chasemapper/chasemapper/geometry.py

196 wiersze
7.1 KiB
Python

#!/usr/bin/env python
#
# Project Horus - Flight Data to Geometry
#
# Copyright (C) 2018 Mark Jessop <vk5qi@rfhead.net>
# Released under GNU GPL v3 or later
#
import traceback
import logging
import numpy as np
from .atmosphere import *
from .earthmaths import position_info
class GenericTrack(object):
"""
A Generic 'track' object, which stores track positions for a payload or chase car.
Telemetry is added using the add_telemetry method, which takes a dictionary with time/lat/lon/alt keys (at minimum).
This object performs a running average of the ascent/descent rate, and calculates the predicted landing rate if the payload
is in descent.
The track history can be exported to a LineString using the to_line_string method.
"""
def __init__(self,
ascent_averaging = 6,
landing_rate = 5.0,
heading_gate_threshold = 0.0):
''' Create a GenericTrack Object. '''
# Averaging rate.
self.ASCENT_AVERAGING = ascent_averaging
# Payload state.
self.landing_rate = landing_rate
# Heading gate threshold (only gate headings if moving faster than this value in m/s)
self.heading_gate_threshold = heading_gate_threshold
self.ascent_rate = 0.0
self.heading = 0.0
self.heading_valid = False
self.speed = 0.0
self.is_descending = False
# Internal store of track history data.
# Data is stored as a list-of-lists, with elements of [datetime, lat, lon, alt, comment]
self.track_history = []
def add_telemetry(self,data_dict):
'''
Accept telemetry data as a dictionary with fields
datetime, lat, lon, alt, comment
'''
try:
_datetime = data_dict['time']
_lat = data_dict['lat']
_lon = data_dict['lon']
_alt = data_dict['alt']
if 'comment' in data_dict.keys():
_comment = data_dict['comment']
else:
_comment = ""
self.track_history.append([_datetime, _lat, _lon, _alt, _comment])
self.update_states()
# If we have been supplied a 'true' heading with the position, override the state to use that.
if 'heading' in data_dict:
self.heading = data_dict['heading']
self.heading_valid = True
return self.get_latest_state()
except:
logging.error("Error reading input data: %s" % traceback.format_exc())
def get_latest_state(self):
''' Get the latest position of the payload '''
if len(self.track_history) == 0:
return None
else:
_latest_position = self.track_history[-1]
_state = {
'time' : _latest_position[0],
'lat' : _latest_position[1],
'lon' : _latest_position[2],
'alt' : _latest_position[3],
'ascent_rate': self.ascent_rate,
'is_descending': self.is_descending,
'landing_rate': self.landing_rate,
'heading': self.heading,
'heading_valid': self.heading_valid,
'speed': self.speed
}
return _state
def calculate_ascent_rate(self):
''' Calculate the ascent/descent rate of the payload based on the available data '''
if len(self.track_history) <= 1:
return 0.0
elif len(self.track_history) == 2:
# Basic ascent rate case - only 2 samples.
_time_delta = (self.track_history[-1][0] - self.track_history[-2][0]).total_seconds()
_altitude_delta = self.track_history[-1][3] - self.track_history[-2][3]
if _time_delta == 0:
logging.warning("Zero time-step encountered in ascent rate calculation - are multiple receivers reporting telemetry simultaneously?")
return 0.0
else:
return _altitude_delta/_time_delta
else:
_num_samples = min(len(self.track_history), self.ASCENT_AVERAGING)
_asc_rates = []
for _i in range(-1*(_num_samples-1), 0):
_time_delta = (self.track_history[_i][0] - self.track_history[_i-1][0]).total_seconds()
_altitude_delta = self.track_history[_i][3] - self.track_history[_i-1][3]
try:
_asc_rates.append(_altitude_delta/_time_delta)
except ZeroDivisionError:
logging.warning("Zero time-step encountered in ascent rate calculation - are multiple receivers reporting telemetry simultaneously?")
continue
return np.mean(_asc_rates)
def calculate_heading(self):
''' Calculate the heading of the payload '''
if len(self.track_history) <= 1:
return 0.0
else:
_pos_1 = self.track_history[-2]
_pos_2 = self.track_history[-1]
_pos_info = position_info((_pos_1[1],_pos_1[2],_pos_1[3]), (_pos_2[1],_pos_2[2],_pos_2[3]))
return _pos_info['bearing']
def calculate_speed(self):
""" Calculate Payload Speed in metres per second """
if len(self.track_history)<=1:
return 0.0
else:
_time_delta = (self.track_history[-1][0] - self.track_history[-2][0]).total_seconds()
_pos_1 = self.track_history[-2]
_pos_2 = self.track_history[-1]
_pos_info = position_info((_pos_1[1],_pos_1[2],_pos_1[3]), (_pos_2[1],_pos_2[2],_pos_2[3]))
try:
_speed = _pos_info['great_circle_distance']/_time_delta
except ZeroDivisionError:
logging.warning("Zero time-step encountered in speed calculation - are multiple receivers reporting telemetry simultaneously?")
return 0.0
return _speed
def update_states(self):
''' Update internal states based on the current data '''
self.ascent_rate = self.calculate_ascent_rate()
self.speed = self.calculate_speed()
self.heading = self.calculate_heading()
if self.speed > self.heading_gate_threshold:
self.heading_valid = True
else:
self.heading_valid = False
self.is_descending = self.ascent_rate < 0.0
if self.is_descending:
_current_alt = self.track_history[-1][3]
self.landing_rate = seaLevelDescentRate(self.ascent_rate, _current_alt)
def to_polyline(self):
''' Generate and return a Leaflet PolyLine compatible array '''
# Copy array into a numpy representation for easier slicing.
if len(self.track_history) == 0:
return []
elif len(self.track_history) == 1:
# LineStrings need at least 2 points. If we only have a single point,
# fudge it by duplicating the single point.
_track_data_np = np.array([self.track_history[0], self.track_history[0]])
else:
_track_data_np = np.array(self.track_history)
# Produce new array
_track_points = np.column_stack((_track_data_np[:,1], _track_data_np[:,2], _track_data_np[:,3]))
return _track_points.tolist()