SDRPlusPlus/src/dsp/resampling.h

563 wiersze
18 KiB
C++

#pragma once
#include <thread>
#include <dsp/filter.h>
#include <dsp/stream.h>
#include <dsp/types.h>
#include <numeric>
#include <algorithm>
namespace dsp {
template <class T>
class Interpolator {
public:
Interpolator() {
}
Interpolator(stream<T>* in, float interpolation, int blockSize) : output(blockSize * interpolation * 2) {
_input = in;
_interpolation = interpolation;
_blockSize = blockSize;
}
void init(stream<T>* in, float interpolation, int blockSize) {
output.init(blockSize * 2 * interpolation);
_input = in;
_interpolation = interpolation;
_blockSize = blockSize;
}
void start() {
if (running) {
return;
}
_workerThread = std::thread(_worker, this);
running = true;
}
void stop() {
if (!running) {
return;
}
_input->stopReader();
output.stopWriter();
_workerThread.join();
_input->clearReadStop();
output.clearWriteStop();
running = false;
}
void setInterpolation(float interpolation) {
if (running) {
return;
}
_interpolation = interpolation;
output.setMaxLatency(_blockSize * _interpolation * 2);
}
void setBlockSize(int blockSize) {
if (running) {
return;
}
_blockSize = blockSize;
output.setMaxLatency(_blockSize * _interpolation * 2);
}
void setInput(stream<T>* input) {
if (running) {
return;
}
_input = input;
}
stream<T> output;
private:
static void _worker(Interpolator<T>* _this) {
T* inBuf = new T[_this->_blockSize];
T* outBuf = new T[_this->_blockSize * _this->_interpolation];
int outCount = _this->_blockSize * _this->_interpolation;
int interp = _this->_interpolation;
int count = 0;
while (true) {
if (_this->_input->read(inBuf, _this->_blockSize) < 0) { break; };
for (int i = 0; i < outCount; i++) {
outBuf[i] = inBuf[(int)((float)i / _this->_interpolation)];
}
// for (int i = 0; i < outCount; i += interp) {
// outBuf[i] = inBuf[count];
// count++;
// }
count = 0;
if (_this->output.write(outBuf, outCount) < 0) { break; };
}
delete[] inBuf;
delete[] outBuf;
}
stream<T>* _input;
int _blockSize;
float _interpolation;
std::thread _workerThread;
bool running = false;
};
class BlockDecimator {
public:
BlockDecimator() {
}
BlockDecimator(stream<complex_t>* in, int skip, int blockSize) : output(blockSize * 2) {
_input = in;
_skip = skip;
_blockSize = blockSize;
}
void init(stream<complex_t>* in, int skip, int blockSize) {
output.init(blockSize * 2);
_input = in;
_skip = skip;
_blockSize = blockSize;
}
void start() {
if (running) {
return;
}
_workerThread = std::thread(_worker, this);
running = true;
}
void stop() {
if (!running) {
return;
}
_input->stopReader();
output.stopWriter();
_workerThread.join();
_input->clearReadStop();
output.clearWriteStop();
running = false;
}
void setBlockSize(int blockSize) {
printf("%d\n", blockSize);
if (running) {
return;
}
if (blockSize < 1 ) {
return;
}
_blockSize = blockSize;
output.setMaxLatency(blockSize * 2);
}
void setSkip(int skip) {
if (running) {
return;
}
if (skip < 0 ) {
skip = 0;
}
_skip = skip;
}
stream<complex_t> output;
private:
static void _worker(BlockDecimator* _this) {
complex_t* buf = new complex_t[_this->_blockSize];
while (true) {
int read = _this->_input->readAndSkip(buf, _this->_blockSize, _this->_skip);
if (read < 0) { break; };
if (_this->output.write(buf, _this->_blockSize) < 0) { break; };
}
delete[] buf;
}
stream<complex_t>* _input;
int _blockSize;
int _skip;
std::thread _workerThread;
bool running = false;
};
class FIRResampler {
public:
FIRResampler() {
}
void init(stream<complex_t>* in, float inputSampleRate, float outputSampleRate, int blockSize, float passBand = -1.0f, float transWidth = -1.0f) {
_input = in;
_outputSampleRate = outputSampleRate;
_inputSampleRate = inputSampleRate;
int _gcd = std::gcd((int)inputSampleRate, (int)outputSampleRate);
_interp = outputSampleRate / _gcd;
_decim = inputSampleRate / _gcd;
_blockSize = blockSize;
outputBlockSize = (blockSize * _interp) / _decim;
output.init(outputBlockSize * 2);
float cutoff = std::min<float>(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f);
if (passBand > 0.0f && transWidth > 0.0f) {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth);
}
else {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, cutoff, cutoff);
}
}
void start() {
if (running) {
return;
}
_workerThread = std::thread(_worker, this);
running = true;
}
void stop() {
if (!running) {
return;
}
_input->stopReader();
output.stopWriter();
_workerThread.join();
_input->clearReadStop();
output.clearWriteStop();
running = false;
}
void setInputSampleRate(float inputSampleRate, int blockSize = -1, float passBand = -1.0f, float transWidth = -1.0f) {
stop();
_inputSampleRate = inputSampleRate;
int _gcd = std::gcd((int)inputSampleRate, (int)_outputSampleRate);
_interp = _outputSampleRate / _gcd;
_decim = inputSampleRate / _gcd;
printf("FIRResampler.setInputSampleRate(): %d %d\n", _interp, _decim);
float cutoff = std::min<float>(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f);
if (passBand > 0.0f && transWidth > 0.0f) {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth);
}
else {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, cutoff, cutoff);
}
if (blockSize > 0) {
_blockSize = blockSize;
}
outputBlockSize = (_blockSize * _interp) / _decim;
output.setMaxLatency(outputBlockSize * 2);
start();
}
void setOutputSampleRate(float outputSampleRate, float passBand = -1.0f, float transWidth = -1.0f) {
stop();
_outputSampleRate = outputSampleRate;
int _gcd = std::gcd((int)_inputSampleRate, (int)outputSampleRate);
_interp = outputSampleRate / _gcd;
_decim = _inputSampleRate / _gcd;
outputBlockSize = (_blockSize * _interp) / _decim;
output.setMaxLatency(outputBlockSize * 2);
printf("FIRResampler.setOutputSampleRate(): %d %d\n", _interp, _decim);
float cutoff = std::min<float>(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f);
if (passBand > 0.0f && transWidth > 0.0f) {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth);
}
else {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, cutoff, cutoff);
}
start();
}
void setFilterParams(float passBand, float transWidth) {
stop();
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth);
start();
}
void setBlockSize(int blockSize) {
stop();
_blockSize = blockSize;
outputBlockSize = (_blockSize * _interp) / _decim;
output.setMaxLatency(outputBlockSize * 2);
start();
}
void setInput(stream<complex_t>* input) {
if (running) {
return;
}
_input = input;
}
int getOutputBlockSize() {
return outputBlockSize;
}
stream<complex_t> output;
private:
static void _worker(FIRResampler* _this) {
complex_t* inBuf = new complex_t[_this->_blockSize];
complex_t* outBuf = new complex_t[_this->outputBlockSize];
int outCount = _this->outputBlockSize;
printf("%d %d\n", _this->_blockSize, _this->outputBlockSize);
float* taps = _this->_taps.data();
int tapCount = _this->_taps.size();
complex_t* delayBuf = new complex_t[tapCount];
complex_t* delayStart = &inBuf[_this->_blockSize - tapCount];
int delaySize = tapCount * sizeof(complex_t);
int interp = _this->_interp;
int decim = _this->_decim;
float correction = (float)sqrt((float)interp);
int afterInterp = _this->_blockSize * interp;
int outIndex = 0;
complex_t val;
while (true) {
if (_this->_input->read(inBuf, _this->_blockSize) < 0) { break; };
for (int i = 0; outIndex < outCount; i += decim) {
outBuf[outIndex].q = 0;
outBuf[outIndex].i = 0;
for (int j = 0; j < tapCount; j++) {
if ((i - j) % interp != 0) {
continue;
}
val = GET_FROM_RIGHT_BUF(inBuf, delayBuf, tapCount, (i - j) / interp);
outBuf[outIndex].i += val.i * taps[j] * correction;
outBuf[outIndex].q += val.q * taps[j] * correction;
}
outIndex++;
}
outIndex = 0;
memcpy(delayBuf, delayStart, delaySize);
if (_this->output.write(outBuf, _this->outputBlockSize) < 0) { break; };
}
printf("DEBUG: %d\n", delaySize);
delete[] inBuf;
delete[] outBuf;
delete[] delayBuf;
}
std::thread _workerThread;
stream<complex_t>* _input;
std::vector<float> _taps;
int _interp;
int _decim;
int outputBlockSize;
float _outputSampleRate;
float _inputSampleRate;
int _blockSize;
bool running = false;
};
class FloatFIRResampler {
public:
FloatFIRResampler() {
}
void init(stream<float>* in, float inputSampleRate, float outputSampleRate, int blockSize, float passBand = -1.0f, float transWidth = -1.0f) {
_input = in;
_outputSampleRate = outputSampleRate;
_inputSampleRate = inputSampleRate;
int _gcd = std::gcd((int)inputSampleRate, (int)outputSampleRate);
_interp = outputSampleRate / _gcd;
_decim = inputSampleRate / _gcd;
_blockSize = blockSize;
outputBlockSize = (blockSize * _interp) / _decim;
output.init(outputBlockSize * 2);
float cutoff = std::min<float>(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f);
if (passBand > 0.0f && transWidth > 0.0f) {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth);
}
else {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, cutoff, cutoff);
}
}
void start() {
if (running) {
return;
}
_workerThread = std::thread(_worker, this);
running = true;
}
void stop() {
if (!running) {
return;
}
_input->stopReader();
output.stopWriter();
_workerThread.join();
_input->clearReadStop();
output.clearWriteStop();
running = false;
}
void setInputSampleRate(float inputSampleRate, int blockSize = -1, float passBand = -1.0f, float transWidth = -1.0f) {
stop();
_inputSampleRate = inputSampleRate;
int _gcd = std::gcd((int)inputSampleRate, (int)_outputSampleRate);
_interp = _outputSampleRate / _gcd;
_decim = inputSampleRate / _gcd;
printf("FloatFIRResampler.setInputSampleRate(): %d %d\n", _interp, _decim);
float cutoff = std::min<float>(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f);
if (passBand > 0.0f && transWidth > 0.0f) {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth);
}
else {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, cutoff, cutoff);
}
if (blockSize > 0) {
_blockSize = blockSize;
}
outputBlockSize = (blockSize * _interp) / _decim;
output.setMaxLatency(outputBlockSize * 2);
start();
}
void setOutputSampleRate(float outputSampleRate, float passBand = -1.0f, float transWidth = -1.0f) {
stop();
_outputSampleRate = outputSampleRate;
int _gcd = std::gcd((int)_inputSampleRate, (int)outputSampleRate);
_interp = outputSampleRate / _gcd;
_decim = _inputSampleRate / _gcd;
outputBlockSize = (_blockSize * _interp) / _decim;
output.setMaxLatency(outputBlockSize * 2);
printf("FloatResampler.setOutputSampleRate(): %d %d\n", _interp, _decim);
float cutoff = std::min<float>(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f);
if (passBand > 0.0f && transWidth > 0.0f) {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth);
}
else {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, cutoff, cutoff);
}
start();
}
void setFilterParams(float passBand, float transWidth) {
stop();
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth);
start();
}
void setBlockSize(int blockSize) {
stop();
_blockSize = blockSize;
outputBlockSize = (_blockSize * _interp) / _decim;
output.setMaxLatency(outputBlockSize * 2);
start();
}
void setInput(stream<float>* input) {
if (running) {
return;
}
_input = input;
}
int getOutputBlockSize() {
return outputBlockSize;
}
stream<float> output;
private:
static void _worker(FloatFIRResampler* _this) {
float* inBuf = new float[_this->_blockSize];
float* outBuf = new float[_this->outputBlockSize];
int outCount = _this->outputBlockSize;
float* taps = _this->_taps.data();
int tapCount = _this->_taps.size();
float* delayBuf = new float[tapCount];
float* delayStart = &inBuf[_this->_blockSize - tapCount];
int delaySize = tapCount * sizeof(float);
int interp = _this->_interp;
int decim = _this->_decim;
float correction = (float)sqrt((float)interp);
printf("FloatResamp: %d %d", _this->_blockSize, _this->outputBlockSize);
int afterInterp = _this->_blockSize * interp;
int outIndex = 0;
while (true) {
if (_this->_input->read(inBuf, _this->_blockSize) < 0) { break; };
for (int i = 0; outIndex < outCount; i += decim) {
outBuf[outIndex] = 0;
for (int j = 0; j < tapCount; j++) {
if ((i - j) % interp != 0) {
continue;
}
outBuf[outIndex] += GET_FROM_RIGHT_BUF(inBuf, delayBuf, tapCount, (i - j) / interp) * taps[j] * correction;
}
outIndex++;
}
outIndex = 0;
memcpy(delayBuf, delayStart, delaySize);
if (_this->output.write(outBuf, _this->outputBlockSize) < 0) { break; };
}
delete[] inBuf;
delete[] outBuf;
delete[] delayBuf;
}
std::thread _workerThread;
stream<float>* _input;
std::vector<float> _taps;
int _interp;
int _decim;
int outputBlockSize;
float _outputSampleRate;
float _inputSampleRate;
int _blockSize;
bool running = false;
};
};