RadioLib/src/modules/Si443x/Si443x.cpp

814 wiersze
27 KiB
C++

#include "Si443x.h"
#include <math.h>
#if !RADIOLIB_EXCLUDE_SI443X
Si443x::Si443x(Module* mod) : PhysicalLayer(RADIOLIB_SI443X_FREQUENCY_STEP_SIZE, RADIOLIB_SI443X_MAX_PACKET_LENGTH) {
this->mod = mod;
}
int16_t Si443x::begin(float br, float freqDev, float rxBw, uint8_t preambleLen) {
// set module properties
this->mod->init();
this->mod->hal->pinMode(this->mod->getIrq(), this->mod->hal->GpioModeInput);
this->mod->hal->pinMode(this->mod->getRst(), this->mod->hal->GpioModeOutput);
this->mod->hal->digitalWrite(this->mod->getRst(), this->mod->hal->GpioLevelLow);
// try to find the Si443x chip
if(!Si443x::findChip()) {
RADIOLIB_DEBUG_BASIC_PRINTLN("No Si443x found!");
this->mod->term();
return(RADIOLIB_ERR_CHIP_NOT_FOUND);
} else {
RADIOLIB_DEBUG_BASIC_PRINTLN("M\tSi443x");
}
// reset the device
this->mod->SPIwriteRegister(RADIOLIB_SI443X_REG_OP_FUNC_CONTROL_1, RADIOLIB_SI443X_SOFTWARE_RESET);
// clear POR interrupt
clearIRQFlags();
// configure settings not accessible by API
int16_t state = config();
RADIOLIB_ASSERT(state);
// configure publicly accessible settings
state = setBitRate(br);
RADIOLIB_ASSERT(state);
state = setFrequencyDeviation(freqDev);
RADIOLIB_ASSERT(state);
state = setRxBandwidth(rxBw);
RADIOLIB_ASSERT(state);
state = setPreambleLength(preambleLen);
RADIOLIB_ASSERT(state);
uint8_t syncWord[] = {0x12, 0xAD};
state = setSyncWord(syncWord, sizeof(syncWord));
RADIOLIB_ASSERT(state);
state = packetMode();
RADIOLIB_ASSERT(state);
state = setDataShaping(0);
RADIOLIB_ASSERT(state);
state = setEncoding(0);
RADIOLIB_ASSERT(state);
state = variablePacketLengthMode();
return(state);
}
void Si443x::reset() {
this->mod->hal->pinMode(this->mod->getRst(), this->mod->hal->GpioModeOutput);
this->mod->hal->digitalWrite(this->mod->getRst(), this->mod->hal->GpioLevelHigh);
this->mod->hal->delay(1);
this->mod->hal->digitalWrite(this->mod->getRst(), this->mod->hal->GpioLevelLow);
this->mod->hal->delay(100);
}
int16_t Si443x::transmit(uint8_t* data, size_t len, uint8_t addr) {
// calculate timeout (5ms + 500 % of expected time-on-air)
uint32_t timeout = 5000000 + (uint32_t)((((float)(len * 8)) / (this->bitRate * 1000.0)) * 5000000.0);
// start transmission
int16_t state = startTransmit(data, len, addr);
RADIOLIB_ASSERT(state);
// wait for transmission end or timeout
uint32_t start = this->mod->hal->micros();
while(this->mod->hal->digitalRead(this->mod->getIrq())) {
this->mod->hal->yield();
if(this->mod->hal->micros() - start > timeout) {
finishTransmit();
return(RADIOLIB_ERR_TX_TIMEOUT);
}
}
return(finishTransmit());
}
int16_t Si443x::receive(uint8_t* data, size_t len) {
// calculate timeout (500 ms + 400 full 64-byte packets at current bit rate)
uint32_t timeout = 500000 + (1.0/(this->bitRate*1000.0))*(RADIOLIB_SI443X_MAX_PACKET_LENGTH*400.0);
// start reception
int16_t state = startReceive();
RADIOLIB_ASSERT(state);
// wait for packet reception or timeout
uint32_t start = this->mod->hal->micros();
while(this->mod->hal->digitalRead(this->mod->getIrq())) {
if(this->mod->hal->micros() - start > timeout) {
standby();
clearIRQFlags();
return(RADIOLIB_ERR_RX_TIMEOUT);
}
}
// read packet data
return(readData(data, len));
}
int16_t Si443x::sleep() {
// set RF switch (if present)
this->mod->setRfSwitchState(Module::MODE_IDLE);
// disable wakeup timer interrupt
int16_t state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_INTERRUPT_ENABLE_1, 0x00);
RADIOLIB_ASSERT(state);
state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_INTERRUPT_ENABLE_2, 0x00);
RADIOLIB_ASSERT(state);
// enable wakeup timer to set mode to sleep
this->mod->SPIwriteRegister(RADIOLIB_SI443X_REG_OP_FUNC_CONTROL_1, RADIOLIB_SI443X_ENABLE_WAKEUP_TIMER);
return(state);
}
int16_t Si443x::standby() {
return(standby(RADIOLIB_SI443X_XTAL_ON));
}
int16_t Si443x::standby(uint8_t mode) {
// set RF switch (if present)
this->mod->setRfSwitchState(Module::MODE_IDLE);
return(this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_OP_FUNC_CONTROL_1, mode, 7, 0, 10));
}
int16_t Si443x::transmitDirect(uint32_t frf) {
// set RF switch (if present)
this->mod->setRfSwitchState(Module::MODE_TX);
// user requested to start transmitting immediately (required for RTTY)
if(frf != 0) {
// convert the 24-bit frequency to the format accepted by the module
/// \todo integers only
float newFreq = frf / 6400.0;
// check high/low band
uint8_t bandSelect = RADIOLIB_SI443X_BAND_SELECT_LOW;
uint8_t freqBand = (newFreq / 10) - 24;
if(newFreq >= 480.0) {
bandSelect = RADIOLIB_SI443X_BAND_SELECT_HIGH;
freqBand = (newFreq / 20) - 24;
}
// calculate register values
uint16_t freqCarrier = ((newFreq / (10 * ((bandSelect >> 5) + 1))) - freqBand - 24) * (uint32_t)64000;
// update registers
this->mod->SPIwriteRegister(RADIOLIB_SI443X_REG_FREQUENCY_BAND_SELECT, RADIOLIB_SI443X_SIDE_BAND_SELECT_LOW | bandSelect | freqBand);
this->mod->SPIwriteRegister(RADIOLIB_SI443X_REG_NOM_CARRIER_FREQUENCY_1, (uint8_t)((freqCarrier & 0xFF00) >> 8));
this->mod->SPIwriteRegister(RADIOLIB_SI443X_REG_NOM_CARRIER_FREQUENCY_0, (uint8_t)(freqCarrier & 0xFF));
// start direct transmission
directMode();
this->mod->SPIwriteRegister(RADIOLIB_SI443X_REG_OP_FUNC_CONTROL_1, RADIOLIB_SI443X_TX_ON | RADIOLIB_SI443X_XTAL_ON);
return(RADIOLIB_ERR_NONE);
}
// activate direct mode
int16_t state = directMode();
RADIOLIB_ASSERT(state);
// start transmitting
this->mod->SPIwriteRegister(RADIOLIB_SI443X_REG_OP_FUNC_CONTROL_1, RADIOLIB_SI443X_TX_ON | RADIOLIB_SI443X_XTAL_ON);
return(state);
}
int16_t Si443x::receiveDirect() {
// set RF switch (if present)
this->mod->setRfSwitchState(Module::MODE_RX);
// activate direct mode
int16_t state = directMode();
RADIOLIB_ASSERT(state);
// start receiving
this->mod->SPIwriteRegister(RADIOLIB_SI443X_REG_OP_FUNC_CONTROL_1, RADIOLIB_SI443X_RX_ON | RADIOLIB_SI443X_XTAL_ON);
return(state);
}
int16_t Si443x::packetMode() {
int16_t state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_MODULATION_MODE_CONTROL_2, RADIOLIB_SI443X_MODULATION_FSK, 1, 0);
RADIOLIB_ASSERT(state);
return(this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_MODULATION_MODE_CONTROL_2, RADIOLIB_SI443X_TX_DATA_SOURCE_FIFO, 5, 4));
}
void Si443x::setIrqAction(void (*func)(void)) {
this->mod->hal->attachInterrupt(this->mod->hal->pinToInterrupt(this->mod->getIrq()), func, this->mod->hal->GpioInterruptFalling);
}
void Si443x::clearIrqAction() {
this->mod->hal->detachInterrupt(this->mod->hal->pinToInterrupt(this->mod->getIrq()));
}
void Si443x::setPacketReceivedAction(void (*func)(void)) {
this->setIrqAction(func);
}
void Si443x::clearPacketReceivedAction() {
this->clearIrqAction();
}
void Si443x::setPacketSentAction(void (*func)(void)) {
this->setIrqAction(func);
}
void Si443x::clearPacketSentAction() {
this->clearIrqAction();
}
int16_t Si443x::startTransmit(uint8_t* data, size_t len, uint8_t addr) {
// check packet length
if(len > RADIOLIB_SI443X_MAX_PACKET_LENGTH) {
return(RADIOLIB_ERR_PACKET_TOO_LONG);
}
// set mode to standby
int16_t state = standby();
RADIOLIB_ASSERT(state);
// clear Tx FIFO
this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_OP_FUNC_CONTROL_2, RADIOLIB_SI443X_TX_FIFO_RESET, 0, 0);
this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_OP_FUNC_CONTROL_2, RADIOLIB_SI443X_TX_FIFO_CLEAR, 0, 0);
// clear interrupt flags
clearIRQFlags();
// set packet length
if (this->packetLengthConfig == RADIOLIB_SI443X_FIXED_PACKET_LENGTH_OFF) {
this->mod->SPIwriteRegister(RADIOLIB_SI443X_REG_TRANSMIT_PACKET_LENGTH, len);
}
/// \todo use header as address field?
(void)addr;
// write packet to FIFO
this->mod->SPIwriteRegisterBurst(RADIOLIB_SI443X_REG_FIFO_ACCESS, data, len);
// set RF switch (if present)
this->mod->setRfSwitchState(Module::MODE_TX);
// set interrupt mapping
this->mod->SPIwriteRegister(RADIOLIB_SI443X_REG_INTERRUPT_ENABLE_1, RADIOLIB_SI443X_PACKET_SENT_ENABLED);
this->mod->SPIwriteRegister(RADIOLIB_SI443X_REG_INTERRUPT_ENABLE_2, 0x00);
// set mode to transmit
this->mod->SPIwriteRegister(RADIOLIB_SI443X_REG_OP_FUNC_CONTROL_1, RADIOLIB_SI443X_TX_ON | RADIOLIB_SI443X_XTAL_ON);
return(state);
}
int16_t Si443x::finishTransmit() {
// clear interrupt flags
clearIRQFlags();
// set mode to standby to disable transmitter/RF switch
return(standby());
}
int16_t Si443x::startReceive() {
// set mode to standby
int16_t state = standby();
RADIOLIB_ASSERT(state);
// clear Rx FIFO
this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_OP_FUNC_CONTROL_2, RADIOLIB_SI443X_RX_FIFO_RESET, 1, 1);
this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_OP_FUNC_CONTROL_2, RADIOLIB_SI443X_RX_FIFO_CLEAR, 1, 1);
// clear interrupt flags
clearIRQFlags();
// set RF switch (if present)
this->mod->setRfSwitchState(Module::MODE_RX);
// set interrupt mapping
this->mod->SPIwriteRegister(RADIOLIB_SI443X_REG_INTERRUPT_ENABLE_1, RADIOLIB_SI443X_VALID_PACKET_RECEIVED_ENABLED | RADIOLIB_SI443X_CRC_ERROR_ENABLED);
this->mod->SPIwriteRegister(RADIOLIB_SI443X_REG_INTERRUPT_ENABLE_2, 0x00);
// set mode to receive
this->mod->SPIwriteRegister(RADIOLIB_SI443X_REG_OP_FUNC_CONTROL_1, RADIOLIB_SI443X_RX_ON | RADIOLIB_SI443X_XTAL_ON);
return(state);
}
int16_t Si443x::startReceive(uint32_t timeout, uint16_t irqFlags, uint16_t irqMask, size_t len) {
(void)timeout;
(void)irqFlags;
(void)irqMask;
(void)len;
return(startReceive());
}
int16_t Si443x::readData(uint8_t* data, size_t len) {
// clear interrupt flags
clearIRQFlags();
// get packet length
size_t length = getPacketLength();
size_t dumpLen = 0;
if((len != 0) && (len < length)) {
// user requested less data than we got, only return what was requested
dumpLen = length - len;
length = len;
}
// read packet data
this->mod->SPIreadRegisterBurst(RADIOLIB_SI443X_REG_FIFO_ACCESS, length, data);
// dump the bytes that weren't requested
if(dumpLen != 0) {
clearFIFO(dumpLen);
}
// clear internal flag so getPacketLength can return the new packet length
this->packetLengthQueried = false;
// set mode to standby
int16_t state = standby();
RADIOLIB_ASSERT(state);
// clear interrupt flags
clearIRQFlags();
return(RADIOLIB_ERR_NONE);
}
int16_t Si443x::setBitRate(float br) {
RADIOLIB_CHECK_RANGE(br, 0.123, 256.0, RADIOLIB_ERR_INVALID_BIT_RATE);
// check high data rate
uint8_t dataRateMode = RADIOLIB_SI443X_LOW_DATA_RATE_MODE;
uint8_t exp = 21;
if(br >= 30.0) {
// bit rate above 30 kbps
dataRateMode = RADIOLIB_SI443X_HIGH_DATA_RATE_MODE;
exp = 16;
}
// calculate raw data rate value
uint16_t txDr = (br * ((uint32_t)1 << exp)) / 1000.0;
// update registers
int16_t state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_MODULATION_MODE_CONTROL_1, dataRateMode, 5, 5);
this->mod->SPIwriteRegister(RADIOLIB_SI443X_REG_TX_DATA_RATE_1, (uint8_t)((txDr & 0xFF00) >> 8));
this->mod->SPIwriteRegister(RADIOLIB_SI443X_REG_TX_DATA_RATE_0, (uint8_t)(txDr & 0xFF));
if(state == RADIOLIB_ERR_NONE) {
this->bitRate = br;
}
RADIOLIB_ASSERT(state);
// update clock recovery
state = updateClockRecovery();
return(state);
}
int16_t Si443x::setFrequencyDeviation(float freqDev) {
// set frequency deviation to lowest available setting (required for digimodes)
float newFreqDev = freqDev;
if(freqDev < 0.0) {
newFreqDev = 0.625;
}
RADIOLIB_CHECK_RANGE(newFreqDev, 0.625, 320.0, RADIOLIB_ERR_INVALID_FREQUENCY_DEVIATION);
// calculate raw frequency deviation value
uint16_t fdev = (uint16_t)(newFreqDev / 0.625);
// update registers
int16_t state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_MODULATION_MODE_CONTROL_2, (uint8_t)((fdev & 0x0100) >> 6), 2, 2);
this->mod->SPIwriteRegister(RADIOLIB_SI443X_REG_FREQUENCY_DEVIATION, (uint8_t)(fdev & 0xFF));
if(state == RADIOLIB_ERR_NONE) {
this->frequencyDev = newFreqDev;
}
return(state);
}
int16_t Si443x::setRxBandwidth(float rxBw) {
RADIOLIB_CHECK_RANGE(rxBw, 2.6, 620.7, RADIOLIB_ERR_INVALID_RX_BANDWIDTH);
// decide which approximation to use for decimation rate and filter tap calculation
uint8_t bypass = RADIOLIB_SI443X_BYPASS_DEC_BY_3_OFF;
uint8_t decRate = RADIOLIB_SI443X_IF_FILTER_DEC_RATE;
uint8_t filterSet = RADIOLIB_SI443X_IF_FILTER_COEFF_SET;
// this is the "well-behaved" section - can be linearly approximated
if((rxBw >= 2.6) && (rxBw <= 4.5)) {
decRate = 5;
filterSet = ((rxBw - 2.1429)/0.3250 + 0.5);
} else if((rxBw > 4.5) && (rxBw <= 8.8)) {
decRate = 4;
filterSet = ((rxBw - 3.9857)/0.6643 + 0.5);
} else if((rxBw > 8.8) && (rxBw <= 17.5)) {
decRate = 3;
filterSet = ((rxBw - 7.6714)/1.3536 + 0.5);
} else if((rxBw > 17.5) && (rxBw <= 34.7)) {
decRate = 2;
filterSet = ((rxBw - 15.2000)/2.6893 + 0.5);
} else if((rxBw > 34.7) && (rxBw <= 69.2)) {
decRate = 1;
filterSet = ((rxBw - 30.2430)/5.3679 + 0.5);
} else if((rxBw > 69.2) && (rxBw <= 137.9)) {
decRate = 0;
filterSet = ((rxBw - 60.286)/10.7000 + 0.5);
// this is the "Lord help thee who tread 'ere" section - no way to approximate this mess
/// \todo float tolerance equality as macro?
} else if(fabs(rxBw - 142.8) <= 0.001) {
bypass = RADIOLIB_SI443X_BYPASS_DEC_BY_3_ON;
decRate = 1;
filterSet = 4;
} else if(fabs(rxBw - 167.8) <= 0.001) {
bypass = RADIOLIB_SI443X_BYPASS_DEC_BY_3_ON;
decRate = 1;
filterSet = 5;
} else if(fabs(rxBw - 181.1) <= 0.001) {
bypass = RADIOLIB_SI443X_BYPASS_DEC_BY_3_ON;
decRate = 1;
filterSet = 6;
} else if(fabs(rxBw - 191.5) <= 0.001) {
bypass = RADIOLIB_SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 15;
} else if(fabs(rxBw - 225.1) <= 0.001) {
bypass = RADIOLIB_SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 1;
} else if(fabs(rxBw - 248.8) <= 0.001) {
bypass = RADIOLIB_SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 2;
} else if(fabs(rxBw - 269.3) <= 0.001) {
bypass = RADIOLIB_SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 3;
} else if(fabs(rxBw - 284.8) <= 0.001) {
bypass = RADIOLIB_SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 4;
} else if(fabs(rxBw -335.5) <= 0.001) {
bypass = RADIOLIB_SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 8;
} else if(fabs(rxBw - 391.8) <= 0.001) {
bypass = RADIOLIB_SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 9;
} else if(fabs(rxBw - 420.2) <= 0.001) {
bypass = RADIOLIB_SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 10;
} else if(fabs(rxBw - 468.4) <= 0.001) {
bypass = RADIOLIB_SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 11;
} else if(fabs(rxBw - 518.8) <= 0.001) {
bypass = RADIOLIB_SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 12;
} else if(fabs(rxBw - 577.0) <= 0.001) {
bypass = RADIOLIB_SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 13;
} else if(fabs(rxBw - 620.7) <= 0.001) {
bypass = RADIOLIB_SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 14;
} else {
return(RADIOLIB_ERR_INVALID_RX_BANDWIDTH);
}
// shift decimation rate bits
decRate <<= 4;
// update register
int16_t state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_IF_FILTER_BANDWIDTH, bypass | decRate | filterSet);
RADIOLIB_ASSERT(state);
// update clock recovery
state = updateClockRecovery();
return(state);
}
int16_t Si443x::setSyncWord(uint8_t* syncWord, size_t len) {
RADIOLIB_CHECK_RANGE(len, 1, 4, RADIOLIB_ERR_INVALID_SYNC_WORD);
// set mode to standby
int16_t state = standby();
RADIOLIB_ASSERT(state);
// set sync word length
state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_HEADER_CONTROL_2, (uint8_t)(len - 1) << 1, 2, 1);
RADIOLIB_ASSERT(state);
// set sync word bytes
this->mod->SPIwriteRegisterBurst(RADIOLIB_SI443X_REG_SYNC_WORD_3, syncWord, len);
return(state);
}
int16_t Si443x::setPreambleLength(uint8_t preambleLen) {
// Si443x configures preamble length in 4-bit nibbles
if(preambleLen % 4 != 0) {
return(RADIOLIB_ERR_INVALID_PREAMBLE_LENGTH);
}
// set default preamble length
uint8_t preLenNibbles = preambleLen / 4;
int16_t state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_PREAMBLE_LENGTH, preLenNibbles);
RADIOLIB_ASSERT(state);
// set default preamble detection threshold to 5/8 of preamble length (in units of 4 bits)
uint8_t preThreshold = 5*preLenNibbles / 8;
return(this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_PREAMBLE_DET_CONTROL, preThreshold << 3, 7, 3));
}
size_t Si443x::getPacketLength(bool update) {
if(!this->packetLengthQueried && update) {
if (this->packetLengthConfig == RADIOLIB_SI443X_FIXED_PACKET_LENGTH_ON) {
this->packetLength = this->mod->SPIreadRegister(RADIOLIB_SI443X_REG_TRANSMIT_PACKET_LENGTH);
} else {
this->packetLength = this->mod->SPIreadRegister(RADIOLIB_SI443X_REG_RECEIVED_PACKET_LENGTH);
}
this->packetLengthQueried = true;
}
return(this->packetLength);
}
int16_t Si443x::setEncoding(uint8_t encoding) {
// set mode to standby
int16_t state = standby();
RADIOLIB_ASSERT(state);
// set encoding
/// \todo - add inverted Manchester?
switch(encoding) {
case RADIOLIB_ENCODING_NRZ:
return(this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_MODULATION_MODE_CONTROL_1, RADIOLIB_SI443X_MANCHESTER_INVERTED_OFF | RADIOLIB_SI443X_MANCHESTER_OFF | RADIOLIB_SI443X_WHITENING_OFF, 2, 0));
case RADIOLIB_ENCODING_MANCHESTER:
return(this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_MODULATION_MODE_CONTROL_1, RADIOLIB_SI443X_MANCHESTER_INVERTED_OFF | RADIOLIB_SI443X_MANCHESTER_ON | RADIOLIB_SI443X_WHITENING_OFF, 2, 0));
case RADIOLIB_ENCODING_WHITENING:
return(this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_MODULATION_MODE_CONTROL_1, RADIOLIB_SI443X_MANCHESTER_INVERTED_OFF | RADIOLIB_SI443X_MANCHESTER_OFF | RADIOLIB_SI443X_WHITENING_ON, 2, 0));
default:
return(RADIOLIB_ERR_INVALID_ENCODING);
}
}
int16_t Si443x::setDataShaping(uint8_t sh) {
// set mode to standby
int16_t state = standby();
RADIOLIB_ASSERT(state);
// set data shaping
switch(sh) {
case RADIOLIB_SHAPING_NONE:
return(this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_MODULATION_MODE_CONTROL_1, RADIOLIB_SI443X_MANCHESTER_INVERTED_OFF | RADIOLIB_SI443X_MANCHESTER_OFF | RADIOLIB_SI443X_WHITENING_OFF, 2, 0));
case RADIOLIB_SHAPING_0_3:
return(RADIOLIB_ERR_INVALID_ENCODING);
case RADIOLIB_SHAPING_0_5:
return(this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_MODULATION_MODE_CONTROL_2, RADIOLIB_SI443X_MODULATION_GFSK, 1, 0));
case RADIOLIB_SHAPING_1_0:
return(this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_MODULATION_MODE_CONTROL_1, RADIOLIB_SI443X_MANCHESTER_INVERTED_OFF | RADIOLIB_SI443X_MANCHESTER_OFF | RADIOLIB_SI443X_WHITENING_ON, 2, 0));
default:
return(RADIOLIB_ERR_INVALID_ENCODING);
}
}
void Si443x::setRfSwitchPins(uint32_t rxEn, uint32_t txEn) {
this->mod->setRfSwitchPins(rxEn, txEn);
}
void Si443x::setRfSwitchTable(const uint32_t (&pins)[Module::RFSWITCH_MAX_PINS], const Module::RfSwitchMode_t table[]) {
this->mod->setRfSwitchTable(pins, table);
}
uint8_t Si443x::randomByte() {
// set mode to Rx
this->mod->SPIwriteRegister(RADIOLIB_SI443X_REG_OP_FUNC_CONTROL_1, RADIOLIB_SI443X_RX_ON | RADIOLIB_SI443X_XTAL_ON);
// wait a bit for the RSSI reading to stabilise
this->mod->hal->delay(10);
// read RSSI value 8 times, always keep just the least significant bit
uint8_t randByte = 0x00;
for(uint8_t i = 0; i < 8; i++) {
randByte |= ((this->mod->SPIreadRegister(RADIOLIB_SI443X_REG_RSSI) & 0x01) << i);
}
// set mode to standby
standby();
return(randByte);
}
int16_t Si443x::getChipVersion() {
return(this->mod->SPIgetRegValue(RADIOLIB_SI443X_REG_DEVICE_VERSION));
}
#if !RADIOLIB_EXCLUDE_DIRECT_RECEIVE
void Si443x::setDirectAction(void (*func)(void)) {
setIrqAction(func);
}
void Si443x::readBit(uint32_t pin) {
updateDirectBuffer((uint8_t)this->mod->hal->digitalRead(pin));
}
#endif
int16_t Si443x::fixedPacketLengthMode(uint8_t len) {
return(Si443x::setPacketMode(RADIOLIB_SI443X_FIXED_PACKET_LENGTH_ON, len));
}
int16_t Si443x::variablePacketLengthMode(uint8_t maxLen) {
return(Si443x::setPacketMode(RADIOLIB_SI443X_FIXED_PACKET_LENGTH_OFF, maxLen));
}
Module* Si443x::getMod() {
return(this->mod);
}
int16_t Si443x::setFrequencyRaw(float newFreq) {
// set mode to standby
int16_t state = standby();
RADIOLIB_ASSERT(state);
// check high/low band
uint8_t bandSelect = RADIOLIB_SI443X_BAND_SELECT_LOW;
uint8_t freqBand = (newFreq / 10) - 24;
uint8_t afcLimiter = 80;
this->frequency = newFreq;
if(newFreq >= 480.0) {
bandSelect = RADIOLIB_SI443X_BAND_SELECT_HIGH;
freqBand = (newFreq / 20) - 24;
afcLimiter = 40;
}
// calculate register values
uint16_t freqCarrier = ((newFreq / (10 * ((bandSelect >> 5) + 1))) - freqBand - 24) * (uint32_t)64000;
// update registers
state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_FREQUENCY_BAND_SELECT, bandSelect | freqBand, 5, 0);
state |= this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_NOM_CARRIER_FREQUENCY_1, (uint8_t)((freqCarrier & 0xFF00) >> 8));
state |= this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_NOM_CARRIER_FREQUENCY_0, (uint8_t)(freqCarrier & 0xFF));
state |= this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_AFC_LIMITER, afcLimiter);
return(state);
}
int16_t Si443x::setPacketMode(uint8_t mode, uint8_t len) {
// check packet length
if (len > RADIOLIB_SI443X_MAX_PACKET_LENGTH) {
return(RADIOLIB_ERR_PACKET_TOO_LONG);
}
// set to fixed packet length
int16_t state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_HEADER_CONTROL_2, mode, 3, 3);
RADIOLIB_ASSERT(state);
// set length to register
state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_TRANSMIT_PACKET_LENGTH, len);
RADIOLIB_ASSERT(state);
// update cached value
this->packetLengthConfig = mode;
return(state);
}
bool Si443x::findChip() {
uint8_t i = 0;
bool flagFound = false;
while((i < 10) && !flagFound) {
// reset the module
reset();
// check version register
uint8_t version = this->mod->SPIreadRegister(RADIOLIB_SI443X_REG_DEVICE_VERSION);
if(version == RADIOLIB_SI443X_DEVICE_VERSION) {
flagFound = true;
} else {
RADIOLIB_DEBUG_BASIC_PRINTLN("Si443x not found! (%d of 10 tries) RADIOLIB_SI443X_REG_DEVICE_VERSION == 0x%02X, expected 0x0%X", i + 1, version, RADIOLIB_SI443X_DEVICE_VERSION);
this->mod->hal->delay(10);
i++;
}
}
return(flagFound);
}
void Si443x::clearIRQFlags() {
uint8_t buff[2];
this->mod->SPIreadRegisterBurst(RADIOLIB_SI443X_REG_INTERRUPT_STATUS_1, 2, buff);
}
void Si443x::clearFIFO(size_t count) {
while(count) {
this->mod->SPIreadRegister(RADIOLIB_SI443X_REG_FIFO_ACCESS);
count--;
}
}
int16_t Si443x::config() {
// set mode to standby
int16_t state = standby();
RADIOLIB_ASSERT(state);
// disable POR and chip ready interrupts
this->mod->SPIwriteRegister(RADIOLIB_SI443X_REG_INTERRUPT_ENABLE_2, 0x00);
// enable AGC
state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_AGC_OVERRIDE_1, RADIOLIB_SI443X_AGC_GAIN_INCREASE_ON | RADIOLIB_SI443X_AGC_ON, 6, 5);
RADIOLIB_ASSERT(state);
// disable packet header
state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_HEADER_CONTROL_2, RADIOLIB_SI443X_SYNC_WORD_TIMEOUT_OFF | RADIOLIB_SI443X_HEADER_LENGTH_HEADER_NONE, 7, 4);
RADIOLIB_ASSERT(state);
// set antenna switching
this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_GPIO0_CONFIG, RADIOLIB_SI443X_GPIOX_TX_STATE_OUT, 4, 0);
this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_GPIO1_CONFIG, RADIOLIB_SI443X_GPIOX_RX_STATE_OUT, 4, 0);
// disable packet header checking
state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_HEADER_CONTROL_1, RADIOLIB_SI443X_BROADCAST_ADDR_CHECK_NONE | RADIOLIB_SI443X_RECEIVED_HEADER_CHECK_NONE);
RADIOLIB_ASSERT(state);
return(state);
}
int16_t Si443x::updateClockRecovery() {
// get the parameters
uint8_t bypass = this->mod->SPIgetRegValue(RADIOLIB_SI443X_REG_IF_FILTER_BANDWIDTH, 7, 7) >> 7;
uint8_t decRate = this->mod->SPIgetRegValue(RADIOLIB_SI443X_REG_IF_FILTER_BANDWIDTH, 6, 4) >> 4;
uint8_t manch = this->mod->SPIgetRegValue(RADIOLIB_SI443X_REG_MODULATION_MODE_CONTROL_1, 1, 1) >> 1;
// calculate oversampling ratio, NCO offset and clock recovery gain
int8_t ndecExp = (int8_t)decRate - 3;
float ndec = 0;
if(ndecExp > 0) {
ndec = (uint16_t)1 << ndecExp;
} else {
ndecExp *= -1;
ndec = 1.0/(float)((uint16_t)1 << ndecExp);
}
float rxOsr = ((float)(500 * (1 + 2*bypass))) / (ndec * this->bitRate * ((float)(1 + manch)));
uint32_t ncoOff = (this->bitRate * (1 + manch) * ((uint32_t)(1) << (20 + decRate))) / (500 * (1 + 2*bypass));
uint16_t crGain = 2 + (((float)(65536.0 * (1 + manch)) * this->bitRate) / (rxOsr * (this->frequencyDev / 0.625)));
uint16_t rxOsr_fixed = (uint16_t)rxOsr;
// print that whole mess
RADIOLIB_DEBUG_BASIC_PRINTLN("%X\n%X\n%X", bypass, decRate, manch);
RADIOLIB_DEBUG_BASIC_PRINT_FLOAT(rxOsr, 2);
RADIOLIB_DEBUG_BASIC_PRINTLN("\t%d\t%X\n%lu\t%lX\n%d\t%X", rxOsr_fixed, rxOsr_fixed, ncoOff, ncoOff, crGain, crGain);
// update oversampling ratio
int16_t state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_CLOCK_REC_OFFSET_2, (uint8_t)((rxOsr_fixed & 0x0700) >> 3), 7, 5);
RADIOLIB_ASSERT(state);
state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_CLOCK_REC_OVERSAMP_RATIO, (uint8_t)(rxOsr_fixed & 0x00FF));
RADIOLIB_ASSERT(state);
// update NCO offset
state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_CLOCK_REC_OFFSET_2, (uint8_t)((ncoOff & 0x0F0000) >> 16), 3, 0);
RADIOLIB_ASSERT(state);
state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_CLOCK_REC_OFFSET_1, (uint8_t)((ncoOff & 0x00FF00) >> 8));
RADIOLIB_ASSERT(state);
state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_CLOCK_REC_OFFSET_0, (uint8_t)(ncoOff & 0x0000FF));
RADIOLIB_ASSERT(state);
// update clock recovery loop gain
state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_CLOCK_REC_TIMING_LOOP_GAIN_1, (uint8_t)((crGain & 0x0700) >> 8), 2, 0);
RADIOLIB_ASSERT(state);
state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_CLOCK_REC_TIMING_LOOP_GAIN_0, (uint8_t)(crGain & 0x00FF));
RADIOLIB_ASSERT(state);
return(state);
}
int16_t Si443x::directMode() {
int16_t state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_MODULATION_MODE_CONTROL_2, RADIOLIB_SI443X_TX_DATA_SOURCE_GPIO, 5, 4);
RADIOLIB_ASSERT(state);
state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_GPIO1_CONFIG, RADIOLIB_SI443X_GPIOX_TX_RX_DATA_CLK_OUT, 4, 0);
RADIOLIB_ASSERT(state);
state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_GPIO2_CONFIG, RADIOLIB_SI443X_GPIOX_TX_DATA_IN, 4, 0);
RADIOLIB_ASSERT(state);
state = this->mod->SPIsetRegValue(RADIOLIB_SI443X_REG_MODULATION_MODE_CONTROL_2, RADIOLIB_SI443X_MODULATION_FSK, 1, 0);
return(state);
}
#endif