47 +154,6 @@ esp_adc_cal_value_t esp_adc_cal_characterize(adc_unit_t adc_num,
return ESP_ADC_CAL_VAL_EFUSE_TP_FIT;
}
static int32_t get_reading_error(uint64_t v_cali_1, uint8_t adc_num, uint8_t atten)
{
if (v_cali_1 == 0) {
return 0;
}
uint8_t term_max = (atten == 3) ? 5 : 3;
int32_t error = 0;
uint64_t coeff = 0;
uint64_t term[5] = {0};
/**
* For atten0 ~ 2:
* error = a1 * X^2 + a2 * X + a3;
*
* For atten3:
* error = a1 * X^4 + a2 * X^3 + a3 * X^2 + a4 * X + a5;
*/
//Calculate all the power beforehand
term[term_max-1] = 1;
term[term_max-2] = v_cali_1;
for (int term_id = term_max - 3; term_id >= 0; term_id--) {
term[term_id] = term[term_id + 1] * v_cali_1;
}
//Calculate each term
uint8_t coef_id_start = (adc_num == ADC_UNIT_1) ? 0 : 5;
for (int i = 0; i < term_max; i++) {
coeff = adc_error_coef_atten[atten][coef_id_start + i][0];
term[i] = term[i] * coeff;
ESP_LOGV(LOG_TAG, "big coef is %llu, big term%d is %llu, coef_id is %d", coeff, i, term[i], coef_id_start + i);
term[i] = term[i] / adc_error_coef_atten[atten][coef_id_start + i][1];
error += (int32_t)term[i] * adc_error_sign[atten][i];
ESP_LOGV(LOG_TAG, "term%d is %llu, error is %d", i, term[i], error);
}
return error;
}
uint32_t esp_adc_cal_raw_to_voltage(uint32_t adc_reading, const esp_adc_cal_characteristics_t *chars)
{
assert(chars != NULL);
@ -209,7 +171,15 @@ uint32_t esp_adc_cal_raw_to_voltage(uint32_t adc_reading, const esp_adc_cal_char
v_cali_1 = v_cali_1 / coeff_a_scaling;
ESP_LOGV(LOG_TAG, "v_cali_1 is %llu", v_cali_1);
error = get_reading_error(v_cali_1, chars->adc_num, chars->atten);
//Curve Fitting error correction
esp_adc_error_calc_param_t param = {
.v_cali_input = v_cali_1,
.term_num = (chars->atten == 3) ? 5 : 3,
.coeff = (chars->adc_num == ADC_UNIT_1) ? &adc1_error_coef_atten : &adc2_error_coef_atten,
.sign = (chars->adc_num == ADC_UNIT_1) ? &adc1_error_sign : &adc2_error_sign,
};
error = esp_adc_cal_get_reading_error(&param, chars->atten);
voltage = (int32_t)v_cali_1 - error;
return voltage;

Wyświetl plik

@ -13,6 +13,7 @@
#include "driver/adc.h"
#include "hal/adc_types.h"
#include "esp_adc_cal.h"
#include "esp_adc_cal_internal.h"
const __attribute__((unused)) static char *TAG = "ADC_CALI";
@ -39,3 +40,49 @@ esp_err_t esp_adc_cal_get_voltage(adc_channel_t channel,
}
return ret;
}
#if ESP_ADC_CAL_CURVE_FITTING_SUPPORTED
/*------------------------------------------------------------------------------
* Private API
*----------------------------------------------------------------------------*/
int32_t esp_adc_cal_get_reading_error(const esp_adc_error_calc_param_t *param, uint8_t atten)
{
if (param->v_cali_input == 0) {
return 0;
}
uint64_t v_cali_1 = param->v_cali_input;
uint8_t term_num = param->term_num;
int32_t error = 0;
uint64_t coeff = 0;
uint64_t variable[term_num];
uint64_t term[term_num];
memset(variable, 0, term_num * sizeof(uint64_t));
memset(term, 0, term_num * sizeof(uint64_t));
/**
* For atten0 ~ 2:
* error = (K0 * X^0) + (K1 * X^1) + (K2 * X^2);
*
* For atten3:
* error = (K0 * X^0) + (K1 * X^1) + (K2 * X^2) + (K3 * X^3) + (K4 * X^4);
*/
variable[0] = 1;
coeff = (*param->coeff)[atten][0][0];
term[0] = variable[0] * coeff / (*param->coeff)[atten][0][1];
error = (int32_t)term[0] * (*param->sign)[atten][0];
for (int i = 1; i < term_num; i++) {
variable[i] = variable[i-1] * v_cali_1;
coeff = (*param->coeff)[atten][i][0];
term[i] = variable[i] * coeff;
ESP_LOGV(TAG, "big coef is %llu, big term%d is %llu, coef_id is %d", coeff, i, term[i], i);
term[i] = term[i] / (*param->coeff)[atten][i][1];
error += (int32_t)term[i] * (*param->sign)[atten][i];
ESP_LOGV(TAG, "term%d is %llu, error is %d", i, term[i], error);
}
return error;
}
#endif //#if ESP_ADC_CAL_CURVE_FITTING_SUPPORTED

Wyświetl plik

@ -0,0 +1,50 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdint.h>
#include "sdkconfig.h"
#ifdef __cplusplus
extern "C" {
#endif
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3
#define ESP_ADC_CAL_CURVE_FITTING_SUPPORTED 1
#define COEFF_GROUP_NUM 4
#define TERM_MAX 5
#endif
#if ESP_ADC_CAL_CURVE_FITTING_SUPPORTED
/**
* Calculation parameters used for curve fitting calibration algorithm error
*
* @note For atten0 ~ 2, error = (K0 * X^0) + (K1 * X^1) + (K2 * X^2); For atten3, error = (K0 * X^0) + (K1 * X^1) + (K2 * X^2) + (K3 * X^3) + (K4 * X^4);
* Where X is the `v_cali_input`.
*/
typedef struct {
uint64_t v_cali_input; //Input to calculate the error
uint8_t term_num; //Term number of the algorithm formula
const uint64_t (*coeff)[COEFF_GROUP_NUM][TERM_MAX][2]; //Coeff of each term. See `adc_error_coef_atten` for details (and the magic number 2)
const int32_t (*sign)[COEFF_GROUP_NUM][TERM_MAX]; //Sign of each term
} esp_adc_error_calc_param_t;
/**
* Calculate the curve fitting error
*
* @param param see `esp_adc_error_calc_param_t`
* @param atten ADC attenuation
*/
int32_t esp_adc_cal_get_reading_error(const esp_adc_error_calc_param_t *param, uint8_t atten);
#endif //#if ESP_ADC_CAL_CURVE_FITTING_SUPPORTED
#ifdef __cplusplus
}
#endif

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/