/* * wx_handler.c * * Created on: 26.01.2019 * Author: mateusz */ #include "wx_handler.h" #include "wx_handler_humidity.h" #include "wx_handler_pressure.h" #include "wx_handler_temperature.h" #include #include #include #include #ifdef STM32F10X_MD_VL #include #endif #ifdef STM32L471xx #include #include #include "drivers/max31865.h" #endif #include "drivers/analog_anemometer.h" #include "station_config.h" #include "modbus_rtu/rtu_getters.h" #include "modbus_rtu/rtu_return_values.h" #include "io.h" #include "delay.h" #include "telemetry.h" #include "main.h" #define WX_WATCHDOG_PERIOD (SYSTICK_TICKS_PER_SECONDS * SYSTICK_TICKS_PERIOD * 90) #define WX_WATCHDOG_RESET_DURATION (SYSTICK_TICKS_PER_SECONDS * SYSTICK_TICKS_PERIOD * 3) uint32_t wx_last_good_wind_time = 0; uint32_t wx_last_good_temperature_time = 0; uint32_t wx_wind_pool_call_counter = 0; uint8_t wx_force_i2c_sensor_reset = 0; static const float direction_constant = M_PI/180.0f; static const config_data_wx_sources_t internal = { .temperature = WX_SOURCE_INTERNAL, .pressure = WX_SOURCE_INTERNAL, .humidity = WX_SOURCE_INTERNAL, .wind = WX_SOURCE_INTERNAL }; #define MODBUS_QF_TEMPERATURE_FULL 1 #define MODBUS_QF_TEMPERATURE_DEGR (1 << 1) #define MODBUS_QF_TEMPERATURE_NAVB (1 << 2) #define MODBUS_QF_HUMIDITY_FULL (1 << 3) #define MODBUS_QF_HUMIDITY_DEGR (1 << 4) #define MODBUS_QF_PRESSURE_FULL (1 << 5) #define MODBUS_QF_PRESSURE_DEGR (1 << 6) void wx_check_force_i2c_reset(void) { if (wx_force_i2c_sensor_reset == 1) { wx_force_i2c_sensor_reset = 0; #ifdef STM32L471xx max31865_init(main_config_data_mode->wx_pt_sensor & 0x3, (main_config_data_mode->wx_pt_sensor & 0xFC) >> 2); #endif if (main_config_data_mode->wx_ms5611_or_bme == 0) { ms5611_reset(&rte_wx_ms5611_qf); ms5611_read_calibration(SensorCalData, &rte_wx_ms5611_qf); ms5611_trigger_measure(0, 0); } else if (main_config_data_mode->wx_ms5611_or_bme == 1) { bme280_reset(&rte_wx_bme280_qf); bme280_setup(); bme280_read_calibration(bme280_calibration_data); } } } void wx_get_all_measurements(const config_data_wx_sources_t * const config_sources, const config_data_mode_t * const config_mode, const config_data_umb_t * const config_umb, const config_data_rtu_t * const config_rtu) { int32_t parameter_result = 0; // stores which parameters have been retrieved successfully. this is used for failsafe handling int32_t backup_parameter_result = 0; // uses during retrieving backup if (io_get_5v_isol_sw___cntrl_vbat_s() == 0 && io_get_cntrl_vbat_s() == 0) { // inhibit any measurement when power is not applied to sensors return; } parameter_result |= wx_get_temperature_measurement(config_sources, config_mode, config_umb, config_rtu, &rte_wx_temperature_average_external_valid); parameter_result |= wx_get_pressure_measurement(config_sources, config_mode, config_umb, config_rtu); parameter_result |= wx_get_humidity_measurement(config_sources, config_mode, config_umb, config_rtu); // check if all parameters (except wind) were collected successfully if (parameter_result == (WX_HANDLER_PARAMETER_RESULT_TEMPERATURE | WX_HANDLER_PARAMETER_RESULT_PRESSURE | WX_HANDLER_PARAMETER_RESULT_HUMIDITY | WX_HANDLER_PARAMETER_RESULT_TEMP_INTERNAL)) { ; // if everything were OK do nothing } else { // if not check what was faulty and backup with an internal sensor if ((parameter_result & WX_HANDLER_PARAMETER_RESULT_TEMPERATURE) == 0) { // if we don't have temperature // check what is the primary source of temperature if (config_sources->temperature != WX_SOURCE_INTERNAL) { // if this is something different than an internal source use the internal sensor backup_parameter_result |= wx_get_temperature_measurement(&internal, config_mode, config_umb, config_rtu, &rte_wx_temperature_average_external_valid); } else { ; // } } if ((parameter_result & WX_HANDLER_PARAMETER_RESULT_PRESSURE) == 0) { if (config_sources->pressure != WX_SOURCE_INTERNAL) { backup_parameter_result |= wx_get_pressure_measurement(&internal, config_mode, config_umb, config_rtu); } } if ((parameter_result & WX_HANDLER_PARAMETER_RESULT_HUMIDITY) == 0) { if (config_sources->pressure != WX_SOURCE_INTERNAL) { backup_parameter_result |= wx_get_humidity_measurement(&internal, config_mode, config_umb, config_rtu); } } } } int32_t wx_get_bme280_temperature_pressure_humidity(float * const temperature, float * const pressure, int8_t * const humidity) { int32_t return_value = 0; // reading raw values from BME280 sensor return_value = bme280_read_raw_data(bme280_data_buffer); if (return_value == BME280_OK) { // setting back the Quality Factor to FULL to trace any problems with sensor readouts rte_wx_bme280_qf = BME280_QF_FULL; // converting raw values to temperature //bme280_get_temperature(temperature, bme280_get_adc_t(), &rte_wx_bme280_qf); // if modbus RTU is enabled but the quality factor for RTU-pressure is set to NOT_AVALIABLE //bme280_get_pressure(pressure, bme280_get_adc_p(), &rte_wx_bme280_qf); // if modbus RTU is enabled but the quality factor for RTU-humidity is set to NOT_AVALIABLE //bme280_get_humidity(humidity, bme280_get_adc_h(), &rte_wx_bme280_qf); } else { // set the quality factor is sensor is not responding on the i2c bus rte_wx_bme280_qf = BME280_QF_NOT_AVAILABLE; } return return_value; } void wx_pool_anemometer(const config_data_wx_sources_t * const config_sources, const config_data_mode_t * const config_mode, const config_data_umb_t * const config_umb, const config_data_rtu_t * const config_rtu) { // locals uint32_t average_windspeed = 0; int32_t wind_direction_x_avg = 0; int32_t wind_direction_y_avg = 0; int16_t wind_direction_x = 0; int16_t wind_direction_y = 0; volatile float dir_temp = 0; volatile float arctan_value = 0.0f; short i = 0; uint8_t average_ln; int32_t modbus_retval = MODBUS_RET_UNINITIALIZED; uint16_t scaled_windspeed = 0; //#ifdef STM32L471xx // if (io_get_cntrl_vbat_c() == 0) { //#else // if (io_get_5v_isol_sw___cntrl_vbat_s() == 0) { //#endif // // inhibit any measurement when power is not applied to sensors // return; // } wx_wind_pool_call_counter++; // internal sensors if (config_sources->wind == WX_SOURCE_INTERNAL) { // this windspeed is scaled * 10. Example: 0.2 meters per second is stored as 2 scaled_windspeed = analog_anemometer_get_ms_from_pulse(rte_wx_windspeed_pulses); } else if (config_sources->wind == WX_SOURCE_UMB) { rte_wx_average_winddirection = umb_get_winddirection(config_umb); rte_wx_average_windspeed = umb_get_windspeed(config_umb); rte_wx_max_windspeed = umb_get_windgusts(config_umb); } else if (config_sources->wind == WX_SOURCE_RTU) { // get the value from modbus registers modbus_retval = rtu_get_wind_speed(&scaled_windspeed, config_rtu); // check if this value has been processed w/o errors if (modbus_retval == MODBUS_RET_OK) { // if yes continue to further processing modbus_retval = rtu_get_wind_direction(&rte_wx_winddirection_last, config_rtu); } // the second IF to check if the return value was the same for wind direction if (modbus_retval == MODBUS_RET_OK || modbus_retval == MODBUS_RET_DEGRADED) { // if the value is not available (like modbus is not configured as a source // for wind data) get the value from internal sensors.. #ifdef _INTERNAL_AS_BACKUP // .. if they are configured scaled_windspeed = analog_anemometer_get_ms_from_pulse(rte_wx_windspeed_pulses); #endif } } else if (config_sources->wind == WX_SOURCE_FULL_RTU) { // get the value from modbus registers modbus_retval = rtu_get_wind_direction(&rte_wx_average_winddirection, config_rtu); // check if this value has been processed w/o errors if (modbus_retval == MODBUS_RET_OK || modbus_retval == MODBUS_RET_DEGRADED) { // if yes continue to further processing modbus_retval = rtu_get_wind_gusts(&rte_wx_max_windspeed, config_rtu); modbus_retval = rtu_get_wind_speed(&rte_wx_winddirection_last, config_rtu); } } else { ; } if (config_sources->wind != WX_SOURCE_FULL_RTU) { // check how many times before the pool function was called if (wx_wind_pool_call_counter < WIND_AVERAGE_LEN) { // if it was called less time than a length of buffers, the average length // needs to be shortened to handle the underrun properly average_ln = (uint8_t)wx_wind_pool_call_counter; } else { average_ln = WIND_AVERAGE_LEN; } // putting the wind speed into circular buffer rte_wx_windspeed[rte_wx_windspeed_it] = scaled_windspeed; // increasing the iterator to the windspeed buffer rte_wx_windspeed_it++; // checking if iterator reached an end of the buffer if (rte_wx_windspeed_it >= WIND_AVERAGE_LEN) { rte_wx_windspeed_it = 0; } // calculating the average windspeed for (i = 0; i < average_ln; i++) average_windspeed += rte_wx_windspeed[i]; average_windspeed /= average_ln; // store the value in rte rte_wx_average_windspeed = average_windspeed; // reuse the local variable to find maximum value average_windspeed = 0; // looking for gusts for (i = 0; i < average_ln; i++) { if (average_windspeed < rte_wx_windspeed[i]) average_windspeed = rte_wx_windspeed[i]; } // storing wind gusts value in rte rte_wx_max_windspeed = average_windspeed; // adding last wind direction to the buffers if (rte_wx_winddirection_it >= WIND_AVERAGE_LEN) rte_wx_winddirection_it = 0; rte_wx_winddirection[rte_wx_winddirection_it++] = rte_wx_winddirection_last; // calculating average wind direction for (i = 0; i < average_ln; i++) { dir_temp = (float)rte_wx_winddirection[i]; // split the wind direction into x and y component wind_direction_x = (int16_t)(100.0f * cosf(dir_temp * direction_constant)); wind_direction_y = (int16_t)(100.0f * sinf(dir_temp * direction_constant)); // adding components to calculate average wind_direction_x_avg += wind_direction_x; wind_direction_y_avg += wind_direction_y; } // dividing to get average of x and y componen wind_direction_x_avg /= average_ln; wind_direction_y_avg /= average_ln; // converting x & y component of wind direction back to an angle arctan_value = atan2f(wind_direction_y_avg , wind_direction_x_avg); rte_wx_average_winddirection = (int16_t)(arctan_value * (180.0f/M_PI)); if (rte_wx_average_winddirection < 0) rte_wx_average_winddirection += 360; } if (config_sources->wind == WX_SOURCE_FULL_RTU || config_sources->wind != WX_SOURCE_RTU) { if (modbus_retval == MODBUS_RET_OK) { rte_wx_wind_qf = AN_WIND_QF_FULL; } else if (modbus_retval == MODBUS_RET_DEGRADED) { rte_wx_wind_qf = AN_WIND_QF_DEGRADED; } else if (modbus_retval == MODBUS_RET_NOT_AVALIABLE) { rte_wx_wind_qf = AN_WIND_QF_NOT_AVALIABLE; } else { if ((config_mode->wx & WX_INTERNAL_AS_BACKUP) != 0) rte_wx_wind_qf = analog_anemometer_get_qf(); else rte_wx_wind_qf = AN_WIND_QF_NOT_AVALIABLE; } } else if (config_sources->wind == WX_SOURCE_INTERNAL) { rte_wx_wind_qf = analog_anemometer_get_qf(); } else { rte_wx_wind_qf = AN_WIND_QF_UNKNOWN; } } uint16_t wx_get_nvm_record_temperature(void) { uint16_t out = 0; uint16_t scaled_temperature = 0; uint16_t scaled_humidity = 0; if (rte_wx_temperature_average_external_valid > -50.0f && rte_wx_temperature_average_external_valid < 50.0f) { scaled_temperature = (uint16_t)((rte_wx_temperature_average_external_valid + 50.0f) * 5.0f); } scaled_humidity = rte_wx_humidity_valid / 2; out = (scaled_temperature & 0x1FF) | ((scaled_humidity & 0x1F) << 10); return out; } uint16_t wx_get_nvm_record_wind(void) { uint16_t out = 0; uint8_t scaled_average_windspeed = 0; uint8_t scaled_windgusts = 0; uint8_t wind_direction = 0; scaled_average_windspeed = rte_wx_average_windspeed / 2; if ((rte_wx_max_windspeed - scaled_average_windspeed) < 52) { scaled_windgusts = (uint8_t)lroundf((rte_wx_max_windspeed - scaled_average_windspeed) / 3.0f); } if (wind_direction <= 11 && wind_direction >= 349) wind_direction = 0; else if (wind_direction <= 34 && wind_direction > 11) wind_direction = 1; else if (wind_direction <= 56 && wind_direction > 34) wind_direction = 2; else if (wind_direction <= 79 && wind_direction > 56) wind_direction = 3; else if (wind_direction <= 101 && wind_direction > 79) wind_direction = 4; else if (wind_direction <= 124 && wind_direction > 101) wind_direction = 5; else if (wind_direction <= 146 && wind_direction > 124) wind_direction = 6; else if (wind_direction <= 169 && wind_direction > 146) wind_direction = 7; else if (wind_direction <= 191 && wind_direction > 169) wind_direction = 8; else if (wind_direction <= 214 && wind_direction > 191) wind_direction = 9; else if (wind_direction <= 236 && wind_direction > 214) wind_direction = 10; else if (wind_direction <= 259 && wind_direction > 236) wind_direction = 11; else if (wind_direction <= 281 && wind_direction > 259) wind_direction = 12; else if (wind_direction <= 304 && wind_direction > 281) wind_direction = 13; else if (wind_direction <= 327 && wind_direction > 304) wind_direction = 14; else if (wind_direction <= 349 && wind_direction > 327) wind_direction = 15; else; out = (scaled_average_windspeed | (scaled_windgusts & 0xF) << 8 | (wind_direction & 0xF) << 12 ); return out; }