SDRPlusPlus/core/src/dsp/processing.h

611 wiersze
18 KiB
C++

#pragma once
#include <dsp/block.h>
#include <volk/volk.h>
#include <spdlog/spdlog.h>
#include <string.h>
#include <stdint.h>
namespace dsp {
template <class T>
class FrequencyXlator : public generic_block<FrequencyXlator<T>> {
public:
FrequencyXlator() {}
FrequencyXlator(stream<complex_t>* in, float sampleRate, float freq) { init(in, sampleRate, freq); }
void init(stream<complex_t>* in, float sampleRate, float freq) {
_in = in;
_sampleRate = sampleRate;
_freq = freq;
phase = lv_cmake(1.0f, 0.0f);
phaseDelta = lv_cmake(std::cos((_freq / _sampleRate) * 2.0f * FL_M_PI), std::sin((_freq / _sampleRate) * 2.0f * FL_M_PI));
generic_block<FrequencyXlator<T>>::registerInput(_in);
generic_block<FrequencyXlator<T>>::registerOutput(&out);
}
void setInputSize(stream<complex_t>* in) {
std::lock_guard<std::mutex> lck(generic_block<FrequencyXlator<T>>::ctrlMtx);
generic_block<FrequencyXlator<T>>::tempStop();
generic_block<FrequencyXlator<T>>::unregisterInput(_in);
_in = in;
generic_block<FrequencyXlator<T>>::registerInput(_in);
generic_block<FrequencyXlator<T>>::tempStart();
}
void setSampleRate(float sampleRate) {
// No need to restart
_sampleRate = sampleRate;
phaseDelta = lv_cmake(std::cos((_freq / _sampleRate) * 2.0f * FL_M_PI), std::sin((_freq / _sampleRate) * 2.0f * FL_M_PI));
}
float getSampleRate() {
return _sampleRate;
}
void setFrequency(float freq) {
// No need to restart
_freq = freq;
phaseDelta = lv_cmake(std::cos((_freq / _sampleRate) * 2.0f * FL_M_PI), std::sin((_freq / _sampleRate) * 2.0f * FL_M_PI));
}
float getFrequency() {
return _freq;
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
// TODO: Do float xlation
if constexpr (std::is_same_v<T, float>) {
spdlog::error("XLATOR NOT IMPLEMENTED FOR FLOAT");
}
if constexpr (std::is_same_v<T, complex_t>) {
volk_32fc_s32fc_x2_rotator_32fc((lv_32fc_t*)out.writeBuf, (lv_32fc_t*)_in->readBuf, phaseDelta, &phase, count);
}
_in->flush();
if (!out.swap(count)) { return -1; }
return count;
}
stream<complex_t> out;
private:
float _sampleRate;
float _freq;
lv_32fc_t phaseDelta;
lv_32fc_t phase;
stream<complex_t>* _in;
};
class AGC : public generic_block<AGC> {
public:
AGC() {}
AGC(stream<float>* in, float fallRate, float sampleRate) { init(in, fallRate, sampleRate); }
void init(stream<float>* in, float fallRate, float sampleRate) {
_in = in;
_sampleRate = sampleRate;
_fallRate = fallRate;
_CorrectedFallRate = _fallRate / _sampleRate;
generic_block<AGC>::registerInput(_in);
generic_block<AGC>::registerOutput(&out);
}
void setInput(stream<float>* in) {
std::lock_guard<std::mutex> lck(generic_block<AGC>::ctrlMtx);
generic_block<AGC>::tempStop();
generic_block<AGC>::unregisterInput(_in);
_in = in;
generic_block<AGC>::registerInput(_in);
generic_block<AGC>::tempStart();
}
void setSampleRate(float sampleRate) {
std::lock_guard<std::mutex> lck(generic_block<AGC>::ctrlMtx);
_sampleRate = sampleRate;
_CorrectedFallRate = _fallRate / _sampleRate;
}
void setFallRate(float fallRate) {
std::lock_guard<std::mutex> lck(generic_block<AGC>::ctrlMtx);
_fallRate = fallRate;
_CorrectedFallRate = _fallRate / _sampleRate;
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
level = pow(10, ((10.0f * log10f(level)) - (_CorrectedFallRate * count)) / 10.0f);
for (int i = 0; i < count; i++) {
if (_in->readBuf[i] > level) { level = _in->readBuf[i]; }
}
volk_32f_s32f_multiply_32f(out.writeBuf, _in->readBuf, 1.0f / level, count);
_in->flush();
if (!out.swap(count)) { return -1; }
return count;
}
stream<float> out;
private:
float level = 0.0f;
float _fallRate;
float _CorrectedFallRate;
float _sampleRate;
stream<float>* _in;
};
template <class T>
class FeedForwardAGC : public generic_block<FeedForwardAGC<T>> {
public:
FeedForwardAGC() {}
FeedForwardAGC(stream<T>* in) { init(in); }
~FeedForwardAGC() {
generic_block<FeedForwardAGC<T>>::stop();
delete[] buffer;
}
void init(stream<T>* in) {
_in = in;
buffer = new T[STREAM_BUFFER_SIZE];
generic_block<FeedForwardAGC<T>>::registerInput(_in);
generic_block<FeedForwardAGC<T>>::registerOutput(&out);
}
void setInput(stream<T>* in) {
std::lock_guard<std::mutex> lck(generic_block<FeedForwardAGC<T>>::ctrlMtx);
generic_block<FeedForwardAGC<T>>::tempStop();
generic_block<FeedForwardAGC<T>>::unregisterInput(_in);
_in = in;
generic_block<FeedForwardAGC<T>>::registerInput(_in);
generic_block<FeedForwardAGC<T>>::tempStart();
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
float level;
float val;
// Process buffer
memcpy(&buffer[inBuffer], _in->readBuf, count * sizeof(T));
inBuffer += count;
// If there aren't enough samples, wait for more
if (inBuffer < sampleCount) {
_in->flush();
return count;
}
int toProcess = (inBuffer - sampleCount) + 1;
if constexpr (std::is_same_v<T, float>) {
for (int i = 0; i < toProcess; i++) {
level = 1e-4;
for (int j = 0; j < sampleCount; j++) {
val = fabsf(buffer[i + j]);
if (val > level) { level = val; }
}
out.writeBuf[i] = buffer[i] / level;
}
}
if constexpr (std::is_same_v<T, complex_t>) {
for (int i = 0; i < toProcess; i++) {
level = 1e-4;
for (int j = 0; j < sampleCount; j++) {
val = buffer[i + j].fastAmplitude();
if (val > level) { level = val; }
}
out.writeBuf[i] = buffer[i] / level;
}
}
_in->flush();
// Move rest of buffer
memmove(buffer, &buffer[toProcess], (sampleCount - 1) * sizeof(T));
inBuffer -= toProcess;
if (!out.swap(count)) { return -1; }
return toProcess;
}
stream<T> out;
private:
T* buffer;
int inBuffer = 0;
int sampleCount = 1024;
stream<T>* _in;
};
class ComplexAGC : public generic_block<ComplexAGC> {
public:
ComplexAGC() {}
ComplexAGC(stream<complex_t>* in, float setPoint, float maxGain, float rate) { init(in, setPoint, maxGain, rate); }
void init(stream<complex_t>* in, float setPoint, float maxGain, float rate) {
_in = in;
_setPoint = setPoint;
_maxGain = maxGain;
_rate = rate;
generic_block<ComplexAGC>::registerInput(_in);
generic_block<ComplexAGC>::registerOutput(&out);
}
void setInput(stream<complex_t>* in) {
std::lock_guard<std::mutex> lck(generic_block<ComplexAGC>::ctrlMtx);
generic_block<ComplexAGC>::tempStop();
generic_block<ComplexAGC>::unregisterInput(_in);
_in = in;
generic_block<ComplexAGC>::registerInput(_in);
generic_block<ComplexAGC>::tempStart();
}
void setSetPoint(float setPoint) {
_setPoint = setPoint;
}
void setMaxGain(float maxGain) {
_maxGain = maxGain;
}
void setRate(float rate) {
_rate = rate;
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
dsp::complex_t val;
for (int i = 0; i < count; i++) {
val = _in->readBuf[i] * _gain;
out.writeBuf[i] = val;
_gain += (_setPoint - val.amplitude()) * _rate;
if (_gain > _maxGain) { _gain = _maxGain; }
}
_in->flush();
if (!out.swap(count)) { return -1; }
return count;
}
stream<complex_t> out;
private:
float _gain = 1.0f;
float _setPoint = 1.0f;
float _maxGain = 10e4;
float _rate = 10e-4;
stream<complex_t>* _in;
};
class DelayImag : public generic_block<DelayImag> {
public:
DelayImag() {}
DelayImag(stream<complex_t>* in) { init(in); }
void init(stream<complex_t>* in) {
_in = in;
generic_block<DelayImag>::registerInput(_in);
generic_block<DelayImag>::registerOutput(&out);
}
void setInput(stream<complex_t>* in) {
std::lock_guard<std::mutex> lck(generic_block<DelayImag>::ctrlMtx);
generic_block<DelayImag>::tempStop();
generic_block<DelayImag>::unregisterInput(_in);
_in = in;
generic_block<DelayImag>::registerInput(_in);
generic_block<DelayImag>::tempStart();
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
dsp::complex_t val;
for (int i = 0; i < count; i++) {
val = _in->readBuf[i];
out.writeBuf[i].re = val.re;
out.writeBuf[i].im = lastIm;
lastIm = val.im;
}
_in->flush();
if (!out.swap(count)) { return -1; }
return count;
}
stream<complex_t> out;
private:
float lastIm = 0.0f;
stream<complex_t>* _in;
};
template <class T>
class Volume : public generic_block<Volume<T>> {
public:
Volume() {}
Volume(stream<T>* in, float volume) { init(in, volume); }
void init(stream<T>* in, float volume) {
_in = in;
_volume = volume;
generic_block<Volume<T>>::registerInput(_in);
generic_block<Volume<T>>::registerOutput(&out);
}
void setInputSize(stream<T>* in) {
std::lock_guard<std::mutex> lck(generic_block<Volume<T>>::ctrlMtx);
generic_block<Volume<T>>::tempStop();
generic_block<Volume<T>>::unregisterInput(_in);
_in = in;
generic_block<Volume<T>>::registerInput(_in);
generic_block<Volume<T>>::tempStart();
}
void setVolume(float volume) {
_volume = volume;
level = powf(_volume, 2);
}
float getVolume() {
return _volume;
}
void setMuted(bool muted) {
_muted = muted;
}
bool getMuted() {
return _muted;
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
if (_muted) {
if constexpr (std::is_same_v<T, stereo_t>) {
memset(out.writeBuf, 0, sizeof(stereo_t) * count);
}
else {
memset(out.writeBuf, 0, sizeof(float) * count);
}
}
else {
if constexpr (std::is_same_v<T, stereo_t>) {
volk_32f_s32f_multiply_32f((float*)out.writeBuf, (float*)_in->readBuf, level, count * 2);
}
else {
volk_32f_s32f_multiply_32f((float*)out.writeBuf, (float*)_in->readBuf, level, count);
}
}
_in->flush();
if (!out.swap(count)) { return -1; }
return count;
}
stream<T> out;
private:
float level = 1.0f;
float _volume = 1.0f;
bool _muted = false;
stream<T>* _in;
};
class Squelch : public generic_block<Squelch> {
public:
Squelch() {}
Squelch(stream<complex_t>* in, float level) { init(in, level); }
~Squelch() {
generic_block<Squelch>::stop();
delete[] normBuffer;
}
void init(stream<complex_t>* in, float level) {
_in = in;
_level = level;
normBuffer = new float[STREAM_BUFFER_SIZE];
generic_block<Squelch>::registerInput(_in);
generic_block<Squelch>::registerOutput(&out);
}
void setInput(stream<complex_t>* in) {
std::lock_guard<std::mutex> lck(generic_block<Squelch>::ctrlMtx);
generic_block<Squelch>::tempStop();
generic_block<Squelch>::unregisterInput(_in);
_in = in;
generic_block<Squelch>::registerInput(_in);
generic_block<Squelch>::tempStart();
}
void setLevel(float level) {
_level = level;
}
float getLevel() {
return _level;
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
float sum;
volk_32fc_magnitude_32f(normBuffer, (lv_32fc_t*)_in->readBuf, count);
volk_32f_accumulator_s32f(&sum, normBuffer, count);
sum /= (float)count;
if (10.0f * log10f(sum) >= _level) {
memcpy(out.writeBuf, _in->readBuf, count * sizeof(complex_t));
}
else {
memset(out.writeBuf, 0, count * sizeof(complex_t));
}
_in->flush();
if (!out.swap(count)) { return -1; }
return count;
}
stream<complex_t> out;
private:
float* normBuffer;
float _level = -50.0f;
stream<complex_t>* _in;
};
template <class T>
class Packer : public generic_block<Packer<T>> {
public:
Packer() {}
Packer(stream<T>* in, int count) { init(in, count); }
void init(stream<T>* in, int count) {
_in = in;
samples = count;
generic_block<Packer<T>>::registerInput(_in);
generic_block<Packer<T>>::registerOutput(&out);
}
void setInput(stream<T>* in) {
std::lock_guard<std::mutex> lck(generic_block<Packer<T>>::ctrlMtx);
generic_block<Packer<T>>::tempStop();
generic_block<Packer<T>>::unregisterInput(_in);
_in = in;
generic_block<Packer<T>>::registerInput(_in);
generic_block<Packer<T>>::tempStart();
}
void setSampleCount(int count) {
std::lock_guard<std::mutex> lck(generic_block<Packer<T>>::ctrlMtx);
generic_block<Packer<T>>::tempStop();
samples = count;
generic_block<Packer<T>>::tempStart();
}
int run() {
int count = _in->read();
if (count < 0) {
read = 0;
return -1;
}
for (int i = 0; i < count; i++) {
out.writeBuf[read++] = _in->readBuf[i];
if (read >= samples) {
read = 0;
if (!out.swap(samples)) {
_in->flush();
read = 0;
return -1;
}
}
}
_in->flush();
return count;
}
stream<T> out;
private:
int samples = 1;
int read = 0;
stream<T>* _in;
};
class Threshold : public generic_block<Threshold> {
public:
Threshold() {}
Threshold(stream<float>* in) { init(in); }
~Threshold() {
generic_block<Threshold>::stop();
delete[] normBuffer;
}
void init(stream<float>* in) {
_in = in;
normBuffer = new float[STREAM_BUFFER_SIZE];
generic_block<Threshold>::registerInput(_in);
generic_block<Threshold>::registerOutput(&out);
}
void setInput(stream<float>* in) {
std::lock_guard<std::mutex> lck(generic_block<Threshold>::ctrlMtx);
generic_block<Threshold>::tempStop();
generic_block<Threshold>::unregisterInput(_in);
_in = in;
generic_block<Threshold>::registerInput(_in);
generic_block<Threshold>::tempStart();
}
void setLevel(float level) {
_level = level;
}
float getLevel() {
return _level;
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
for (int i = 0; i < count; i++) {
out.writeBuf[i] = (_in->readBuf[i] > 0.0f);
}
_in->flush();
if (!out.swap(count)) { return -1; }
return count;
}
stream<uint8_t> out;
private:
float* normBuffer;
float _level = -50.0f;
stream<float>* _in;
};
}