SDRPlusPlus/source_modules/hermes_source/src/hermes.cpp

264 wiersze
8.1 KiB
C++

#include "hermes.h"
#include <spdlog/spdlog.h>
namespace hermes {
Client::Client(std::shared_ptr<net::Socket> sock) {
this->sock = sock;
// Start worker
workerThread = std::thread(&Client::worker, this);
}
void Client::close() {
if (!open) { return; }
sock->close();
// Wait for worker to exit
if (workerThread.joinable()) { workerThread.join(); }
open = false;
}
void Client::start() {
for (int i = 0; i < HERMES_METIS_REPEAT; i++) {
sendMetisControl((MetisControl)(METIS_CTRL_IQ | METIS_CTRL_NO_WD));
}
}
void Client::stop() {
for (int i = 0; i < HERMES_METIS_REPEAT; i++) {
sendMetisControl(METIS_CTRL_NONE);
}
}
void Client::setSamplerate(HermesLiteSamplerate samplerate) {
writeReg(0, (uint32_t)samplerate << 24);
}
void Client::setFrequency(double freq) {
this->freq = freq;
writeReg(HL_REG_TX1_NCO_FREQ, freq);
autoeFilters(freq);
}
void Client::setGain(int gain) {
writeReg(HL_REG_RX_LNA, gain | (1 << 6));
}
void Client::autoeFilters(double freq) {
uint8_t filt = (freq >= 3000000.0) ? (1 << 6) : 0;
if (freq <= 2000000.0) {
filt |= (1 << 0);
}
else if (freq <= 4000000.0) {
filt |= (1 << 1);
}
else if (freq <= 7300000.0) {
filt |= (1 << 2);
}
else if (freq <= 14350000.0) {
filt |= (1 << 3);
}
else if (freq <= 21450000.0) {
filt |= (1 << 4);
}
else if (freq <= 29700000.0) {
filt |= (1 << 5);
}
// Write only if the config actually changed
if (filt != lastFilt) {
lastFilt = filt;
writeI2C(I2C_PORT_2, 0x20, 0x0A, filt);
}
}
void Client::sendMetisUSB(uint8_t endpoint, void* frame0, void* frame1) {
// Build packet
uint32_t seq = usbSeq++;
MetisUSBPacket pkt;
pkt.hdr.signature = htons(HERMES_METIS_SIGNATURE);
pkt.hdr.type = METIS_PKT_USB;
pkt.endpoint = endpoint;
pkt.seq = htonl(seq);
if (frame0) { memcpy(pkt.frame[0], frame0, 512); }
else { memset(pkt.frame[0], 0, 512); }
if (frame1) { memcpy(pkt.frame[1], frame1, 512); }
else { memset(pkt.frame[1], 0, 512); }
// Send packet
sock->send((uint8_t*)&pkt, sizeof(pkt));
}
void Client::sendMetisControl(MetisControl ctrl) {
// Build packet
MetisControlPacket pkt;
pkt.hdr.signature = htons(HERMES_METIS_SIGNATURE);
pkt.hdr.type = METIS_PKT_CONTROL;
pkt.ctrl = ctrl;
// Send packet
sock->send((uint8_t*)&pkt, sizeof(pkt));
}
uint32_t Client::readReg(uint8_t addr) {
uint8_t frame[512];
memset(frame, 0, sizeof(frame));
HPSDRUSBHeader* hdr = (HPSDRUSBHeader*)frame;
hdr->sync[0] = HERMES_HPSDR_USB_SYNC;
hdr->sync[1] = HERMES_HPSDR_USB_SYNC;
hdr->sync[2] = HERMES_HPSDR_USB_SYNC;
hdr->c0 = (addr << 1) | (1 << 7);
sendMetisUSB(2, frame);
// TODO: Wait for response
return 0;
}
void Client::writeReg(uint8_t addr, uint32_t val) {
uint8_t frame[512];
memset(frame, 0, sizeof(frame));
HPSDRUSBHeader* hdr = (HPSDRUSBHeader*)frame;
hdr->sync[0] = HERMES_HPSDR_USB_SYNC;
hdr->sync[1] = HERMES_HPSDR_USB_SYNC;
hdr->sync[2] = HERMES_HPSDR_USB_SYNC;
hdr->c0 = addr << 1;
*(uint32_t*)hdr->c = htonl(val);
sendMetisUSB(2, frame);
}
void Client::writeI2C(I2CPort port, uint8_t addr, uint8_t reg, uint8_t data) {
uint32_t wdata = data;
wdata |= reg << 8;
wdata |= (addr & 0x7F) << 16;
wdata |= 1 << 23;
wdata |= 0x06 << 24;
writeReg(HL_REG_I2C_1 + port, wdata);
}
void Client::worker() {
uint8_t rbuf[2048];
MetisUSBPacket* pkt = (MetisUSBPacket*)rbuf;
while (true) {
// Wait for a packet or exit if connection closed
int len = sock->recv(rbuf, 2048);
if (len <= 0) { break; }
// Ignore anything that's not a USB packet
if (htons(pkt->hdr.signature) != HERMES_METIS_SIGNATURE || pkt->hdr.type != METIS_PKT_USB) {
continue;
}
// Parse frames
for (int frn = 0; frn < 2; frn++) {
uint8_t* frame = pkt->frame[frn];
HPSDRUSBHeader* hdr = (HPSDRUSBHeader*)frame;
// Make sure this is a valid frame by checking the sync
if (hdr->sync[0] != 0x7F || hdr->sync[1] != 0x7F || hdr->sync[2] != 0x7F) {
continue;
}
// Check if this is a response
if (hdr->c0 & (1 << 7)) {
uint8_t reg = (hdr->c0 >> 1) & 0x3F;
spdlog::warn("Got response! Reg={0}, Seq={1}", reg, htonl(pkt->seq));
}
// Decode and send IQ to stream
uint8_t* iq = &frame[8];
for (int i = 0; i < 63; i++) {
// Convert to 32bit
int32_t si = ((uint32_t)iq[(i*8) + 0] << 16) | ((uint32_t)iq[(i*8) + 1] << 8) | (uint32_t)iq[(i*8) + 2];
int32_t sq = ((uint32_t)iq[(i*8) + 3] << 16) | ((uint32_t)iq[(i*8) + 4] << 8) | (uint32_t)iq[(i*8) + 5];
// Sign extend
si = (si << 8) >> 8;
sq = (sq << 8) >> 8;
// Convert to float (IQ swapper for some reason... 'I' means in-phase... :facepalm:)
out.writeBuf[i].im = (float)si / (float)0x1000000;
out.writeBuf[i].re = (float)sq / (float)0x1000000;
}
out.swap(63);
// TODO: Buffer the data to avoid having a very high DSP frame rate
}
}
}
std::vector<Info> discover() {
auto sock = net::openudp("0.0.0.0", 1024);
// Build discovery packet
uint8_t discoveryPkt[64];
memset(discoveryPkt, 0, sizeof(discoveryPkt));
*(uint16_t*)&discoveryPkt[0] = htons(HERMES_METIS_SIGNATURE);
discoveryPkt[2] = METIS_PKT_DISCOVER;
// Get interface list
auto ifaces = net::listInterfaces();
// Send the packet 5 times to make sure it's received
for (const auto& [name, iface] : ifaces) {
net::Address baddr(iface.broadcast, 1024);
for (int i = 0; i < HERMES_METIS_REPEAT; i++) {
sock->send(discoveryPkt, sizeof(discoveryPkt), &baddr);
}
}
std::vector<Info> devices;
while (true) {
// Wait for a response
net::Address addr;
uint8_t resp[1024];
int len = sock->recv(resp, sizeof(resp), false, HERMES_METIS_TIMEOUT, &addr);
// Give up if timeout or error
if (len <= 0) { break; }
// Verify that it is a valid response
if (len < 60) { continue; }
if (resp[0] != 0xEF || resp[1] != 0xFE) { continue; }
// Analyze
Info info;
info.addr = addr;
memcpy(info.mac, &resp[3], 6);
info.gatewareVerMaj = resp[0x09];
info.gatewareVerMin = resp[0x15];
// Check if the device is already in the list
bool found = false;
for (const auto& d : devices) {
if (!memcmp(info.mac, d.mac, 6)) {
found = true;
break;
}
}
if (found) { continue; }
devices.push_back(info);
}
return devices;
}
std::shared_ptr<Client> open(std::string host, int port) {
return open(net::Address(host, port));
}
std::shared_ptr<Client> open(const net::Address& addr) {
// Open UDP socket
auto sock = net::openudp(addr);
// TODO: Check if open successful
return std::make_shared<Client>(sock);
}
}