arduinoFFT/src/arduinoFFT.h

485 wiersze
14 KiB
C++

/*
FFT libray
Copyright (C) 2010 Didier Longueville
Copyright (C) 2014 Enrique Condes
Copyright (C) 2020 Bim Overbohm (header-only, template, speed improvements)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ArduinoFFT_h /* Prevent loading library twice */
#define ArduinoFFT_h
#ifdef ARDUINO
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h" /* This is where the standard Arduino code lies */
#endif
#else
#include <stdlib.h>
#include <stdio.h>
#ifdef __AVR__
#include <avr/io.h>
#include <avr/pgmspace.h>
#endif
#include <math.h>
#include "defs.h"
#include "types.h"
#endif
// Define this to use reciprocal multiplication for division and some more speedups that might decrease precision
//#define FFT_SPEED_OVER_PRECISION
// Define this to use a low-precision square root approximation instead of the regular sqrt() call
// This might only work for specific use cases, but is significantly faster. Only works for ArduinoFFT<float>.
//#define FFT_SQRT_APPROXIMATION
#ifdef FFT_SQRT_APPROXIMATION
#include <type_traits>
#else
#define sqrt_internal sqrt
#endif
enum class FFTDirection
{
Reverse,
Forward
};
enum class FFTWindow
{
Rectangle, // rectangle (Box car)
Hamming, // hamming
Hann, // hann
Triangle, // triangle (Bartlett)
Nuttall, // nuttall
Blackman, //blackman
Blackman_Nuttall, // blackman nuttall
Blackman_Harris, // blackman harris
Flat_top, // flat top
Welch // welch
};
template <typename T>
class ArduinoFFT
{
public:
// Constructor
ArduinoFFT(T *vReal, T *vImag, uint_fast16_t samples, T samplingFrequency, T *windowWeighingFactors = nullptr)
: _vReal(vReal)
, _vImag(vImag)
, _samples(samples)
#ifdef FFT_SPEED_OVER_PRECISION
, _oneOverSamples(1.0 / samples)
#endif
, _samplingFrequency(samplingFrequency)
, _windowWeighingFactors(windowWeighingFactors)
{
// Calculates the base 2 logarithm of sample count
_power = 0;
while (((samples >> _power) & 1) != 1)
{
_power++;
}
}
// Destructor
~ArduinoFFT()
{
}
// Get library revision
static uint8_t revision()
{
return 0x19;
}
// Replace the data array pointers
void setArrays(T *vReal, T *vImag)
{
_vReal = vReal;
_vImag = vImag;
}
// Computes in-place complex-to-complex FFT
void compute(FFTDirection dir) const
{
// Reverse bits /
uint_fast16_t j = 0;
for (uint_fast16_t i = 0; i < (this->_samples - 1); i++)
{
if (i < j)
{
Swap(this->_vReal[i], this->_vReal[j]);
if (dir == FFTDirection::Reverse)
{
Swap(this->_vImag[i], this->_vImag[j]);
}
}
uint_fast16_t k = (this->_samples >> 1);
while (k <= j)
{
j -= k;
k >>= 1;
}
j += k;
}
// Compute the FFT
#ifdef __AVR__
uint_fast8_t index = 0;
#endif
T c1 = -1.0;
T c2 = 0.0;
uint_fast16_t l2 = 1;
for (uint_fast8_t l = 0; (l < this->_power); l++)
{
uint_fast16_t l1 = l2;
l2 <<= 1;
T u1 = 1.0;
T u2 = 0.0;
for (j = 0; j < l1; j++)
{
for (uint_fast16_t i = j; i < this->_samples; i += l2)
{
uint_fast16_t i1 = i + l1;
T t1 = u1 * this->_vReal[i1] - u2 * this->_vImag[i1];
T t2 = u1 * this->_vImag[i1] + u2 * this->_vReal[i1];
this->_vReal[i1] = this->_vReal[i] - t1;
this->_vImag[i1] = this->_vImag[i] - t2;
this->_vReal[i] += t1;
this->_vImag[i] += t2;
}
T z = ((u1 * c1) - (u2 * c2));
u2 = ((u1 * c2) + (u2 * c1));
u1 = z;
}
#ifdef __AVR__
c2 = pgm_read_float_near(&(_c2[index]));
c1 = pgm_read_float_near(&(_c1[index]));
index++;
#else
T cTemp = 0.5 * c1;
c2 = sqrt_internal(0.5 - cTemp);
c1 = sqrt_internal(0.5 + cTemp);
#endif
c2 = dir == FFTDirection::Forward ? -c2 : c2;
}
// Scaling for reverse transform
if (dir != FFTDirection::Forward)
{
for (uint_fast16_t i = 0; i < this->_samples; i++)
{
#ifdef FFT_SPEED_OVER_PRECISION
this->_vReal[i] *= _oneOverSamples;
this->_vImag[i] *= _oneOverSamples;
#else
this->_vReal[i] /= this->_samples;
this->_vImag[i] /= this->_samples;
#endif
}
}
}
void complexToMagnitude() const
{
// vM is half the size of vReal and vImag
for (uint_fast16_t i = 0; i < this->_samples; i++)
{
this->_vReal[i] = sqrt_internal(sq(this->_vReal[i]) + sq(this->_vImag[i]));
}
}
void dcRemoval() const
{
// calculate the mean of vData
T mean = 0;
for (uint_fast16_t i = 1; i < ((this->_samples >> 1) + 1); i++)
{
mean += this->_vReal[i];
}
mean /= this->_samples;
// Subtract the mean from vData
for (uint_fast16_t i = 1; i < ((this->_samples >> 1) + 1); i++)
{
this->_vReal[i] -= mean;
}
}
void windowing(FFTWindow windowType, FFTDirection dir, bool withCompensation = false)
{
// check if values are already pre-computed for the correct window type and compensation
if (_windowWeighingFactors && _weighingFactorsComputed &&
_weighingFactorsFFTWindow == windowType &&
_weighingFactorsWithCompensation == withCompensation)
{
// yes. values are precomputed
if (dir == FFTDirection::Forward)
{
for (uint_fast16_t i = 0; i < (this->_samples >> 1); i++)
{
this->_vReal[i] *= _windowWeighingFactors[i];
this->_vReal[this->_samples - (i + 1)] *= _windowWeighingFactors[i];
}
}
else
{
for (uint_fast16_t i = 0; i < (this->_samples >> 1); i++)
{
#ifdef FFT_SPEED_OVER_PRECISION
// on many architectures reciprocals and multiplying are much faster than division
T oneOverFactor = 1.0 / _windowWeighingFactors[i];
this->_vReal[i] *= oneOverFactor;
this->_vReal[this->_samples - (i + 1)] *= oneOverFactor;
#else
this->_vReal[i] /= _windowWeighingFactors[i];
this->_vReal[this->_samples - (i + 1)] /= _windowWeighingFactors[i];
#endif
}
}
}
else
{
// no. values need to be pre-computed or applied
T samplesMinusOne = (T(this->_samples) - 1.0);
T compensationFactor = _WindowCompensationFactors[static_cast<uint_fast8_t>(windowType)];
for (uint_fast16_t i = 0; i < (this->_samples >> 1); i++)
{
T indexMinusOne = T(i);
T ratio = (indexMinusOne / samplesMinusOne);
T weighingFactor = 1.0;
// Compute and record weighting factor
switch (windowType)
{
case FFTWindow::Rectangle: // rectangle (box car)
weighingFactor = 1.0;
break;
case FFTWindow::Hamming: // hamming
weighingFactor = 0.54 - (0.46 * cos(TWO_PI * ratio));
break;
case FFTWindow::Hann: // hann
weighingFactor = 0.54 * (1.0 - cos(TWO_PI * ratio));
break;
case FFTWindow::Triangle: // triangle (Bartlett)
weighingFactor = 1.0 - ((2.0 * abs(indexMinusOne - (samplesMinusOne / 2.0))) / samplesMinusOne);
break;
case FFTWindow::Nuttall: // nuttall
weighingFactor = 0.355768 - (0.487396 * (cos(TWO_PI * ratio))) + (0.144232 * (cos(FOUR_PI * ratio))) - (0.012604 * (cos(SIX_PI * ratio)));
break;
case FFTWindow::Blackman: // blackman
weighingFactor = 0.42323 - (0.49755 * (cos(TWO_PI * ratio))) + (0.07922 * (cos(FOUR_PI * ratio)));
break;
case FFTWindow::Blackman_Nuttall: // blackman nuttall
weighingFactor = 0.3635819 - (0.4891775 * (cos(TWO_PI * ratio))) + (0.1365995 * (cos(FOUR_PI * ratio))) - (0.0106411 * (cos(SIX_PI * ratio)));
break;
case FFTWindow::Blackman_Harris: // blackman harris
weighingFactor = 0.35875 - (0.48829 * (cos(TWO_PI * ratio))) + (0.14128 * (cos(FOUR_PI * ratio))) - (0.01168 * (cos(SIX_PI * ratio)));
break;
case FFTWindow::Flat_top: // flat top
weighingFactor = 0.2810639 - (0.5208972 * cos(TWO_PI * ratio)) + (0.1980399 * cos(FOUR_PI * ratio));
break;
case FFTWindow::Welch: // welch
weighingFactor = 1.0 - sq((indexMinusOne - samplesMinusOne / 2.0) / (samplesMinusOne / 2.0));
break;
}
if (withCompensation)
{
weighingFactor *= compensationFactor;
}
if (_windowWeighingFactors)
{
_windowWeighingFactors[i] = weighingFactor;
}
if (dir == FFTDirection::Forward)
{
this->_vReal[i] *= weighingFactor;
this->_vReal[this->_samples - (i + 1)] *= weighingFactor;
}
else
{
#ifdef FFT_SPEED_OVER_PRECISION
// on many architectures reciprocals and multiplying are much faster than division
T oneOverFactor = 1.0 / weighingFactor;
this->_vReal[i] *= oneOverFactor;
this->_vReal[this->_samples - (i + 1)] *= oneOverFactor;
#else
this->_vReal[i] /= weighingFactor;
this->_vReal[this->_samples - (i + 1)] /= weighingFactor;
#endif
}
}
// mark cached values as pre-computed
_weighingFactorsFFTWindow = windowType;
_weighingFactorsWithCompensation = withCompensation;
_weighingFactorsComputed = true;
}
}
T majorPeak() const
{
T maxY = 0;
uint_fast16_t IndexOfMaxY = 0;
//If sampling_frequency = 2 * max_frequency in signal,
//value would be stored at position samples/2
for (uint_fast16_t i = 1; i < ((this->_samples >> 1) + 1); i++)
{
if ((this->_vReal[i - 1] < this->_vReal[i]) && (this->_vReal[i] > this->_vReal[i + 1]))
{
if (this->_vReal[i] > maxY)
{
maxY = this->_vReal[i];
IndexOfMaxY = i;
}
}
}
T delta = 0.5 * ((this->_vReal[IndexOfMaxY - 1] - this->_vReal[IndexOfMaxY + 1]) / (this->_vReal[IndexOfMaxY - 1] - (2.0 * this->_vReal[IndexOfMaxY]) + this->_vReal[IndexOfMaxY + 1]));
T interpolatedX = ((IndexOfMaxY + delta) * this->_samplingFrequency) / (this->_samples - 1);
if (IndexOfMaxY == (this->_samples >> 1))
{
//To improve calculation on edge values
interpolatedX = ((IndexOfMaxY + delta) * this->_samplingFrequency) / (this->_samples);
}
// returned value: interpolated frequency peak apex
return interpolatedX;
}
void majorPeak(T &frequency, T &value) const
{
T maxY = 0;
uint_fast16_t IndexOfMaxY = 0;
//If sampling_frequency = 2 * max_frequency in signal,
//value would be stored at position samples/2
for (uint_fast16_t i = 1; i < ((this->_samples >> 1) + 1); i++)
{
if ((this->_vReal[i - 1] < this->_vReal[i]) && (this->_vReal[i] > this->_vReal[i + 1]))
{
if (this->_vReal[i] > maxY)
{
maxY = this->_vReal[i];
IndexOfMaxY = i;
}
}
}
T delta = 0.5 * ((this->_vReal[IndexOfMaxY - 1] - this->_vReal[IndexOfMaxY + 1]) / (this->_vReal[IndexOfMaxY - 1] - (2.0 * this->_vReal[IndexOfMaxY]) + this->_vReal[IndexOfMaxY + 1]));
T interpolatedX = ((IndexOfMaxY + delta) * this->_samplingFrequency) / (this->_samples - 1);
if (IndexOfMaxY == (this->_samples >> 1))
{
//To improve calculation on edge values
interpolatedX = ((IndexOfMaxY + delta) * this->_samplingFrequency) / (this->_samples);
}
// returned value: interpolated frequency peak apex
frequency = interpolatedX;
value = abs(this->_vReal[IndexOfMaxY - 1] - (2.0 * this->_vReal[IndexOfMaxY]) + this->_vReal[IndexOfMaxY + 1]);
}
private:
#ifdef __AVR__
static const float _c1[] PROGMEM;
static const float _c2[] PROGMEM;
#endif
static const T _WindowCompensationFactors[10];
// Mathematial constants
#ifndef TWO_PI
static constexpr T TWO_PI = 6.28318531; // might already be defined in Arduino.h
#endif
static constexpr T FOUR_PI = 12.56637061;
static constexpr T SIX_PI = 18.84955593;
static inline void Swap(T &x, T &y)
{
T temp = x;
x = y;
y = temp;
}
#ifdef FFT_SQRT_APPROXIMATION
// Fast inverse square root aka "Quake 3 fast inverse square root", multiplied by x.
// Uses one iteration of Halley's method for precision.
// See: https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Iterative_methods_for_reciprocal_square_roots
// And: https://github.com/HorstBaerbel/approx
template <typename V = T>
static inline V sqrt_internal(typename std::enable_if<std::is_same<V, float>::value, V>::type x)
{
union // get bits for float value
{
float x;
int32_t i;
} u;
u.x = x;
u.i = 0x5f375a86 - (u.i >> 1); // gives initial guess y0. use 0x5fe6ec85e7de30da for double
float xu = x * u.x;
float xu2 = xu * u.x;
u.x = (0.125 * 3.0) * xu * (5.0 - xu2 * ((10.0 / 3.0) - xu2)); // Halley's method, repeating increases accuracy
return u.x;
}
// At least on the ESP32, the approximation is not faster, so we use the standard function
template <typename V = T>
static inline V sqrt_internal(typename std::enable_if<!std::is_same<V, float>::value, V>::type x)
{
return sqrt(x);
}
#endif
/* Variables */
uint_fast16_t _samples = 0;
#ifdef FFT_SPEED_OVER_PRECISION
T _oneOverSamples = 0.0;
#endif
T _samplingFrequency = 0;
T *_vReal = nullptr;
T *_vImag = nullptr;
T *_windowWeighingFactors = nullptr;
FFTWindow _weighingFactorsFFTWindow;
bool _weighingFactorsWithCompensation = false;
bool _weighingFactorsComputed = false;
uint_fast8_t _power = 0;
};
#ifdef __AVR__
template <typename T>
const float ArduinoFFT<T>::_c1[] PROGMEM = {
0.0000000000, 0.7071067812, 0.9238795325, 0.9807852804,
0.9951847267, 0.9987954562, 0.9996988187, 0.9999247018,
0.9999811753, 0.9999952938, 0.9999988235, 0.9999997059,
0.9999999265, 0.9999999816, 0.9999999954, 0.9999999989,
0.9999999997};
template <typename T>
const float ArduinoFFT<T>::_c2[] PROGMEM = {
1.0000000000, 0.7071067812, 0.3826834324, 0.1950903220,
0.0980171403, 0.0490676743, 0.0245412285, 0.0122715383,
0.0061358846, 0.0030679568, 0.0015339802, 0.0007669903,
0.0003834952, 0.0001917476, 0.0000958738, 0.0000479369,
0.0000239684};
#endif
template <typename T>
const T ArduinoFFT<T>::_WindowCompensationFactors[10] = {
1.0000000000 * 2.0, // rectangle (Box car)
1.8549343278 * 2.0, // hamming
1.8554726898 * 2.0, // hann
2.0039186079 * 2.0, // triangle (Bartlett)
2.8163172034 * 2.0, // nuttall
2.3673474360 * 2.0, // blackman
2.7557840395 * 2.0, // blackman nuttall
2.7929062517 * 2.0, // blackman harris
3.5659039231 * 2.0, // flat top
1.5029392863 * 2.0 // welch
};
#endif