RadioLib/src/modules/CC1101/CC1101.cpp

1143 wiersze
34 KiB
C++

#include "CC1101.h"
#include <math.h>
#if !RADIOLIB_EXCLUDE_CC1101
CC1101::CC1101(Module* module) : PhysicalLayer(RADIOLIB_CC1101_FREQUENCY_STEP_SIZE, RADIOLIB_CC1101_MAX_PACKET_LENGTH) {
this->mod = module;
}
int16_t CC1101::begin(float freq, float br, float freqDev, float rxBw, int8_t pwr, uint8_t preambleLength) {
// set module properties
this->mod->spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_READ] = RADIOLIB_CC1101_CMD_READ;
this->mod->spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_WRITE] = RADIOLIB_CC1101_CMD_WRITE;
this->mod->init();
this->mod->hal->pinMode(this->mod->getIrq(), this->mod->hal->GpioModeInput);
// try to find the CC1101 chip
uint8_t i = 0;
bool flagFound = false;
while((i < 10) && !flagFound) {
int16_t version = getChipVersion();
if((version == RADIOLIB_CC1101_VERSION_CURRENT) || (version == RADIOLIB_CC1101_VERSION_LEGACY) || (version == RADIOLIB_CC1101_VERSION_CLONE)) {
flagFound = true;
} else {
RADIOLIB_DEBUG_BASIC_PRINTLN("CC1101 not found! (%d of 10 tries) RADIOLIB_CC1101_REG_VERSION == 0x%04X, expected 0x0004/0x0014", i + 1, version);
this->mod->hal->delay(10);
i++;
}
}
if(!flagFound) {
RADIOLIB_DEBUG_BASIC_PRINTLN("No CC1101 found!");
this->mod->term();
return(RADIOLIB_ERR_CHIP_NOT_FOUND);
} else {
RADIOLIB_DEBUG_BASIC_PRINTLN("M\tCC1101");
}
// configure settings not accessible by API
int16_t state = config();
RADIOLIB_ASSERT(state);
// configure publicly accessible settings
state = setFrequency(freq);
RADIOLIB_ASSERT(state);
// configure bitrate
state = setBitRate(br);
RADIOLIB_ASSERT(state);
// configure default RX bandwidth
state = setRxBandwidth(rxBw);
RADIOLIB_ASSERT(state);
// configure default frequency deviation
state = setFrequencyDeviation(freqDev);
RADIOLIB_ASSERT(state);
// configure default TX output power
state = setOutputPower(pwr);
RADIOLIB_ASSERT(state);
// set default packet length mode
state = variablePacketLengthMode();
RADIOLIB_ASSERT(state);
// configure default preamble length
state = setPreambleLength(preambleLength, preambleLength - 4);
RADIOLIB_ASSERT(state);
// set default data shaping
state = setDataShaping(RADIOLIB_SHAPING_NONE);
RADIOLIB_ASSERT(state);
// set default encoding
state = setEncoding(RADIOLIB_ENCODING_NRZ);
RADIOLIB_ASSERT(state);
// set default sync word
uint8_t sw[RADIOLIB_CC1101_DEFAULT_SW_LEN] = RADIOLIB_CC1101_DEFAULT_SW;
state = setSyncWord(sw[0], sw[1], 0, false);
RADIOLIB_ASSERT(state);
// flush FIFOs
SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_RX);
SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_TX);
return(state);
}
void CC1101::reset() {
// this is the manual power-on-reset sequence
this->mod->hal->digitalWrite(this->mod->getCs(), this->mod->hal->GpioLevelLow);
this->mod->hal->delayMicroseconds(5);
this->mod->hal->digitalWrite(this->mod->getCs(), this->mod->hal->GpioLevelHigh);
this->mod->hal->delayMicroseconds(40);
this->mod->hal->digitalWrite(this->mod->getCs(), this->mod->hal->GpioLevelLow);
this->mod->hal->delay(10);
SPIsendCommand(RADIOLIB_CC1101_CMD_RESET);
}
int16_t CC1101::transmit(uint8_t* data, size_t len, uint8_t addr) {
// calculate timeout (5ms + 500 % of expected time-on-air)
uint32_t timeout = 5 + (uint32_t)((((float)(len * 8)) / this->bitRate) * 5);
// start transmission
int16_t state = startTransmit(data, len, addr);
RADIOLIB_ASSERT(state);
// wait for transmission start or timeout
uint32_t start = this->mod->hal->millis();
while(!this->mod->hal->digitalRead(this->mod->getGpio())) {
this->mod->hal->yield();
if(this->mod->hal->millis() - start > timeout) {
finishTransmit();
return(RADIOLIB_ERR_TX_TIMEOUT);
}
}
// wait for transmission end or timeout
start = this->mod->hal->millis();
while(this->mod->hal->digitalRead(this->mod->getGpio())) {
this->mod->hal->yield();
if(this->mod->hal->millis() - start > timeout) {
finishTransmit();
return(RADIOLIB_ERR_TX_TIMEOUT);
}
}
return(finishTransmit());
}
int16_t CC1101::receive(uint8_t* data, size_t len) {
// calculate timeout (500 ms + 400 full max-length packets at current bit rate)
uint32_t timeout = 500 + (1.0/(this->bitRate))*(RADIOLIB_CC1101_MAX_PACKET_LENGTH*400.0);
// start reception
int16_t state = startReceive();
RADIOLIB_ASSERT(state);
// wait for packet start or timeout
uint32_t start = this->mod->hal->millis();
while(this->mod->hal->digitalRead(this->mod->getIrq())) {
this->mod->hal->yield();
if(this->mod->hal->millis() - start > timeout) {
standby();
SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_RX);
return(RADIOLIB_ERR_RX_TIMEOUT);
}
}
// wait for packet end or timeout
start = this->mod->hal->millis();
while(!this->mod->hal->digitalRead(this->mod->getIrq())) {
this->mod->hal->yield();
if(this->mod->hal->millis() - start > timeout) {
standby();
SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_RX);
return(RADIOLIB_ERR_RX_TIMEOUT);
}
}
// read packet data
return(readData(data, len));
}
int16_t CC1101::standby() {
// set idle mode
SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE);
// wait until idle is reached
uint32_t start = this->mod->hal->millis();
while(SPIgetRegValue(RADIOLIB_CC1101_REG_MARCSTATE, 4, 0) != RADIOLIB_CC1101_MARC_STATE_IDLE) {
mod->hal->yield();
if(this->mod->hal->millis() - start > 100) {
// timeout, this should really not happen
return(RADIOLIB_ERR_UNKNOWN);
}
};
// set RF switch (if present)
this->mod->setRfSwitchState(Module::MODE_IDLE);
return(RADIOLIB_ERR_NONE);
}
int16_t CC1101::standby(uint8_t mode) {
(void)mode;
return(standby());
}
int16_t CC1101::transmitDirect(uint32_t frf) {
return transmitDirect(true, frf);
}
int16_t CC1101::transmitDirectAsync(uint32_t frf) {
return transmitDirect(false, frf);
}
int16_t CC1101::transmitDirect(bool sync, uint32_t frf) {
// set RF switch (if present)
this->mod->setRfSwitchState(Module::MODE_TX);
// user requested to start transmitting immediately (required for RTTY)
if(frf != 0) {
SPIwriteRegister(RADIOLIB_CC1101_REG_FREQ2, (frf & 0xFF0000) >> 16);
SPIwriteRegister(RADIOLIB_CC1101_REG_FREQ1, (frf & 0x00FF00) >> 8);
SPIwriteRegister(RADIOLIB_CC1101_REG_FREQ0, frf & 0x0000FF);
SPIsendCommand(RADIOLIB_CC1101_CMD_TX);
return(RADIOLIB_ERR_NONE);
}
// activate direct mode
int16_t state = directMode(sync);
RADIOLIB_ASSERT(state);
// start transmitting
SPIsendCommand(RADIOLIB_CC1101_CMD_TX);
return(state);
}
int16_t CC1101::receiveDirect() {
return receiveDirect(true);
}
int16_t CC1101::receiveDirectAsync() {
return receiveDirect(false);
}
int16_t CC1101::receiveDirect(bool sync) {
// set RF switch (if present)
this->mod->setRfSwitchState(Module::MODE_RX);
// activate direct mode
int16_t state = directMode(sync);
RADIOLIB_ASSERT(state);
// start receiving
SPIsendCommand(RADIOLIB_CC1101_CMD_RX);
return(RADIOLIB_ERR_NONE);
}
int16_t CC1101::packetMode() {
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL1, RADIOLIB_CC1101_CRC_AUTOFLUSH_OFF | RADIOLIB_CC1101_APPEND_STATUS_ON | RADIOLIB_CC1101_ADR_CHK_NONE, 3, 0);
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_WHITE_DATA_OFF | RADIOLIB_CC1101_PKT_FORMAT_NORMAL, 6, 4);
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_CRC_ON | this->packetLengthConfig, 2, 0);
return(state);
}
void CC1101::setGdo0Action(void (*func)(void), uint32_t dir) {
this->mod->hal->attachInterrupt(this->mod->hal->pinToInterrupt(this->mod->getIrq()), func, dir);
}
void CC1101::clearGdo0Action() {
this->mod->hal->detachInterrupt(this->mod->hal->pinToInterrupt(this->mod->getIrq()));
}
void CC1101::setPacketReceivedAction(void (*func)(void)) {
this->setGdo0Action(func, this->mod->hal->GpioInterruptRising);
}
void CC1101::clearPacketReceivedAction() {
this->clearGdo0Action();
}
void CC1101::setPacketSentAction(void (*func)(void)) {
this->setGdo2Action(func, this->mod->hal->GpioInterruptFalling);
}
void CC1101::clearPacketSentAction() {
this->clearGdo2Action();
}
void CC1101::setGdo2Action(void (*func)(void), uint32_t dir) {
if(this->mod->getGpio() == RADIOLIB_NC) {
return;
}
this->mod->hal->pinMode(this->mod->getGpio(), this->mod->hal->GpioModeInput);
this->mod->hal->attachInterrupt(this->mod->hal->pinToInterrupt(this->mod->getGpio()), func, dir);
}
void CC1101::clearGdo2Action() {
if(this->mod->getGpio() == RADIOLIB_NC) {
return;
}
this->mod->hal->detachInterrupt(this->mod->hal->pinToInterrupt(this->mod->getGpio()));
}
int16_t CC1101::startTransmit(uint8_t* data, size_t len, uint8_t addr) {
// check packet length
if(len > RADIOLIB_CC1101_MAX_PACKET_LENGTH) {
return(RADIOLIB_ERR_PACKET_TOO_LONG);
}
// set mode to standby
standby();
// flush Tx FIFO
SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_TX);
// set GDO0 mapping
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_IOCFG2, RADIOLIB_CC1101_GDOX_SYNC_WORD_SENT_OR_PKT_RECEIVED, 5, 0);
RADIOLIB_ASSERT(state);
// optionally write packet length
if(this->packetLengthConfig == RADIOLIB_CC1101_LENGTH_CONFIG_VARIABLE) {
SPIwriteRegister(RADIOLIB_CC1101_REG_FIFO, len);
}
// check address filtering
uint8_t filter = SPIgetRegValue(RADIOLIB_CC1101_REG_PKTCTRL1, 1, 0);
if(filter != RADIOLIB_CC1101_ADR_CHK_NONE) {
SPIwriteRegister(RADIOLIB_CC1101_REG_FIFO, addr);
}
// fill the FIFO
SPIwriteRegisterBurst(RADIOLIB_CC1101_REG_FIFO, data, len);
// set RF switch (if present)
this->mod->setRfSwitchState(Module::MODE_TX);
// set mode to transmit
SPIsendCommand(RADIOLIB_CC1101_CMD_TX);
return(state);
}
int16_t CC1101::finishTransmit() {
// set mode to standby to disable transmitter/RF switch
int16_t state = standby();
RADIOLIB_ASSERT(state);
// flush Tx FIFO
SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_TX);
return(state);
}
int16_t CC1101::startReceive() {
// set mode to standby
int16_t state = standby();
RADIOLIB_ASSERT(state);
// flush Rx FIFO
SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_RX);
// set GDO0 mapping
// GDO0 is de-asserted at packet end, hence it is inverted here
state = SPIsetRegValue(RADIOLIB_CC1101_REG_IOCFG0, RADIOLIB_CC1101_GDO0_INV | RADIOLIB_CC1101_GDOX_SYNC_WORD_SENT_OR_PKT_RECEIVED, 6, 0);
RADIOLIB_ASSERT(state);
// set RF switch (if present)
this->mod->setRfSwitchState(Module::MODE_RX);
// set mode to receive
SPIsendCommand(RADIOLIB_CC1101_CMD_RX);
return(state);
}
int16_t CC1101::startReceive(uint32_t timeout, uint16_t irqFlags, uint16_t irqMask, size_t len) {
(void)timeout;
(void)irqFlags;
(void)irqMask;
(void)len;
return(startReceive());
}
int16_t CC1101::readData(uint8_t* data, size_t len) {
// get packet length
size_t length = getPacketLength();
if((len != 0) && (len < length)) {
// user requested less data than we got, only return what was requested
length = len;
}
// check address filtering
uint8_t filter = SPIgetRegValue(RADIOLIB_CC1101_REG_PKTCTRL1, 1, 0);
if(filter != RADIOLIB_CC1101_ADR_CHK_NONE) {
SPIreadRegister(RADIOLIB_CC1101_REG_FIFO);
}
// read packet data
SPIreadRegisterBurst(RADIOLIB_CC1101_REG_FIFO, length, data);
// check if status bytes are enabled (default: RADIOLIB_CC1101_APPEND_STATUS_ON)
bool isAppendStatus = SPIgetRegValue(RADIOLIB_CC1101_REG_PKTCTRL1, 2, 2) == RADIOLIB_CC1101_APPEND_STATUS_ON;
// If status byte is enabled at least 2 bytes (2 status bytes + any following packet) will remain in FIFO.
int16_t state = RADIOLIB_ERR_NONE;
if (isAppendStatus) {
// read RSSI byte
this->rawRSSI = SPIgetRegValue(RADIOLIB_CC1101_REG_FIFO);
// read LQI and CRC byte
uint8_t val = SPIgetRegValue(RADIOLIB_CC1101_REG_FIFO);
this->rawLQI = val & 0x7F;
// check CRC
if(this->crcOn && (val & RADIOLIB_CC1101_CRC_OK) == RADIOLIB_CC1101_CRC_ERROR) {
this->packetLengthQueried = false;
state = RADIOLIB_ERR_CRC_MISMATCH;
}
}
// clear internal flag so getPacketLength can return the new packet length
this->packetLengthQueried = false;
// Flush then standby according to RXOFF_MODE (default: RADIOLIB_CC1101_RXOFF_IDLE)
if(SPIgetRegValue(RADIOLIB_CC1101_REG_MCSM1, 3, 2) == RADIOLIB_CC1101_RXOFF_IDLE) {
// set mode to standby
standby();
// flush Rx FIFO
SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_RX);
}
return(state);
}
int16_t CC1101::setFrequency(float freq) {
// check allowed frequency range
if(!(((freq > 300.0) && (freq < 348.0)) ||
((freq > 387.0) && (freq < 464.0)) ||
((freq > 779.0) && (freq < 928.0)))) {
return(RADIOLIB_ERR_INVALID_FREQUENCY);
}
// set mode to standby
SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE);
//set carrier frequency
uint32_t base = 1;
uint32_t FRF = (freq * (base << 16)) / 26.0;
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_FREQ2, (FRF & 0xFF0000) >> 16, 7, 0);
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_FREQ1, (FRF & 0x00FF00) >> 8, 7, 0);
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_FREQ0, FRF & 0x0000FF, 7, 0);
if(state == RADIOLIB_ERR_NONE) {
this->frequency = freq;
}
// Update the TX power accordingly to new freq. (PA values depend on chosen freq)
return(setOutputPower(this->power));
}
int16_t CC1101::setBitRate(float br) {
RADIOLIB_CHECK_RANGE(br, 0.025, 600.0, RADIOLIB_ERR_INVALID_BIT_RATE);
// set mode to standby
SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE);
// calculate exponent and mantissa values
uint8_t e = 0;
uint8_t m = 0;
getExpMant(br * 1000.0, 256, 28, 14, e, m);
// set bit rate value
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG4, e, 3, 0);
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG3, m);
if(state == RADIOLIB_ERR_NONE) {
this->bitRate = br;
}
return(state);
}
int16_t CC1101::setRxBandwidth(float rxBw) {
RADIOLIB_CHECK_RANGE(rxBw, 58.0, 812.0, RADIOLIB_ERR_INVALID_RX_BANDWIDTH);
// set mode to standby
SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE);
// calculate exponent and mantissa values
for(int8_t e = 3; e >= 0; e--) {
for(int8_t m = 3; m >= 0; m --) {
float point = (RADIOLIB_CC1101_CRYSTAL_FREQ * 1000000.0)/(8 * (m + 4) * ((uint32_t)1 << e));
if(fabs((rxBw * 1000.0) - point) <= 1000) {
// set Rx channel filter bandwidth
return(SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG4, (e << 6) | (m << 4), 7, 4));
}
}
}
return(RADIOLIB_ERR_INVALID_RX_BANDWIDTH);
}
int16_t CC1101::autoSetRxBandwidth() {
// Uncertainty ~ +/- 40ppm for a cheap CC1101
// Uncertainty * 2 for both transmitter and receiver
float uncertainty = ((this->frequency) * 40 * 2);
uncertainty = (uncertainty/1000); //Since bitrate is in kBit
float minbw = ((this->bitRate) + uncertainty);
int possibles[16] = {58, 68, 81, 102, 116, 135, 162, 203, 232, 270, 325, 406, 464, 541, 650, 812};
for (int i = 0; i < 16; i++) {
if (possibles[i] > minbw) {
int16_t state = setRxBandwidth(possibles[i]);
return(state);
}
}
return(RADIOLIB_ERR_UNKNOWN);
}
int16_t CC1101::setFrequencyDeviation(float freqDev) {
// set frequency deviation to lowest available setting (required for digimodes)
float newFreqDev = freqDev;
if(freqDev < 0.0) {
newFreqDev = 1.587;
}
// check range unless 0 (special value)
if (freqDev != 0) {
RADIOLIB_CHECK_RANGE(newFreqDev, 1.587, 380.8, RADIOLIB_ERR_INVALID_FREQUENCY_DEVIATION);
}
// set mode to standby
SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE);
// calculate exponent and mantissa values
uint8_t e = 0;
uint8_t m = 0;
getExpMant(newFreqDev * 1000.0, 8, 17, 7, e, m);
// set frequency deviation value
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_DEVIATN, (e << 4), 6, 4);
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_DEVIATN, m, 2, 0);
return(state);
}
int16_t CC1101::getFrequencyDeviation(float *freqDev) {
if (freqDev == NULL) {
return(RADIOLIB_ERR_NULL_POINTER);
}
// if ASK/OOK, deviation makes no sense
if (this->modulation == RADIOLIB_CC1101_MOD_FORMAT_ASK_OOK) {
*freqDev = 0.0;
return(RADIOLIB_ERR_NONE);
}
// get exponent and mantissa values from registers
uint8_t e = (uint8_t)(SPIgetRegValue(RADIOLIB_CC1101_REG_DEVIATN, 6, 4) >> 4);
uint8_t m = (uint8_t)SPIgetRegValue(RADIOLIB_CC1101_REG_DEVIATN, 2, 0);
// calculate frequency deviation (pag. 79 of the CC1101 datasheet):
//
// freqDev = (fXosc / 2^17) * (8 + m) * 2^e
//
*freqDev = (1000.0 / (uint32_t(1) << 17)) - (8 + m) * (uint32_t(1) << e);
return(RADIOLIB_ERR_NONE);
}
int16_t CC1101::setOutputPower(int8_t pwr) {
// round to the known frequency settings
uint8_t f;
if(this->frequency < 374.0) {
// 315 MHz
f = 0;
} else if(this->frequency < 650.5) {
// 434 MHz
f = 1;
} else if(this->frequency < 891.5) {
// 868 MHz
f = 2;
} else {
// 915 MHz
f = 3;
}
// get raw power setting
uint8_t paTable[8][4] = {{0x12, 0x12, 0x03, 0x03},
{0x0D, 0x0E, 0x0F, 0x0E},
{0x1C, 0x1D, 0x1E, 0x1E},
{0x34, 0x34, 0x27, 0x27},
{0x51, 0x60, 0x50, 0x8E},
{0x85, 0x84, 0x81, 0xCD},
{0xCB, 0xC8, 0xCB, 0xC7},
{0xC2, 0xC0, 0xC2, 0xC0}};
uint8_t powerRaw;
switch(pwr) {
case -30:
powerRaw = paTable[0][f];
break;
case -20:
powerRaw = paTable[1][f];
break;
case -15:
powerRaw = paTable[2][f];
break;
case -10:
powerRaw = paTable[3][f];
break;
case 0:
powerRaw = paTable[4][f];
break;
case 5:
powerRaw = paTable[5][f];
break;
case 7:
powerRaw = paTable[6][f];
break;
case 10:
powerRaw = paTable[7][f];
break;
default:
return(RADIOLIB_ERR_INVALID_OUTPUT_POWER);
}
// store the value
this->power = pwr;
if(this->modulation == RADIOLIB_CC1101_MOD_FORMAT_ASK_OOK){
// Amplitude modulation:
// PA_TABLE[0] is the power to be used when transmitting a 0 (no power)
// PA_TABLE[1] is the power to be used when transmitting a 1 (full power)
uint8_t paValues[2] = {0x00, powerRaw};
SPIwriteRegisterBurst(RADIOLIB_CC1101_REG_PATABLE, paValues, 2);
return(RADIOLIB_ERR_NONE);
} else {
// Freq modulation:
// PA_TABLE[0] is the power to be used when transmitting.
return(SPIsetRegValue(RADIOLIB_CC1101_REG_PATABLE, powerRaw));
}
}
int16_t CC1101::setSyncWord(uint8_t* syncWord, uint8_t len, uint8_t maxErrBits, bool requireCarrierSense) {
if((maxErrBits > 1) || (len != 2)) {
return(RADIOLIB_ERR_INVALID_SYNC_WORD);
}
// sync word must not contain value 0x00
for(uint8_t i = 0; i < len; i++) {
if(syncWord[i] == 0x00) {
return(RADIOLIB_ERR_INVALID_SYNC_WORD);
}
}
// enable sync word filtering
int16_t state = enableSyncWordFiltering(maxErrBits, requireCarrierSense);
RADIOLIB_ASSERT(state);
// set sync word register
state = SPIsetRegValue(RADIOLIB_CC1101_REG_SYNC1, syncWord[0]);
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_SYNC0, syncWord[1]);
return(state);
}
int16_t CC1101::setSyncWord(uint8_t syncH, uint8_t syncL, uint8_t maxErrBits, bool requireCarrierSense) {
uint8_t syncWord[] = { syncH, syncL };
return(setSyncWord(syncWord, sizeof(syncWord), maxErrBits, requireCarrierSense));
}
int16_t CC1101::setPreambleLength(uint8_t preambleLength, uint8_t qualityThreshold) {
// check allowed values
uint8_t value;
switch(preambleLength) {
case 16:
value = RADIOLIB_CC1101_NUM_PREAMBLE_2;
break;
case 24:
value = RADIOLIB_CC1101_NUM_PREAMBLE_3;
break;
case 32:
value = RADIOLIB_CC1101_NUM_PREAMBLE_4;
break;
case 48:
value = RADIOLIB_CC1101_NUM_PREAMBLE_6;
break;
case 64:
value = RADIOLIB_CC1101_NUM_PREAMBLE_8;
break;
case 96:
value = RADIOLIB_CC1101_NUM_PREAMBLE_12;
break;
case 128:
value = RADIOLIB_CC1101_NUM_PREAMBLE_16;
break;
case 192:
value = RADIOLIB_CC1101_NUM_PREAMBLE_24;
break;
default:
return(RADIOLIB_ERR_INVALID_PREAMBLE_LENGTH);
}
// set preabmble quality threshold and the actual length
uint8_t pqt = qualityThreshold/4;
if(pqt > 7) {
pqt = 7;
}
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL1, pqt << 5, 7, 5);
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG1, value, 6, 4);
return(state);
}
int16_t CC1101::setNodeAddress(uint8_t nodeAddr, uint8_t numBroadcastAddrs) {
RADIOLIB_CHECK_RANGE(numBroadcastAddrs, 1, 2, RADIOLIB_ERR_INVALID_NUM_BROAD_ADDRS);
// enable address filtering
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL1, numBroadcastAddrs + 0x01, 1, 0);
RADIOLIB_ASSERT(state);
// set node address
return(SPIsetRegValue(RADIOLIB_CC1101_REG_ADDR, nodeAddr));
}
int16_t CC1101::disableAddressFiltering() {
// disable address filtering
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL1, RADIOLIB_CC1101_ADR_CHK_NONE, 1, 0);
RADIOLIB_ASSERT(state);
// set node address to default (0x00)
return(SPIsetRegValue(RADIOLIB_CC1101_REG_ADDR, 0x00));
}
int16_t CC1101::setOOK(bool enableOOK) {
// Change modulation
if(enableOOK) {
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MOD_FORMAT_ASK_OOK, 6, 4);
RADIOLIB_ASSERT(state);
// PA_TABLE[0] is (by default) the power value used when transmitting a "0".
// Set PA_TABLE[1] to be used when transmitting a "1".
state = SPIsetRegValue(RADIOLIB_CC1101_REG_FREND0, 1, 2, 0);
RADIOLIB_ASSERT(state);
// update current modulation
this->modulation = RADIOLIB_CC1101_MOD_FORMAT_ASK_OOK;
} else {
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MOD_FORMAT_2_FSK, 6, 4);
RADIOLIB_ASSERT(state);
// Reset FREND0 to default value.
state = SPIsetRegValue(RADIOLIB_CC1101_REG_FREND0, 0, 2, 0);
RADIOLIB_ASSERT(state);
// update current modulation
this->modulation = RADIOLIB_CC1101_MOD_FORMAT_2_FSK;
}
// Update PA_TABLE values according to the new this->modulation.
return(setOutputPower(this->power));
}
float CC1101::getRSSI() {
float rssi;
if (this->directModeEnabled) {
if(this->rawRSSI >= 128) {
rssi = (((float)this->rawRSSI - 256.0)/2.0) - 74.0;
} else {
rssi = (((float)this->rawRSSI)/2.0) - 74.0;
}
} else {
uint8_t rawRssi = SPIreadRegister(RADIOLIB_CC1101_REG_RSSI);
if (rawRssi >= 128)
{
rssi = ((rawRssi - 256) / 2) - 74;
}
else
{
rssi = (rawRssi / 2) - 74;
}
}
return(rssi);
}
uint8_t CC1101::getLQI() const {
return(this->rawLQI);
}
size_t CC1101::getPacketLength(bool update) {
if(!this->packetLengthQueried && update) {
if(this->packetLengthConfig == RADIOLIB_CC1101_LENGTH_CONFIG_VARIABLE) {
this->packetLength = SPIreadRegister(RADIOLIB_CC1101_REG_FIFO);
} else {
this->packetLength = SPIreadRegister(RADIOLIB_CC1101_REG_PKTLEN);
}
this->packetLengthQueried = true;
}
return(this->packetLength);
}
int16_t CC1101::fixedPacketLengthMode(uint8_t len) {
if(len == 0) {
// infinite packet mode
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_LENGTH_CONFIG_INFINITE, 1, 0);
RADIOLIB_ASSERT(state);
}
return(setPacketMode(RADIOLIB_CC1101_LENGTH_CONFIG_FIXED, len));
}
int16_t CC1101::variablePacketLengthMode(uint8_t maxLen) {
return(setPacketMode(RADIOLIB_CC1101_LENGTH_CONFIG_VARIABLE, maxLen));
}
int16_t CC1101::enableSyncWordFiltering(uint8_t maxErrBits, bool requireCarrierSense) {
int16_t state = RADIOLIB_ERR_NONE;
switch(maxErrBits) {
case 0:
// in 16 bit sync word, expect all 16 bits
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, (requireCarrierSense ? RADIOLIB_CC1101_SYNC_MODE_16_16_THR : RADIOLIB_CC1101_SYNC_MODE_16_16), 2, 0);
break;
case 1:
// in 16 bit sync word, expect at least 15 bits
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, (requireCarrierSense ? RADIOLIB_CC1101_SYNC_MODE_15_16_THR : RADIOLIB_CC1101_SYNC_MODE_15_16), 2, 0);
break;
default:
state = RADIOLIB_ERR_INVALID_SYNC_WORD;
break;
}
return(state);
}
int16_t CC1101::disableSyncWordFiltering(bool requireCarrierSense) {
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, (requireCarrierSense ? RADIOLIB_CC1101_SYNC_MODE_NONE_THR : RADIOLIB_CC1101_SYNC_MODE_NONE), 2, 0);
return(state);
}
int16_t CC1101::setCrcFiltering(bool enable) {
this->crcOn = enable;
if (this->crcOn == true) {
return(SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_CRC_ON, 2, 2));
} else {
return(SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_CRC_OFF, 2, 2));
}
}
int16_t CC1101::setPromiscuousMode(bool enable, bool requireCarrierSense) {
int16_t state = RADIOLIB_ERR_NONE;
if(this->promiscuous == enable) {
return(state);
}
if(enable) {
// Lets set PQT to 0 with Promiscuous too
// We have to set the length to set PQT, but it should get disabled with disableSyncWordFiltering()
state = setPreambleLength(16, 0);
RADIOLIB_ASSERT(state);
// disable sync word filtering and insertion
// this also disables preamble
// Can enable Sync Mode with carriersense when promiscuous is enabled. Default is false: Sync Mode None
state = disableSyncWordFiltering(requireCarrierSense);
RADIOLIB_ASSERT(state);
// disable CRC filtering
state = setCrcFiltering(false);
} else {
state = setPreambleLength(RADIOLIB_CC1101_DEFAULT_PREAMBLELEN, RADIOLIB_CC1101_DEFAULT_PREAMBLELEN/4);
RADIOLIB_ASSERT(state);
// enable sync word filtering and insertion
state = enableSyncWordFiltering();
RADIOLIB_ASSERT(state);
// enable CRC filtering
state = setCrcFiltering(true);
}
this->promiscuous = enable;
return(state);
}
bool CC1101::getPromiscuousMode() {
return (this->promiscuous);
}
int16_t CC1101::setDataShaping(uint8_t sh) {
// set mode to standby
int16_t state = standby();
RADIOLIB_ASSERT(state);
// set data shaping
switch(sh) {
case RADIOLIB_SHAPING_NONE:
state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MOD_FORMAT_2_FSK, 6, 4);
break;
case RADIOLIB_SHAPING_0_5:
state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MOD_FORMAT_GFSK, 6, 4);
break;
default:
return(RADIOLIB_ERR_INVALID_DATA_SHAPING);
}
return(state);
}
int16_t CC1101::setEncoding(uint8_t encoding) {
// set mode to standby
int16_t state = standby();
RADIOLIB_ASSERT(state);
// set encoding
switch(encoding) {
case RADIOLIB_ENCODING_NRZ:
state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MANCHESTER_EN_OFF, 3, 3);
RADIOLIB_ASSERT(state);
return(SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_WHITE_DATA_OFF, 6, 6));
case RADIOLIB_ENCODING_MANCHESTER:
state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MANCHESTER_EN_ON, 3, 3);
RADIOLIB_ASSERT(state);
return(SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_WHITE_DATA_OFF, 6, 6));
case RADIOLIB_ENCODING_WHITENING:
state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MANCHESTER_EN_OFF, 3, 3);
RADIOLIB_ASSERT(state);
return(SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_WHITE_DATA_ON, 6, 6));
default:
return(RADIOLIB_ERR_INVALID_ENCODING);
}
}
void CC1101::setRfSwitchPins(uint32_t rxEn, uint32_t txEn) {
this->mod->setRfSwitchPins(rxEn, txEn);
}
void CC1101::setRfSwitchTable(const uint32_t (&pins)[Module::RFSWITCH_MAX_PINS], const Module::RfSwitchMode_t table[]) {
this->mod->setRfSwitchTable(pins, table);
}
uint8_t CC1101::randomByte() {
// set mode to Rx
SPIsendCommand(RADIOLIB_CC1101_CMD_RX);
// wait a bit for the RSSI reading to stabilise
this->mod->hal->delay(10);
// read RSSI value 8 times, always keep just the least significant bit
uint8_t randByte = 0x00;
for(uint8_t i = 0; i < 8; i++) {
randByte |= ((SPIreadRegister(RADIOLIB_CC1101_REG_RSSI) & 0x01) << i);
}
// set mode to standby
SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE);
return(randByte);
}
int16_t CC1101::getChipVersion() {
return(SPIgetRegValue(RADIOLIB_CC1101_REG_VERSION));
}
#if !RADIOLIB_EXCLUDE_DIRECT_RECEIVE
void CC1101::setDirectAction(void (*func)(void)) {
setGdo0Action(func, this->mod->hal->GpioInterruptRising);
}
void CC1101::readBit(uint32_t pin) {
updateDirectBuffer((uint8_t)this->mod->hal->digitalRead(pin));
}
#endif
int16_t CC1101::setDIOMapping(uint32_t pin, uint32_t value) {
if(pin > 2) {
return(RADIOLIB_ERR_INVALID_DIO_PIN);
}
return(SPIsetRegValue(RADIOLIB_CC1101_REG_IOCFG0 - pin, value));
}
int16_t CC1101::config() {
// Reset the radio. Registers may be dirty from previous usage.
reset();
// Wait a ridiculous amount of time to be sure radio is ready.
this->mod->hal->delay(150);
standby();
// enable automatic frequency synthesizer calibration and disable pin control
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_MCSM0, RADIOLIB_CC1101_FS_AUTOCAL_IDLE_TO_RXTX, 5, 4);
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_MCSM0, RADIOLIB_CC1101_PIN_CTRL_OFF, 1, 1);
RADIOLIB_ASSERT(state);
// set GDOs to Hi-Z so that it doesn't output clock on startup (might confuse GDO0 action)
state = SPIsetRegValue(RADIOLIB_CC1101_REG_IOCFG0, RADIOLIB_CC1101_GDOX_HIGH_Z, 5, 0);
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_IOCFG2, RADIOLIB_CC1101_GDOX_HIGH_Z, 5, 0);
RADIOLIB_ASSERT(state);
// set packet mode
state = packetMode();
return(state);
}
int16_t CC1101::directMode(bool sync) {
// set mode to standby
SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE);
int16_t state = 0;
this->directModeEnabled = sync;
if(sync) {
// set GDO0 and GDO2 mapping
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_IOCFG0, RADIOLIB_CC1101_GDOX_SERIAL_CLOCK , 5, 0);
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_IOCFG2, RADIOLIB_CC1101_GDOX_SERIAL_DATA_SYNC , 5, 0);
// set continuous mode
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_PKT_FORMAT_SYNCHRONOUS, 5, 4);
} else {
// set GDO0 mapping
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_IOCFG0, RADIOLIB_CC1101_GDOX_SERIAL_DATA_ASYNC , 5, 0);
// set asynchronous continuous mode
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_PKT_FORMAT_ASYNCHRONOUS, 5, 4);
}
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_LENGTH_CONFIG_INFINITE, 1, 0);
return(state);
}
void CC1101::getExpMant(float target, uint16_t mantOffset, uint8_t divExp, uint8_t expMax, uint8_t& exp, uint8_t& mant) {
// get table origin point (exp = 0, mant = 0)
float origin = (mantOffset * RADIOLIB_CC1101_CRYSTAL_FREQ * 1000000.0)/((uint32_t)1 << divExp);
// iterate over possible exponent values
for(int8_t e = expMax; e >= 0; e--) {
// get table column start value (exp = e, mant = 0);
float intervalStart = ((uint32_t)1 << e) * origin;
// check if target value is in this column
if(target >= intervalStart) {
// save exponent value
exp = e;
// calculate size of step between table rows
float stepSize = intervalStart/(float)mantOffset;
// get target point position (exp = e, mant = m)
mant = ((target - intervalStart) / stepSize);
// we only need the first match, terminate
return;
}
}
}
int16_t CC1101::setPacketMode(uint8_t mode, uint16_t len) {
// check length
if (len > RADIOLIB_CC1101_MAX_PACKET_LENGTH) {
return(RADIOLIB_ERR_PACKET_TOO_LONG);
}
// set PKTCTRL0.LENGTH_CONFIG
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, mode, 1, 0);
RADIOLIB_ASSERT(state);
// set length to register
state = SPIsetRegValue(RADIOLIB_CC1101_REG_PKTLEN, len);
RADIOLIB_ASSERT(state);
// update the cached values
this->packetLength = len;
this->packetLengthConfig = mode;
return(state);
}
Module* CC1101::getMod() {
return(this->mod);
}
int16_t CC1101::SPIgetRegValue(uint8_t reg, uint8_t msb, uint8_t lsb) {
// status registers require special command
if((reg > RADIOLIB_CC1101_REG_TEST0) && (reg < RADIOLIB_CC1101_REG_PATABLE)) {
reg |= RADIOLIB_CC1101_CMD_ACCESS_STATUS_REG;
}
return(this->mod->SPIgetRegValue(reg, msb, lsb));
}
int16_t CC1101::SPIsetRegValue(uint8_t reg, uint8_t value, uint8_t msb, uint8_t lsb, uint8_t checkInterval) {
// status registers require special command
if((reg > RADIOLIB_CC1101_REG_TEST0) && (reg < RADIOLIB_CC1101_REG_PATABLE)) {
reg |= RADIOLIB_CC1101_CMD_ACCESS_STATUS_REG;
}
return(this->mod->SPIsetRegValue(reg, value, msb, lsb, checkInterval));
}
void CC1101::SPIreadRegisterBurst(uint8_t reg, uint8_t numBytes, uint8_t* inBytes) {
this->mod->SPIreadRegisterBurst(reg | RADIOLIB_CC1101_CMD_BURST, numBytes, inBytes);
}
uint8_t CC1101::SPIreadRegister(uint8_t reg) {
// status registers require special command
if((reg > RADIOLIB_CC1101_REG_TEST0) && (reg < RADIOLIB_CC1101_REG_PATABLE)) {
reg |= RADIOLIB_CC1101_CMD_ACCESS_STATUS_REG;
}
return(this->mod->SPIreadRegister(reg));
}
void CC1101::SPIwriteRegister(uint8_t reg, uint8_t data) {
// status registers require special command
if((reg > RADIOLIB_CC1101_REG_TEST0) && (reg < RADIOLIB_CC1101_REG_PATABLE)) {
reg |= RADIOLIB_CC1101_CMD_ACCESS_STATUS_REG;
}
return(this->mod->SPIwriteRegister(reg, data));
}
void CC1101::SPIwriteRegisterBurst(uint8_t reg, uint8_t* data, size_t len) {
this->mod->SPIwriteRegisterBurst(reg | RADIOLIB_CC1101_CMD_BURST, data, len);
}
void CC1101::SPIsendCommand(uint8_t cmd) {
// pull NSS low
this->mod->hal->digitalWrite(this->mod->getCs(), this->mod->hal->GpioLevelLow);
// start transfer
this->mod->hal->spiBeginTransaction();
// send the command byte
uint8_t status = 0;
this->mod->hal->spiTransfer(&cmd, 1, &status);
// stop transfer
this->mod->hal->spiEndTransaction();
this->mod->hal->digitalWrite(this->mod->getCs(), this->mod->hal->GpioLevelHigh);
RADIOLIB_DEBUG_SPI_PRINTLN("CMD\tW\t%02X\t%02X", cmd, status);
(void)status;
}
#endif