
Editor

The Editor class is the main way of controlling tldraw's editor. You can use it to manage

the editor's internal state, make changes to the document, or respond to changes that

have occurred.

By design, the Editor 's surface area is very large. Almost everything is available through

it. Need to create some shapes? Use Editor.createShapes . Need to delete them? Use

Editor.deleteShapes . Need a sorted array of every shape on the current page? Use

Editor.getCurrentPageShapesSorted .

This page gives a broad idea of how the Editor class is organized and some of the

architectural concepts involved. The full reference is available in the Editor API.

Store

The editor holds the raw state of the document in its Editor.store property. Data is kept

here as a table of JSON serializable records.

For example, the store contains a TLPage record for each page in the current document,

as well as an TLInstancePageState record for each page that stores information about

the editor's state for that page, and a single TLInstance for each editor instance which

stores the id of the user's current page.

The editor also exposes many computed values which are derived from other records in

the store. For example, Editor.getSelectedShapeIds is a method that returns the

editor's current selected shape ids for its current page.

You can use these properties directly or you can use them in signals.

import { track, useEditor } from 'tldraw'

https://tldraw.dev/reference/editor/Editor
https://tldraw.dev/reference/editor/Editor
https://tldraw.dev/reference/editor/Editor#createShapes
https://tldraw.dev/reference/editor/Editor#deleteShapes
https://tldraw.dev/reference/editor/Editor#getCurrentPageShapesSorted
https://tldraw.dev/reference/editor/Editor
https://tldraw.dev/reference/editor/Editor
https://tldraw.dev/reference/editor/Editor#store
https://tldraw.dev/reference/tlschema/TLPage
https://tldraw.dev/reference/tlschema/TLInstancePageState
https://tldraw.dev/reference/tlschema/TLInstance
https://tldraw.dev/reference/editor/Editor#getSelectedShapeIds
https://tldraw.dev/quick-start
https://tldraw.dev/quick-start
https://x.com/tldraw/
https://discord.com/invite/SBBEVCA4PG
https://github.com/tldraw/tldraw

export const SelectedShapeIdsCount = track(() => {

const editor = useEditor()

return <div>{editor.getSelectedShapeIds().length}</div>

})

Changing the state

The Editor class has many methods for updating its state. For example, you can change

the current page's selection using Editor.setSelectedShapes . You can also use other

convenience methods, such as Editor.select , Editor.selectAll , or

Editor.selectNone .

editor.selectNone()

editor.select(myShapeId, myOtherShapeId)

editor.getSelectedShapeIds() // [myShapeId, myOtherShapeId]

Each change to the state happens within a transaction. You can batch changes into a

single transaction using the Editor.batch method. It's a good idea to batch wherever

possible, as this reduces the overhead for persisting or distributing those changes.

Listening for changes

You can subscribe to changes using the Store.listen method on Editor.store . Each

time a transaction completes, the editor will call the callback with a history entry. This

entry contains information about the records that were added, changed, or deleted, as

well as whether the change was caused by the user or from a remote change.

editor.store.listen((entry) => {

entry // { changes, source }

})

https://tldraw.dev/reference/editor/Editor
https://tldraw.dev/reference/editor/Editor#setSelectedShapes
https://tldraw.dev/reference/editor/Editor#select
https://tldraw.dev/reference/editor/Editor#selectAll
https://tldraw.dev/reference/editor/Editor#selectNone
https://tldraw.dev/reference/editor/Editor#batch
https://tldraw.dev/reference/store/Store#listen
https://tldraw.dev/reference/editor/Editor#store

Remote changes

By default, changes to the editor's store are assumed to have come from the editor itself.

You can use the Store.mergeRemoteChanges method of the editor's Editor.store to

make changes in the store that will be emitted via Store.listen with the source

property as 'remote' .

If you're setting up some kind of multiplayer backend, you would want to send only the

'user' changes to the server and merge the changes from the server using

Store.mergeRemoteChanges (editor.store.mergeRemoteChanges).

Undo and redo

The history stack in tldraw contains two types of data: "marks" and "commands".

Commands have their own undo and redo methods that describe how the state should

change when the command is undone or redone.

You can call Editor.mark to add a mark to the history stack with the given id .

editor.mark('my-id')

// do some stuff

editor.bailToMark('my-id')

When you call Editor.undo , the editor will undo each command until it finds either a mark

or the start of the stack. When you call Editor.redo , the editor will redo each command

until it finds either a mark or the end of the stack.

// A

editor.mark('duplicate everything')

editor.selectAll()

editor.duplicateShapes(editor.getSelectedShapeIds())

// B

https://tldraw.dev/reference/store/Store#mergeRemoteChanges
https://tldraw.dev/reference/editor/Editor#store
https://tldraw.dev/reference/store/Store#listen
https://tldraw.dev/reference/store/Store#mergeRemoteChanges
https://tldraw.dev/reference/editor/Editor#mark
https://tldraw.dev/reference/editor/Editor#undo
https://tldraw.dev/reference/editor/Editor#redo

editor.undo() // will return to A

editor.redo() // will return to B

You can call Editor.bail to undo and delete all commands in the stack until the first

mark.

// A

editor.mark('duplicate everything')

editor.selectAll()

editor.duplicateShapes(editor.getSelectedShapeIds())

// B

editor.bail() // will return to A

editor.redo() // will do nothing

You can use Editor.bailToMark to undo and delete all commands and marks until you

reach a mark with the given id .

// A

editor.mark('first')

editor.selectAll()

// B

editor.mark('second')

editor.duplicateShapes(editor.getSelectedShapeIds())

// C

editor.bailToMark('first') // will return to A

Events

The Editor class receives events from its Editor.dispatch method. When the Editor

receives an event, it is first handled internally to update Editor.inputs and other state

https://tldraw.dev/reference/editor/Editor#bail
https://tldraw.dev/reference/editor/Editor#bailToMark
https://tldraw.dev/reference/editor/Editor
https://tldraw.dev/reference/editor/Editor#dispatch
https://tldraw.dev/reference/editor/Editor
https://tldraw.dev/reference/editor/Editor#inputs

before, and then sent into to the editor's state chart.

You shouldn't need to use the Editor.dispatch method directly, however you may write

code in the state chart that responds to these events. See the Tools page to learn how to

do that, or read below for a more detailed information about the state chart itself.

State Chart

The Editor class has a "state chart", or a tree of StateNode instances, that contain the

logic for the editor's tools such as the select tool or the draw tool. User interactions such

as moving the cursor will produce different changes to the state depending on which

nodes are active.

Each node can be active or inactive. Each state node may also have zero or more children.

When a state is active, and if the state has children, one (and only one) of its children must

also be active. When a state node receives an event from its parent, it has the opportunity

to handle the event before passing the event to its active child. The node can handle an

event in any way: it can ignore the event, update records in the store, or run a transition

that changes which states nodes are active.

When a user interaction is sent to the editor via its Editor.dispatch method, this event

is sent to the editor's root state node (Editor.root) and passed then down through the

chart's active states until either it reaches a leaf node or until one of those nodes

produces a transaction.

https://tldraw.dev/reference/editor/Editor#dispatch
https://tldraw.dev/docs/tools
https://tldraw.dev/reference/editor/Editor
https://tldraw.dev/reference/editor/StateNode
https://tldraw.dev/reference/editor/Editor#dispatch
https://tldraw.dev/reference/editor/Editor#root

Path

You can get the editor's current "path" of active states via editor.root.path . In the

above example, the value would be "root.select.idle" .

You can check whether a path is active via Editor.isIn , or else check whether multiple

paths are active via Editor.isInAny .

editor.store.path // 'root.select.idle'

editor.isIn('root.select') // true

editor.isIn('root.select.idle') // true

editor.isIn('root.select.pointing_shape') // false

editor.isInAny('editor.select.idle', 'editor.select.pointing_shape') // true

Note that the paths you pass to Editor.isIn or Editor.isInAny can be the full path or

a partial of the start of the path. For example, if the full path is root.select.idle , then

Editor.isIn would return true for the paths root , root.select , or root.select.idle .

If all you're interested in is the state below root , there is a convenience method,

https://tldraw.dev/images/api/events.png
https://tldraw.dev/reference/editor/Editor#isIn
https://tldraw.dev/reference/editor/Editor#isInAny
https://tldraw.dev/reference/editor/Editor#isIn
https://tldraw.dev/reference/editor/Editor#isInAny
https://tldraw.dev/reference/editor/Editor#isIn

Editor.getCurrentToolId , that can help with the editor's currently selected tool.

import { track, useEditor } from 'tldraw'

export const BubbleToolUi = track(() => {

const editor = useEditor()

// Only show the UI if the bubble tool is active

if (!editor.getCurrentToolId() === 'bubble') return null

return <div>Creating bubble</div>

})

Inputs

The Editor.inputs object holds information about the user's current input state,

including their cursor position (in page space and screen space), which keys are pressed,

what their multi-click state is, and whether they are dragging, pointing, pinching, and so

on.

Note that the modifier keys include a short delay after being released in order to prevent

certain errors when modeling interactions. For example, when a user releases the "Shift"

key, editor.inputs.shiftKey will remain true for another 100 milliseconds or so.

This property is stored as regular data. It is not reactive.

Editor instance state

The Editor.getInstanceState method returns settings that relate to each individual

instance of the editor. In the case that the user has the same editor open in multiple tabs,

or if there are multiple editors on the same page, then each editor will have its own

instance state. See the TLInstance docs to learn more about the record itself.

User preferences

https://tldraw.dev/reference/editor/Editor#getCurrentToolId
https://tldraw.dev/reference/editor/Editor#inputs
https://tldraw.dev/reference/editor/Editor#getInstanceState
https://tldraw.dev/reference/tlschema/TLInstance

The editor's user preferences are shared between all instances. See the

TLUserPreferences docs for more about the user preferences.

Common things to do with the editor

Create a shape id

To create an id for a shape (a TLShapeId), use the libary's createShapeId helper.

import { createShapeId } from 'tldraw'

createShapeId() // `shape:some-random-uuid`

createShapeId('kyle') // `shape:kyle`

The id property of any record in tldraw is "branded" with the type of that record. For

shapes, that means that all shape ids are formatted as shape:{id} . The TypeScript type

of a record's id also includes a reference to the type of the record that it belongs to.

TypeScript will complain if you use a regular shape:some-id string, but the

createShapeId helper will provide the type.

Create shapes

To create shapes, use the Editor.createShape or Editor.createShapes methods.

editor.createShapes([

{

id,

type: 'geo',

x: 0,

y: 0,

props: {

geo: 'rectangle',

w: 100,

h: 100,

https://tldraw.dev/reference/editor/TLUserPreferences
https://tldraw.dev/reference/tlschema/TLShapeId
https://tldraw.dev/reference/tlschema/createShapeId
https://tldraw.dev/reference/tlschema/createShapeId
https://tldraw.dev/reference/editor/Editor#createShape
https://tldraw.dev/reference/editor/Editor#createShapes

dash: 'draw',

color: 'blue',

size: 'm',

},

},

])

A shape must be a partial of the full shape (a TLShapePartial). All props are optional

except for the type of the shape. The shape's corresponding ShapeUtil will provide the

default props for any props not provided. The id will be created if not provided.

Update shapes

To update shapes, use the Editor.updateShape or Editor.updateShapes methods.

editor.updateShapes([

{

id: shape.id, // required

type: shape.type, // required

x: 100,

y: 100,

props: {

w: 200,

},

},

])

The update must be a partial of the full shape (a TLShapePartial). All props are optional

except for the type of the shape and its id .

Delete shapes

To delete shapes, use the Editor.deleteShape or Editor.deleteShapes methods.

https://tldraw.dev/reference/tlschema/TLShapePartial
https://tldraw.dev/reference/editor/ShapeUtil
https://tldraw.dev/reference/editor/Editor#updateShape
https://tldraw.dev/reference/editor/Editor#updateShapes
https://tldraw.dev/reference/tlschema/TLShapePartial
https://tldraw.dev/reference/editor/Editor#deleteShape
https://tldraw.dev/reference/editor/Editor#deleteShapes

editor.deleteShapes([shape.id])

editor.deleteShapes([shape])

You can delete a shape using the shape's id or the shape record itself.

Get a shape

You can get a shape with the Editor.getShape method.

editor.getShape(myShapeId)

editor.getShape(myShape)

You can get a shape using the shape's id or the shape record itself.

Turn on read only mode

You can use the Editor.updateInstanceState method to turn on read only mode.

editor.updateInstanceState({ isReadonly: true })

Move the camera

You can set the camera to a specific x, y, and zoom with the Editor.setCamera method.

editor.setCamera(0, 0, 1)

Freeze the camera

You can prevent the user from changing the camera using the

Editor.updateInstanceState method.

https://tldraw.dev/reference/editor/Editor#getShape
https://tldraw.dev/reference/editor/Editor#updateInstanceState
https://tldraw.dev/reference/editor/Editor#setCamera
https://tldraw.dev/reference/editor/Editor#updateInstanceState

editor.updateInstanceState({ canMoveCamera: false })

Turn on dark mode

You can turn on or off dark mode via the setUserPreferences method. Note that this

effects all editor instances that share the same user—even instances in other tabs.

setUserPreferences({ isDarkMode: true })

See the tldraw repository for an example of how to use tldraw's Editor API to control the

editor.

Edit this page Last edited on 22 March 2023

Installation

Shapes

tldraw © 2024

https://tldraw.dev/reference/editor/setUserPreferences
https://github.com/tldraw/tldraw/tree/main/apps/examples
https://github.com/tldraw/tldraw/blob/main/apps/docs/content/docs/editor.mdx
https://tldraw.dev/installation
https://tldraw.dev/docs/shapes
https://tldraw.com/
https://x.com/tldraw
https://github.com/tldraw/tldraw
https://discord.com/invite/SBBEVCA4PG

