RS-tracker/demod/iq_svcl/iq_dec.c

1148 wiersze
29 KiB
C

/*
* compile:
*
* gcc -Ofast iq_dec.c -lm -o iq_dec
*
*
* usage:
*
* ./iq_dec [--bo <b>] --iq <fq> [iq_baseband.wav] # <b>=8,16,32 bit output
* ./iq_dec [--bo <b>] --iq <fq> - <sr> <bs> [iq_baseband.raw]
*
* ./iq_dec [--bo <b>] [--wav] [--FM] --iq <fq> iq_baseband.wav
* ./iq_dec [--bo <b>] [--wav] [--decFM] --iq <fq> - <sr> <bs> [iq_baseband.raw]
* --wav : output wav header
* --FM/decFM : FM demodulation
*
*
* author: zilog80
*/
/* ------------------------------------------------------------------------------------ */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define FM_GAIN (0.8)
/* ------------------------------------------------------------------------------------ */
#include <math.h>
#include <complex.h>
#ifndef M_PI
#define M_PI (3.1415926535897932384626433832795)
#endif
#define _2PI (6.2831853071795864769252867665590)
#define LP_IQ 1
#define LP_FM 2
#define LP_IQFM 4
#ifndef INTTYPES
#define INTTYPES
typedef unsigned char ui8_t;
typedef unsigned short ui16_t;
typedef unsigned int ui32_t;
typedef unsigned long long ui64_t;
typedef char i8_t;
typedef short i16_t;
typedef int i32_t;
#endif
typedef struct {
FILE *fp;
//
int sr; // sample_rate
int bps; // bits/sample
int nch; // channels
int ch; // select channel
//
int bps_out;
//
ui32_t sample_in;
ui32_t sample_out;
//
// IQ-data
int opt_iq;
int opt_iqdc;
double V_noise;
double V_signal;
double SNRdB;
// decimate
int opt_nolut; // default: LUT
int opt_IFmin;
int decM;
int decFM;
ui32_t sr_base;
ui32_t dectaps;
ui32_t sample_decX;
ui32_t lut_len;
ui32_t sample_decM;
float complex *decXbuffer;
float complex *decMbuf;
float complex *ex; // exp_lut
double xlt_fq;
int opt_fm;
int opt_lp;
// IF: lowpass
int lpIQ_bw;
int lpIQtaps; // ui32_t
float lpIQ_fbw;
float *ws_lpIQ;
float complex *lpIQ_buf;
// FM: lowpass
int lpFM_bw;
int lpFMtaps; // ui32_t
float *ws_lpFM;
float *lpFM_buf;
float *fm_buffer;
} dsp_t;
typedef struct {
int sr; // sample_rate
int sr_out;
int bps; // bits_sample bits/sample
int bps_out;
int nch; // channels
int sel_ch; // select wav channel
} pcm_t;
/* ------------------------------------------------------------------------------------ */
static int findstr(char *buff, char *str, int pos) {
int i;
for (i = 0; i < 4; i++) {
if (buff[(pos+i)%4] != str[i]) break;
}
return i;
}
static int read_wav_header(pcm_t *pcm, FILE *fp) {
char txt[4+1] = "\0\0\0\0";
unsigned char dat[4];
int byte, p=0;
int sample_rate = 0, bits_sample = 0, channels = 0;
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "RIFF", 4) && strncmp(txt, "RF64", 4)) return -1;
if (fread(txt, 1, 4, fp) < 4) return -1;
// pos_WAVE = 8L
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "WAVE", 4)) return -1;
// pos_fmt = 12L
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "fmt ", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
channels = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 4, fp) < 4) return -1;
memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24);
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
//byte = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 2, fp) < 2) return -1;
bits_sample = dat[0] + (dat[1] << 8);
// pos_dat = 36L + info
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "data", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
fprintf(stderr, "sample_rate: %d\n", sample_rate);
fprintf(stderr, "bits : %d\n", bits_sample);
fprintf(stderr, "channels : %d\n", channels);
if (pcm->sel_ch < 0 || pcm->sel_ch >= channels) pcm->sel_ch = 0; // default channel: 0
if (bits_sample != 8 && bits_sample != 16 && bits_sample != 32) return -1;
if (sample_rate == 900001) sample_rate -= 1;
pcm->sr = sample_rate;
pcm->bps = bits_sample;
pcm->nch = channels;
return 0;
}
static float write_wav_header(pcm_t *pcm) {
FILE *fp = stdout;
ui32_t sr = pcm->sr_out;
ui32_t bps = pcm->bps_out;
ui32_t data = 0;
fwrite("RIFF", 1, 4, fp);
data = 0; // bytes-8=headersize-8+datasize
fwrite(&data, 1, 4, fp);
fwrite("WAVE", 1, 4, fp);
fwrite("fmt ", 1, 4, fp);
data = 16; if (bps == 32) data += 2;
fwrite(&data, 1, 4, fp);
if (bps == 32) data = 3; // IEEE float
else data = 1; // PCM
fwrite(&data, 1, 2, fp);
data = pcm->nch; // channels
fwrite(&data, 1, 2, fp);
data = sr;
fwrite(&data, 1, 4, fp);
data = sr*bps/8;
fwrite(&data, 1, 4, fp);
data = (bps+7)/8;
fwrite(&data, 1, 2, fp);
data = bps;
fwrite(&data, 1, 2, fp);
if (bps == 32) {
data = 0; // size of extension: 0
fwrite(&data, 1, 2, fp);
}
fwrite("data", 1, 4, fp);
data = 0xFFFFFFFF; // datasize unknown
fwrite(&data, 1, 4, fp);
return 0;
}
static int f32read_sample(dsp_t *dsp, float *s) {
int i;
unsigned int word = 0;
short *b = (short*)&word;
float *f = (float*)&word;
for (i = 0; i < dsp->nch; i++) {
if (fread( &word, dsp->bps/8, 1, dsp->fp) != 1) return EOF;
if (i == dsp->ch) { // i = 0: links bzw. mono
//if (bits_sample == 8) sint = b-128; // 8bit: 00..FF, centerpoint 0x80=128
//if (bits_sample == 16) sint = (short)b;
if (dsp->bps == 32) {
*s = *f;
}
else {
if (dsp->bps == 8) { *b -= 128; }
*s = *b/128.0;
if (dsp->bps == 16) { *s /= 256.0; }
}
}
}
return 0;
}
typedef struct {
double sumIQx;
double sumIQy;
float avgIQx;
float avgIQy;
float complex avgIQ;
ui32_t cnt;
ui32_t maxcnt;
ui32_t maxlim;
} iq_dc_t;
static iq_dc_t IQdc;
static int f32read_csample(dsp_t *dsp, float complex *z) {
float x, y;
if (dsp->bps == 32) { //float32
float f[2];
if (fread( f, dsp->bps/8, 2, dsp->fp) != 2) return EOF;
x = f[0];
y = f[1];
}
else if (dsp->bps == 16) { //int16
short b[2];
if (fread( b, dsp->bps/8, 2, dsp->fp) != 2) return EOF;
x = b[0]/32768.0;
y = b[1]/32768.0;
}
else { // dsp->bps == 8 //uint8
ui8_t u[2];
if (fread( u, dsp->bps/8, 2, dsp->fp) != 2) return EOF;
x = (u[0]-128)/128.0;
y = (u[1]-128)/128.0;
}
*z = x + I*y;
// IQ-dc removal optional
if (dsp->opt_iqdc) {
*z -= IQdc.avgIQ;
IQdc.sumIQx += x;
IQdc.sumIQy += y;
IQdc.cnt += 1;
if (IQdc.cnt == IQdc.maxcnt) {
IQdc.avgIQx = IQdc.sumIQx/(float)IQdc.maxcnt;
IQdc.avgIQy = IQdc.sumIQy/(float)IQdc.maxcnt;
IQdc.avgIQ = IQdc.avgIQx + I*IQdc.avgIQy;
IQdc.sumIQx = 0; IQdc.sumIQy = 0; IQdc.cnt = 0;
if (IQdc.maxcnt < IQdc.maxlim) IQdc.maxcnt *= 2;
}
}
return 0;
}
static int f32read_cblock(dsp_t *dsp) {
int n;
int len;
float x, y;
ui8_t s[4*2*dsp->decM]; //uin8,int16,float32
ui8_t *u = (ui8_t*)s;
short *b = (short*)s;
float *f = (float*)s;
len = fread( s, dsp->bps/8, 2*dsp->decM, dsp->fp) / 2;
//for (n = 0; n < len; n++) dsp->decMbuf[n] = (u[2*n]-128)/128.0 + I*(u[2*n+1]-128)/128.0;
// u8: 0..255, 128 -> 0V
for (n = 0; n < len; n++) {
if (dsp->bps == 8) { //uint8
x = (u[2*n ]-128)/128.0;
y = (u[2*n+1]-128)/128.0;
}
else if (dsp->bps == 16) { //int16
x = b[2*n ]/32768.0;
y = b[2*n+1]/32768.0;
}
else { // dsp->bps == 32 //float32
x = f[2*n];
y = f[2*n+1];
}
// baseband: IQ-dc removal mandatory
dsp->decMbuf[n] = (x-IQdc.avgIQx) + I*(y-IQdc.avgIQy);
IQdc.sumIQx += x;
IQdc.sumIQy += y;
IQdc.cnt += 1;
if (IQdc.cnt == IQdc.maxcnt) {
IQdc.avgIQx = IQdc.sumIQx/(float)IQdc.maxcnt;
IQdc.avgIQy = IQdc.sumIQy/(float)IQdc.maxcnt;
IQdc.avgIQ = IQdc.avgIQx + I*IQdc.avgIQy;
IQdc.sumIQx = 0; IQdc.sumIQy = 0; IQdc.cnt = 0;
if (IQdc.maxcnt < IQdc.maxlim) IQdc.maxcnt *= 2;
}
}
return len;
}
// decimate lowpass
static float *ws_dec;
static double sinc(double x) {
double y;
if (x == 0) y = 1;
else y = sin(M_PI*x)/(M_PI*x);
return y;
}
static int lowpass_init(float f, int taps, float **pws) {
double *h, *w;
double norm = 0;
int n;
float *ws = NULL;
if (taps % 2 == 0) taps++; // odd/symmetric
if ( taps < 1 ) taps = 1;
h = (double*)calloc( taps+1, sizeof(double)); if (h == NULL) return -1;
w = (double*)calloc( taps+1, sizeof(double)); if (w == NULL) return -1;
ws = (float*)calloc( 2*taps+1, sizeof(float)); if (ws == NULL) return -1;
for (n = 0; n < taps; n++) {
w[n] = 7938/18608.0 - 9240/18608.0*cos(_2PI*n/(taps-1)) + 1430/18608.0*cos(4*M_PI*n/(taps-1)); // Blackmann
h[n] = 2*f*sinc(2*f*(n-(taps-1)/2));
ws[n] = w[n]*h[n];
norm += ws[n]; // 1-norm
}
for (n = 0; n < taps; n++) {
ws[n] /= norm; // 1-norm
}
for (n = 0; n < taps; n++) ws[taps+n] = ws[n]; // duplicate/unwrap
*pws = ws;
free(h); h = NULL;
free(w); w = NULL;
return taps;
}
static int lowpass_update(float f, int taps, float *ws) {
double *h, *w;
double norm = 0;
int n;
if (taps % 2 == 0) taps++; // odd/symmetric
if ( taps < 1 ) taps = 1;
h = (double*)calloc( taps+1, sizeof(double)); if (h == NULL) return -1;
w = (double*)calloc( taps+1, sizeof(double)); if (w == NULL) return -1;
for (n = 0; n < taps; n++) {
w[n] = 7938/18608.0 - 9240/18608.0*cos(_2PI*n/(taps-1)) + 1430/18608.0*cos(4*M_PI*n/(taps-1)); // Blackmann
h[n] = 2*f*sinc(2*f*(n-(taps-1)/2));
ws[n] = w[n]*h[n];
norm += ws[n]; // 1-norm
}
for (n = 0; n < taps; n++) {
ws[n] /= norm; // 1-norm
}
for (n = 0; n < taps; n++) ws[taps+n] = ws[n];
free(h); h = NULL;
free(w); w = NULL;
return taps;
}
static float complex lowpass0(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) {
ui32_t n;
double complex w = 0;
for (n = 0; n < taps; n++) {
w += buffer[(sample+n)%taps]*ws[taps-1-n];
}
return (float complex)w;
}
//static __attribute__((optimize("-ffast-math"))) float complex lowpass()
static float complex lowpass(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) {
float complex w = 0;
int n; // -Ofast
int S = taps - (sample % taps);
for (n = 0; n < taps; n++) {
w += buffer[n]*ws[S+n]; // ws[taps+s-n] = ws[(taps+sample-n)%taps]
}
return w;
// symmetry: ws[n] == ws[taps-1-n]
}
static float complex lowpass2(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) {
float complex w = 0;
int n;
int s = sample % taps;
int S1 = s;
int S1N = S1-taps;
int n0 = taps-s;
for (n = 0; n < n0; n++) {
w += buffer[S1+n]*ws[n];
}
for (n = n0; n < taps; n++) {
w += buffer[S1N+n]*ws[n];
}
return w;
// symmetry: ws[n] == ws[taps-1-n]
}
static float re_lowpass0(float buffer[], ui32_t sample, ui32_t taps, float *ws) {
ui32_t n;
double w = 0;
for (n = 0; n < taps; n++) {
w += buffer[(sample+n)%taps]*ws[taps-1-n];
}
return (float)w;
}
static float re_lowpass(float buffer[], ui32_t sample, ui32_t taps, float *ws) {
float w = 0;
int n;
int S = taps - (sample % taps);
for (n = 0; n < taps; n++) {
w += buffer[n]*ws[S+n]; // ws[taps+s-n] = ws[(taps+sample-n)%taps]
}
return w;
}
static int ifblock(dsp_t *dsp, float complex *z_out) {
float complex z;
int j;
if ( f32read_cblock(dsp) < dsp->decM ) return EOF;
for (j = 0; j < dsp->decM; j++) {
if (dsp->opt_nolut) {
double _s_base = (double)(dsp->sample_in*dsp->decM+j); // dsp->sample_dec
double f0 = dsp->xlt_fq*_s_base;
z = dsp->decMbuf[j] * cexp(f0*_2PI*I);
}
else {
z = dsp->decMbuf[j] * dsp->ex[dsp->sample_decM];
}
dsp->sample_decM += 1; if (dsp->sample_decM >= dsp->lut_len) dsp->sample_decM = 0;
dsp->decXbuffer[dsp->sample_decX] = z;
dsp->sample_decX += 1; if (dsp->sample_decX >= dsp->dectaps) dsp->sample_decX = 0;
}
if (dsp->decM > 1)
{
z = lowpass(dsp->decXbuffer, dsp->sample_decX, dsp->dectaps, ws_dec);
}
*z_out = z;
dsp->sample_in += 1;
return 0;
}
static int if_fm(dsp_t *dsp, float complex *z_out, float *s) {
static float complex z0;
float complex z, w;
float s_fm = 0.0f;
float gain = FM_GAIN;
ui32_t _sample = dsp->sample_in * dsp->decFM;
int m;
int j;
for (m = 0; m < dsp->decFM; m++)
{
if ( f32read_cblock(dsp) < dsp->decM ) return EOF;
for (j = 0; j < dsp->decM; j++) {
if (dsp->opt_nolut) {
double _s_base = (double)(_sample*dsp->decM+j); // dsp->sample_dec
double f0 = dsp->xlt_fq*_s_base;
z = dsp->decMbuf[j] * cexp(f0*_2PI*I);
}
else {
z = dsp->decMbuf[j] * dsp->ex[dsp->sample_decM];
}
dsp->sample_decM += 1; if (dsp->sample_decM >= dsp->lut_len) dsp->sample_decM = 0;
dsp->decXbuffer[dsp->sample_decX] = z;
dsp->sample_decX += 1; if (dsp->sample_decX >= dsp->dectaps) dsp->sample_decX = 0;
}
if (dsp->decM > 1)
{
z = lowpass(dsp->decXbuffer, dsp->sample_decX, dsp->dectaps, ws_dec);
}
// IF-lowpass
if (dsp->opt_lp & LP_IQ) {
dsp->lpIQ_buf[_sample % dsp->lpIQtaps] = z;
z = lowpass(dsp->lpIQ_buf, _sample+1, dsp->lpIQtaps, dsp->ws_lpIQ);
}
if (dsp->opt_fm) {
w = z * conj(z0);
s_fm = gain * carg(w)/M_PI;
z0 = z;
// FM-lowpass
if (dsp->opt_lp & LP_FM) {
dsp->lpFM_buf[_sample % dsp->lpFMtaps] = s_fm;
if (m+1 == dsp->decFM) {
s_fm = re_lowpass(dsp->lpFM_buf, _sample+1, dsp->lpFMtaps, dsp->ws_lpFM);
}
}
}
*z_out = z;
_sample += 1;
}
*s = s_fm;
dsp->sample_in += 1;
return 0;
}
/* -------------------------------------------------------------------------- */
#define IF_SAMPLE_RATE 48000
#define IF_SAMPLE_RATE_MIN 32000
static int IF_min = IF_SAMPLE_RATE;
#define IF_TRANSITION_BW (4e3) // 4kHz transition width
#define FM_TRANSITION_BW (2e3) // 2kHz transition width
static int init_buffers(dsp_t *dsp) {
int K = 0;
int n, k;
// decimate
int IF_sr = IF_min; // designated IF sample rate
int decM = 1; // decimate M:1
int sr_base = dsp->sr;
float f_lp; // dec_lowpass: lowpass_bandwidth/2
float t_bw; // dec_lowpass: transition_bandwidth
int taps; // dec_lowpass: taps
//if (dsp->opt_IFmin) IF_sr = IF_SAMPLE_RATE_MIN;
if (IF_sr > sr_base) IF_sr = sr_base;
if (IF_sr < sr_base) {
while (sr_base % IF_sr) IF_sr += 1;
decM = sr_base / IF_sr;
}
f_lp = (IF_sr+20e3)/(4.0*sr_base); // for IF=48k
t_bw = (IF_sr-20e3)/*/2.0*/;
if (dsp->opt_IFmin) {
t_bw = (IF_sr-12e3);
}
if (t_bw < 0) t_bw = 10e3;
t_bw /= sr_base;
taps = 4.0/t_bw; if (taps%2==0) taps++;
taps = lowpass_init(f_lp, taps, &ws_dec); // decimate lowpass
if (taps < 0) return -1;
dsp->dectaps = (ui32_t)taps;
dsp->sr_base = sr_base;
dsp->sr = IF_sr; // sr_base/decM
dsp->decM = decM;
fprintf(stderr, "IF: %d\n", IF_sr);
fprintf(stderr, "dec: %d\n", decM);
if (!dsp->opt_nolut)
{
// look up table, exp-rotation
int W = 2*8; // 16 Hz window
int d = 1; // 1..W , groesster Teiler d <= W von sr_base
int freq = (int)( dsp->xlt_fq * (double)dsp->sr_base + 0.5);
int freq0 = freq; // init
double f0 = freq0 / (double)dsp->sr_base; // init
for (d = W; d > 0; d--) { // groesster Teiler d <= W von sr
if (dsp->sr_base % d == 0) break;
}
if (d == 0) d = 1; // d >= 1 ?
for (k = 0; k < W/2; k++) {
if ((freq+k) % d == 0) {
freq0 = freq + k;
break;
}
if ((freq-k) % d == 0) {
freq0 = freq - k;
break;
}
}
dsp->lut_len = dsp->sr_base / d;
f0 = freq0 / (double)dsp->sr_base;
dsp->ex = calloc(dsp->lut_len+1, sizeof(float complex));
if (dsp->ex == NULL) return -1;
for (n = 0; n < dsp->lut_len; n++) {
double t = f0*(double)n;
dsp->ex[n] = cexp(t*_2PI*I);
}
}
dsp->decXbuffer = calloc( dsp->dectaps+1, sizeof(float complex));
if (dsp->decXbuffer == NULL) return -1;
dsp->decMbuf = calloc( dsp->decM+1, sizeof(float complex));
if (dsp->decMbuf == NULL) return -1;
// IF lowpass
if (dsp->opt_lp & LP_IQ)
{
float f_lp; // lowpass_bw
int taps; // lowpass taps: 4*sr/transition_bw
f_lp = 24e3/(float)dsp->sr/2.0; // default
if (dsp->lpIQ_bw) f_lp = dsp->lpIQ_bw/(float)dsp->sr/2.0;
taps = 4*dsp->sr/IF_TRANSITION_BW; if (taps%2==0) taps++;
taps = lowpass_init(f_lp, taps, &dsp->ws_lpIQ); if (taps < 0) return -1;
dsp->lpIQ_fbw = f_lp;
dsp->lpIQtaps = taps;
dsp->lpIQ_buf = calloc( dsp->lpIQtaps+3, sizeof(float complex));
if (dsp->lpIQ_buf == NULL) return -1;
}
// FM lowpass
if (dsp->opt_lp & LP_FM)
{
float f_lp; // lowpass_bw
int taps; // lowpass taps: 4*sr/transition_bw
f_lp = 10e3/(float)dsp->sr; // default
if (dsp->lpFM_bw > 0) f_lp = dsp->lpFM_bw/(float)dsp->sr;
taps = 4*dsp->sr/FM_TRANSITION_BW; if (taps%2==0) taps++;
taps = lowpass_init(f_lp, taps, &dsp->ws_lpFM); if (taps < 0) return -1;
dsp->lpFMtaps = taps;
dsp->lpFM_buf = calloc( dsp->lpFMtaps+3, sizeof(float complex));
if (dsp->lpFM_buf == NULL) return -1;
}
memset(&IQdc, 0, sizeof(IQdc));
IQdc.maxlim = dsp->sr;
IQdc.maxcnt = IQdc.maxlim/32; // 32,16,8,4,2,1
if (dsp->decM > 1) {
IQdc.maxlim *= dsp->decM;
IQdc.maxcnt *= dsp->decM;
}
if (dsp->nch < 2) return -1;
return K;
}
static int free_buffers(dsp_t *dsp) {
// decimate
if (dsp->decXbuffer) { free(dsp->decXbuffer); dsp->decXbuffer = NULL; }
if (dsp->decMbuf) { free(dsp->decMbuf); dsp->decMbuf = NULL; }
if (!dsp->opt_nolut) {
if (dsp->ex) { free(dsp->ex); dsp->ex = NULL; }
}
if (ws_dec) { free(ws_dec); ws_dec = NULL; }
// IF lowpass
if (dsp->opt_lp & LP_IQ)
{
if (dsp->ws_lpIQ) { free(dsp->ws_lpIQ); dsp->ws_lpIQ = NULL; }
if (dsp->lpIQ_buf) { free(dsp->lpIQ_buf); dsp->lpIQ_buf = NULL; }
}
// FM lowpass
if (dsp->opt_lp & LP_FM)
{
if (dsp->ws_lpFM) { free(dsp->ws_lpFM); dsp->ws_lpFM = NULL; }
if (dsp->lpFM_buf) { free(dsp->lpFM_buf); dsp->lpFM_buf = NULL; }
}
return 0;
}
/* ------------------------------------------------------------------------------------ */
#include <unistd.h>
static int write_cpx_blk(dsp_t *dsp, float complex *z, int len) {
int j, l;
short b[2*len];
ui8_t u[2*len];
float xy[2*len];
int bps = dsp->bps_out;
int fd = 1; // STDOUT_FILENO
for (j = 0; j < len; j++) {
xy[2*j ] = creal(z[j]);
xy[2*j+1] = cimag(z[j]);
}
if (bps == 32) {
l = write(fd, xy, 2*len*bps/8);
}
else {
for (j = 0; j < 2*len; j++) xy[j] *= 128.0; // 127.0
if (bps == 8) {
for (j = 0; j < 2*len; j++) {
xy[j] += 128.0; // x *= scale8b;
u[j] = (ui8_t)(xy[j]); //b = (int)(x+0.5);
}
l = write(fd, u, 2*len*bps/8);
}
else { // bps == 16
for (j = 0; j < 2*len; j++) {
xy[j] *= 256.0;
b[j] = (short)xy[j]; //b = (int)(x+0.5);
}
l = write(fd, b, 2*len*bps/8);
}
}
return l*8/(2*bps);
}
// fwrite return items: size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);
static int fwrite_cpx_blk(dsp_t *dsp, float complex *z, int len) {
int j, l;
short b[2*len];
ui8_t u[2*len];
float xy[2*len];
int bps = dsp->bps_out;
FILE *fo = stdout;
for (j = 0; j < len; j++) {
xy[2*j ] = creal(z[j]);
xy[2*j+1] = cimag(z[j]);
}
if (bps == 32) {
l = fwrite(xy, 2*bps/8, len, fo);
}
else {
for (j = 0; j < 2*len; j++) xy[j] *= 128.0; // 127.0
if (bps == 8) {
for (j = 0; j < 2*len; j++) {
xy[j] += 128.0; // x *= scale8b;
u[j] = (ui8_t)(xy[j]); //b = (int)(x+0.5);
}
l = fwrite(u, 2*bps/8, len, fo);
}
else { // bps == 16
for (j = 0; j < 2*len; j++) {
xy[j] *= 256.0;
b[j] = (short)xy[j]; //b = (int)(x+0.5);
}
l = fwrite(b, 2*bps/8, len, fo);
}
}
return l;
}
static int fwrite_fm(dsp_t *dsp, float s) {
int bps = dsp->bps_out;
FILE *fpo = stdout;
ui8_t u = 0;
i16_t b = 0;
ui32_t *w = (ui32_t*)&s;
if (bps == 8) {
s *= 127.0;
s += 128.0;
u = (ui8_t)s;
w = (ui32_t*)&u;
}
else if (bps == 16) {
s *= 127.0*256.0;
b = (i16_t)s;
w = (ui32_t*)&b;
}
fwrite( w, bps/8, 1, fpo);
return 0;
}
static int fwrite_fm_blk(dsp_t *dsp, float *s, int len) {
int j, l;
short b[len];
ui8_t u[len];
float x[len];
int bps = dsp->bps_out;
FILE *fo = stdout;
for (j = 0; j < len; j++) {
x[j] = s[j];
}
if (bps == 32) {
l = fwrite(x, bps/8, len, fo);
}
else {
for (j = 0; j < len; j++) x[j] *= 128.0; // 127.0
if (bps == 8) {
for (j = 0; j < len; j++) {
x[j] += 128.0; // x *= scale8b;
u[j] = (ui8_t)(x[j]); //b = (int)(x+0.5);
}
l = fwrite(u, bps/8, len, fo);
}
else { // bps == 16
for (j = 0; j < len; j++) {
x[j] *= 256.0;
b[j] = (short)x[j]; //b = (int)(x+0.5);
}
l = fwrite(b, bps/8, len, fo);
}
}
return l;
}
/* ------------------------------------------------------------------------------------ */
#define ZLEN 64
int main(int argc, char *argv[]) {
//int option_inv = 0; // invertiert Signal
int option_min = 0;
int option_iq = 0;
int option_iqdc = 0;
int option_lp = 0;
int option_dc = 0;
int option_noLUT = 0;
int option_pcmraw = 0;
int option_wav = 0;
int option_fm = 0;
int option_decFM = 0;
int wavloaded = 0;
FILE *fp;
char *fpname = NULL;
int k;
int bitQ;
int bps_out = 32;
float lpIQ_bw = 10e3;
pcm_t pcm = {0};
dsp_t dsp = {0}; //memset(&dsp, 0, sizeof(dsp));
setbuf(stdout, NULL);
fpname = argv[0];
++argv;
while ((*argv) && (!wavloaded)) {
if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) {
fprintf(stderr, "%s [options] audio.wav\n", fpname);
fprintf(stderr, " options:\n");
fprintf(stderr, " --iq0,2,3 (IQ data)\n");
return 0;
}
else if (strcmp(*argv, "--iqdc") == 0) { option_iqdc = 1; } // iq-dc removal (iq0,2,3)
else if (strcmp(*argv, "--iq") == 0) { // fq baseband -> IF (rotate from and decimate)
double fq = 0.0; // --iq <fq> , -0.5 < fq < 0.5
++argv;
if (*argv) fq = atof(*argv);
else return -1;
if (fq < -0.5) fq = -0.5;
if (fq > 0.5) fq = 0.5;
dsp.xlt_fq = -fq; // S(t) -> S(t)*exp(-f*2pi*I*t)
option_iq = 5;
}
else if (strcmp(*argv, "--IFbw") == 0) { // min IF bandwidth / kHz
int ifbw = 0;
++argv;
if (*argv) ifbw = atoi(*argv);
else return -1;
if (ifbw*1000 >= IF_SAMPLE_RATE_MIN) IF_min = ifbw*1000;
// ?option_lp |= LP_IQ;
}
else if (strcmp(*argv, "--lpIQ") == 0) { option_lp |= LP_IQ; } // IQ/IF lowpass
else if (strcmp(*argv, "--lpbw") == 0) { // IQ lowpass BW / kHz
double bw = 0.0;
++argv;
if (*argv) bw = atof(*argv);
else return -1;
if (bw > 1.0f) lpIQ_bw = bw*1e3;
option_lp |= LP_IQ;
}
else if (strcmp(*argv, "--FM") == 0) { option_fm = 1; }
else if (strcmp(*argv, "--lpFM") == 0) {
option_lp |= LP_FM; // FM lowpass
option_fm = 1;
}
else if (strcmp(*argv, "--decFM") == 0) { // FM decimation
option_decFM = 4;
option_lp |= LP_FM; // FM lowpass
option_fm = 1;
}
else if (strcmp(*argv, "--dc") == 0) { option_dc = 1; }
else if (strcmp(*argv, "--noLUT") == 0) { option_noLUT = 1; }
else if (strcmp(*argv, "--min") == 0) {
option_min = 1;
}
else if (strcmp(*argv, "--wav") == 0) {
option_wav = 1;
}
else if (strcmp(*argv, "-") == 0) {
int sample_rate = 0, bits_sample = 0, channels = 0;
++argv;
if (*argv) sample_rate = atoi(*argv); else return -1;
++argv;
if (*argv) bits_sample = atoi(*argv); else return -1;
channels = 2;
if (sample_rate < 1 || (bits_sample != 8 && bits_sample != 16 && bits_sample != 32)) {
fprintf(stderr, "- <sr> <bs>\n");
return -1;
}
pcm.sr = sample_rate;
pcm.bps = bits_sample;
pcm.nch = channels;
option_pcmraw = 1;
}
else if (strcmp(*argv, "--bo") == 0) {
++argv;
if (*argv) bps_out = atoi(*argv); else return -1;
if ((bps_out != 8 && bps_out != 16 && bps_out != 32)) {
bps_out = 0;
}
}
else {
fp = fopen(*argv, "rb");
if (fp == NULL) {
fprintf(stderr, "error: open %s\n", *argv);
return -1;
}
wavloaded = 1;
}
++argv;
}
if (!wavloaded) fp = stdin;
if (option_iq == 5 && option_dc) option_lp |= LP_FM;
// LUT faster for decM, however frequency correction after decimation
// LUT recommonded if decM > 2
//
if (option_noLUT && option_iq == 5) dsp.opt_nolut = 1; else dsp.opt_nolut = 0;
pcm.sel_ch = 0;
if (option_pcmraw == 0) {
k = read_wav_header(&pcm, fp);
if ( k < 0 ) {
fclose(fp);
fprintf(stderr, "error: wav header\n");
return -1;
}
}
// init dsp
//
dsp.fp = fp;
dsp.sr = pcm.sr;
dsp.bps = pcm.bps;
dsp.nch = pcm.nch;
dsp.ch = pcm.sel_ch;
dsp.opt_iq = option_iq;
dsp.opt_iqdc = option_iqdc;
dsp.opt_lp = option_lp;
dsp.lpIQ_bw = lpIQ_bw; // 10e3 // IF lowpass bandwidth
dsp.lpFM_bw = 6e3; // FM audio lowpass
dsp.opt_IFmin = option_min;
dsp.bps_out = bps_out;
if (option_fm) dsp.opt_fm = 1;
k = init_buffers(&dsp);
if ( k < 0 ) {
fprintf(stderr, "error: init buffers\n");
return -1;
}
// base: dsp.sr_base
// if : dsp.sr
dsp.decFM = 1;
if (option_decFM) {
int fm_sr = dsp.sr;
while (fm_sr % 2 == 0 && fm_sr/2 >= 48000) {
fm_sr /= 2;
dsp.decFM *= 2;
}
// if (dsp.decFM > 1) option_lp |= LP_FM; // set above
dsp.opt_fm = 1;
}
pcm.sr_out = dsp.sr;
pcm.bps_out = dsp.bps_out;
if (option_fm) {
pcm.nch = 1;
pcm.sr_out = dsp.sr / dsp.decFM;
}
if (option_wav) write_wav_header( &pcm );
int len = ZLEN;
int l, n = 0;
float complex z_vec[ZLEN]; // init ?
float s_vec[ZLEN];
bitQ = 0;
while ( bitQ != EOF )
{
bitQ = if_fm(&dsp, z_vec+n, s_vec+n);
n++;
if (n == len || bitQ == EOF) {
if (bitQ == EOF) n--;
if (dsp.opt_fm) {
l = fwrite_fm_blk(&dsp, s_vec, n);
}
else {
l = fwrite_cpx_blk(&dsp, z_vec, n);
}
n = 0;
}
}
free_buffers(&dsp);
fclose(fp);
return 0;
}