RS-tracker/demod/iq_svcl/iq_base.c

692 wiersze
17 KiB
C

/*
* compile:
* gcc -c iq_base.c
* speedup:
* gcc -O2 -c iq_base.c
* or
* gcc -Ofast -c iq_base.c
*
* author: zilog80
*/
/* ------------------------------------------------------------------------------------ */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "iq_base.h"
/* ------------------------------------------------------------------------------------ */
//static
void raw_dft(dft_t *dft, float complex *Z) {
int s, l, l2, i, j, k;
float complex w1, w2, T;
float complex _1 = (float complex)1.0;
j = 1;
for (i = 1; i < dft->N; i++) {
if (i < j) {
T = Z[j-1];
Z[j-1] = Z[i-1];
Z[i-1] = T;
}
k = dft->N/2;
while (k < j) {
j = j - k;
k = k/2;
}
j = j + k;
}
for (s = 0; s < dft->LOG2N; s++) {
l2 = 1 << s;
l = l2 << 1;
w1 = _1;
w2 = dft->ew[s]; // cexp(-I*M_PI/(float)l2)
for (j = 1; j <= l2; j++) {
for (i = j; i <= dft->N; i += l) {
k = i + l2;
T = Z[k-1] * w1;
Z[k-1] = Z[i-1] - T;
Z[i-1] = Z[i-1] + T;
}
w1 = w1 * w2;
}
}
}
static void cdft(dft_t *dft, float complex *z, float complex *Z) {
int i;
for (i = 0; i < dft->N; i++) Z[i] = z[i];
raw_dft(dft, Z);
}
static void rdft(dft_t *dft, float *x, float complex *Z) {
int i;
for (i = 0; i < dft->N; i++) Z[i] = (float complex)x[i];
raw_dft(dft, Z);
}
static void Nidft(dft_t *dft, float complex *Z, float complex *z) {
int i;
for (i = 0; i < dft->N; i++) z[i] = conj(Z[i]);
raw_dft(dft, z);
// idft():
// for (i = 0; i < dft->N; i++) z[i] = conj(z[i])/(float)dft->N; // hier: z reell
}
static float bin2freq0(dft_t *dft, int k) {
float fq = dft->sr * k / /*(float)*/dft->N;
if (fq >= dft->sr/2.0) fq -= dft->sr;
return fq;
}
//static
float bin2freq(dft_t *dft, int k) {
float fq = k / (float)dft->N;
if ( fq >= 0.5) fq -= 1.0;
return fq*dft->sr;
}
//static
float bin2fq(dft_t *dft, int k) {
float fq = k / (float)dft->N;
if ( fq >= 0.5) fq -= 1.0;
return fq;
}
static int max_bin(dft_t *dft, float complex *Z) {
int k, kmax;
double max;
max = 0; kmax = 0;
for (k = 0; k < dft->N; k++) {
if (cabs(Z[k]) > max) {
max = cabs(Z[k]);
kmax = k;
}
}
return kmax;
}
static int dft_window(dft_t *dft, int w) {
int n;
if (w < 0 || w > 3) return -1;
for (n = 0; n < dft->N2; n++) {
switch (w)
{
case 0: // (boxcar)
dft->win[n] = 1.0;
break;
case 1: // Hann
dft->win[n] = 0.5 * ( 1.0 - cos(2*M_PI*n/(float)(dft->N2-1)) );
break ;
case 2: // Hamming
dft->win[n] = 25/46.0 + (1.0 - 25/46.0)*cos(2*M_PI*n / (float)(dft->N2-1));
break ;
case 3: // Blackmann
dft->win[n] = 7938/18608.0
- 9240/18608.0*cos(2*M_PI*n / (float)(dft->N2-1))
+ 1430/18608.0*cos(4*M_PI*n / (float)(dft->N2-1));
break ;
}
}
while (n < dft->N) dft->win[n++] = 0.0;
return 0;
}
//static double ilog102 = 0.434294482/2.0; // log(10)/2
void db_power(dft_t *dft, float complex Z[], float db[]) { // iq-samples/V [-1..1]
int i; // dBw = 2*dBv, P=c*U*U
for (i = 0; i < dft->N; i++) { // dBw = 2*10*log10(V/V0)
db[i] = 20.0 * log10(cabs(Z[i])/dft->N2+1e-20); // 20log10(Z/N)
}
}
/* ------------------------------------------------------------------------------------ */
static int findstr(char *buff, char *str, int pos) {
int i;
for (i = 0; i < 4; i++) {
if (buff[(pos+i)%4] != str[i]) break;
}
return i;
}
int read_wav_header(pcm_t *pcm) {
FILE *fp = pcm->fp;
char txt[4+1] = "\0\0\0\0";
unsigned char dat[4];
int byte, p=0;
int sample_rate = 0, bits_sample = 0, channels = 0;
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "RIFF", 4) && strncmp(txt, "RF64", 4)) return -1;
if (fread(txt, 1, 4, fp) < 4) return -1;
// pos_WAVE = 8L
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "WAVE", 4)) return -1;
// pos_fmt = 12L
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "fmt ", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
channels = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 4, fp) < 4) return -1;
memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24);
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
//byte = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 2, fp) < 2) return -1;
bits_sample = dat[0] + (dat[1] << 8);
// pos_dat = 36L + info
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "data", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
fprintf(stderr, "sample_rate: %d\n", sample_rate);
fprintf(stderr, "bits : %d\n", bits_sample);
fprintf(stderr, "channels : %d\n", channels);
if (bits_sample != 8 && bits_sample != 16 && bits_sample != 32) return -1;
if (sample_rate == 900001) sample_rate -= 1;
pcm->sr = sample_rate;
pcm->bps = bits_sample;
pcm->nch = channels;
return 0;
}
typedef struct {
double sumIQx;
double sumIQy;
float avgIQx;
float avgIQy;
ui32_t cnt;
ui32_t maxcnt;
ui32_t maxlim;
} iq_dc_t;
static iq_dc_t IQdc;
int iq_dc_init(pcm_t *pcm) {
memset(&IQdc, 0, sizeof(IQdc));
IQdc.maxlim = pcm->sr;
IQdc.maxcnt = IQdc.maxlim/32; // 32,16,8,4,2,1
if (pcm->decM > 1) {
IQdc.maxlim *= pcm->decM;
IQdc.maxcnt *= pcm->decM;
}
return 0;
}
static int f32read_csample(dsp_t *dsp, float complex *z) {
float x, y;
if (dsp->bps == 32) { //float32
float f[2];
if (fread( f, dsp->bps/8, 2, dsp->fp) != 2) return EOF;
x = f[0];
y = f[1];
}
else if (dsp->bps == 16) { //int16
short b[2];
if (fread( b, dsp->bps/8, 2, dsp->fp) != 2) return EOF;
x = b[0]/32768.0;
y = b[1]/32768.0;
}
else { // dsp->bps == 8 //uint8
ui8_t u[2];
if (fread( u, dsp->bps/8, 2, dsp->fp) != 2) return EOF;
x = (u[0]-128)/128.0;
y = (u[1]-128)/128.0;
}
*z = (x - IQdc.avgIQx) + I*(y - IQdc.avgIQy);
IQdc.sumIQx += x;
IQdc.sumIQy += y;
IQdc.cnt += 1;
if (IQdc.cnt == IQdc.maxcnt) {
IQdc.avgIQx = IQdc.sumIQx/(float)IQdc.maxcnt;
IQdc.avgIQy = IQdc.sumIQy/(float)IQdc.maxcnt;
IQdc.sumIQx = 0; IQdc.sumIQy = 0; IQdc.cnt = 0;
if (IQdc.maxcnt < IQdc.maxlim) IQdc.maxcnt *= 2;
}
return 0;
}
volatile int bufeof = 0; // threads exit
volatile int rbf1;
static volatile int rbf;
#ifdef CLK
#include <time.h>
static struct timespec t_1;
static unsigned int in_smp;
static int t_init = 0;
static double t_acc = 0;
#endif
static int f32_cblk(dsp_t *dsp) {
int n;
int BL = dsp->decM * blk_sz;
int len = BL;
float x, y;
ui8_t s[4*2*BL]; //uin8,int16,float32
ui8_t *u = (ui8_t*)s;
short *b = (short*)s;
float *f = (float*)s;
#ifdef CLK
if ( t_init == 0 ) {
t_init = 1;
clock_gettime(CLOCK_REALTIME, &t_1);
}
#endif
len = fread( s, dsp->bps/8, 2*BL, dsp->fp) / 2;
//for (n = 0; n < len; n++) dsp->thd->blk[n] = (u[2*n]-128)/128.0 + I*(u[2*n+1]-128)/128.0;
// u8: 0..255, 128 -> 0V
for (n = 0; n < len; n++) {
if (dsp->bps == 8) { //uint8
x = (u[2*n ]-128)/128.0;
y = (u[2*n+1]-128)/128.0;
}
else if (dsp->bps == 16) { //int16
x = b[2*n ]/32768.0;
y = b[2*n+1]/32768.0;
}
else { // dsp->bps == 32 //float32
x = f[2*n];
y = f[2*n+1];
}
dsp->thd->blk[n] = (x-IQdc.avgIQx) + I*(y-IQdc.avgIQy);
IQdc.sumIQx += x;
IQdc.sumIQy += y;
IQdc.cnt += 1;
if (IQdc.cnt == IQdc.maxcnt) {
IQdc.avgIQx = IQdc.sumIQx/(float)IQdc.maxcnt;
IQdc.avgIQy = IQdc.sumIQy/(float)IQdc.maxcnt;
IQdc.sumIQx = 0; IQdc.sumIQy = 0; IQdc.cnt = 0;
if (IQdc.maxcnt < IQdc.maxlim) IQdc.maxcnt *= 2;
}
}
if (len < BL) bufeof = 1;
#ifdef CLK
in_smp += len;
if (in_smp >= dsp->sr_base) {
double s_d = in_smp / (double)dsp->sr_base;
double t_d = 0;
struct timespec t_2;
clock_gettime(CLOCK_REALTIME, &t_2);
t_d = (t_2.tv_sec - t_1.tv_sec);
t_d += (t_2.tv_nsec - t_1.tv_nsec)/1e9;
if (t_init > 1 && t_d > 0.9) t_acc += t_d - s_d;
else t_init = 2;
if (dsp->opt_dbg) {
fprintf(stderr, "insmp: %d dt: %.3f s_d: %.3f t_acc: %.3f\n", in_smp, t_d, s_d, t_acc);
}
t_1 = t_2;
in_smp = 0;
}
#endif
return len;
}
static int f32read_cblock(dsp_t *dsp) { // blk_cond
int n;
int len = dsp->decM;
if (bufeof) return 0;
//if (dsp->thd->used == 0) { }
pthread_mutex_lock( dsp->thd->mutex );
if (rbf == 0)
{
len = f32_cblk(dsp);
rbf = rbf1; // set all bits
pthread_cond_broadcast( dsp->thd->cond );
}
while ((rbf & dsp->thd->tn_bit) == 0) pthread_cond_wait( dsp->thd->cond, dsp->thd->mutex );
for (n = 0; n < dsp->decM; n++) dsp->decMbuf[n] = dsp->thd->blk[dsp->decM*dsp->blk_cnt + n];
dsp->blk_cnt += 1;
if (dsp->blk_cnt == blk_sz) {
rbf &= ~(dsp->thd->tn_bit); // clear bit(tn)
dsp->blk_cnt = 0;
}
pthread_mutex_unlock( dsp->thd->mutex );
return len;
}
int reset_blockread(dsp_t *dsp) {
int len = 0;
pthread_mutex_lock( dsp->thd->mutex );
rbf1 &= ~(dsp->thd->tn_bit);
if ( (rbf & dsp->thd->tn_bit) == dsp->thd->tn_bit )
{
len = f32_cblk(dsp);
rbf = rbf1; // set all bits
pthread_cond_broadcast( dsp->thd->cond );
}
pthread_mutex_unlock( dsp->thd->mutex );
return len;
}
// decimate lowpass
static float *ws_dec;
static double sinc(double x) {
double y;
if (x == 0) y = 1;
else y = sin(M_PI*x)/(M_PI*x);
return y;
}
static int lowpass_init(float f, int taps, float **pws) {
double *h, *w;
double norm = 0;
int n;
float *ws = NULL;
if (taps % 2 == 0) taps++; // odd/symmetric
if ( taps < 1 ) taps = 1;
h = (double*)calloc( taps+1, sizeof(double)); if (h == NULL) return -1;
w = (double*)calloc( taps+1, sizeof(double)); if (w == NULL) return -1;
ws = (float*)calloc( 2*taps+1, sizeof(float)); if (ws == NULL) return -1;
for (n = 0; n < taps; n++) {
w[n] = 7938/18608.0 - 9240/18608.0*cos(2*M_PI*n/(taps-1)) + 1430/18608.0*cos(4*M_PI*n/(taps-1)); // Blackmann
h[n] = 2*f*sinc(2*f*(n-(taps-1)/2));
ws[n] = w[n]*h[n];
norm += ws[n]; // 1-norm
}
for (n = 0; n < taps; n++) {
ws[n] /= norm; // 1-norm
}
for (n = 0; n < taps; n++) ws[taps+n] = ws[n]; // duplicate/unwrap
*pws = ws;
free(h); h = NULL;
free(w); w = NULL;
return taps;
}
int decimate_init(float f, int taps) {
return lowpass_init(f, taps, &ws_dec);
}
int decimate_free() {
if (ws_dec) { free(ws_dec); ws_dec = NULL; }
return 0;
}
static float complex lowpass0(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) {
ui32_t n;
double complex w = 0;
for (n = 0; n < taps; n++) {
w += buffer[(sample+n)%taps]*ws[taps-1-n];
}
return (float complex)w;
}
//static __attribute__((optimize("-ffast-math"))) float complex lowpass()
static float complex lowpass(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) {
float complex w = 0;
int n; // -Ofast
int S = taps - (sample % taps);
for (n = 0; n < taps; n++) {
w += buffer[n]*ws[S+n]; // ws[taps+s-n] = ws[(taps+sample-n)%taps]
}
return w;
// symmetry: ws[n] == ws[taps-1-n]
}
static float complex lowpass2(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) {
float complex w = 0;
int n;
int s = sample % taps;
int S1 = s;
int S1N = S1-taps;
int n0 = taps-s;
for (n = 0; n < n0; n++) {
w += buffer[S1+n]*ws[n];
}
for (n = n0; n < taps; n++) {
w += buffer[S1N+n]*ws[n];
}
return w;
// symmetry: ws[n] == ws[taps-1-n]
}
/* -------------------------------------------------------------------------- */
int read_ifblock(dsp_t *dsp, float complex *z) {
//ui32_t s_reset = dsp->dectaps*dsp->lut_len;
int j;
if ( f32read_cblock(dsp) < dsp->decM ) return EOF;
//if ( f32read_cblock(dsp) < dsp->decM * blk_sz) return EOF;
for (j = 0; j < dsp->decM; j++) {
dsp->decXbuffer[dsp->sample_decX] = dsp->decMbuf[j] * dsp->ex[dsp->sample_decM];
dsp->sample_decX += 1; if (dsp->sample_decX >= dsp->dectaps) dsp->sample_decX = 0;
dsp->sample_decM += 1; if (dsp->sample_decM >= dsp->lut_len) dsp->sample_decM = 0;
}
*z = lowpass(dsp->decXbuffer, dsp->sample_decX, dsp->dectaps, ws_dec);
//dsp->sample_in += 1;
return 0;
}
int read_fftblock(dsp_t *dsp) {
if ( f32read_cblock(dsp) < dsp->decM ) return EOF;
return 0;
}
/* -------------------------------------------------------------------------- */
#define IF_TRANSITION_BW (4e3) // 4kHz transition width
#define FM_TRANSITION_BW (2e3) // 2kHz transition width
static double norm2_vect(float *vect, int n) {
int i;
double x, y = 0.0;
for (i = 0; i < n; i++) {
x = vect[i];
y += x*x;
}
return y;
}
#define HZBIN 100
int init_buffers(dsp_t *dsp) {
float t;
int n, k;
if (dsp->thd->fft == 0)
{
//
// pcm_dec_init()
//
// lookup table, exp-rotation
int W = 2*8; // 16 Hz window
int d = 1; // 1..W , groesster Teiler d <= W von sr_base
int freq = (int)( dsp->thd->xlt_fq * (double)dsp->sr_base + 0.5);
int freq0 = freq; // init
double f0 = freq0 / (double)dsp->sr_base; // init
for (d = W; d > 0; d--) { // groesster Teiler d <= W von sr
if (dsp->sr_base % d == 0) break;
}
if (d == 0) d = 1; // d >= 1 ?
for (k = 0; k < W/2; k++) {
if ((freq+k) % d == 0) {
freq0 = freq + k;
break;
}
if ((freq-k) % d == 0) {
freq0 = freq - k;
break;
}
}
dsp->lut_len = dsp->sr_base / d;
f0 = freq0 / (double)dsp->sr_base;
dsp->ex = calloc(dsp->lut_len+1, sizeof(float complex));
if (dsp->ex == NULL) return -1;
for (n = 0; n < dsp->lut_len; n++) {
t = f0*(double)n;
dsp->ex[n] = cexp(t*2*M_PI*I);
}
dsp->decXbuffer = calloc( dsp->dectaps+1, sizeof(float complex));
if (dsp->decXbuffer == NULL) return -1;
}
else {
dsp->decXbuffer = NULL;
dsp->ex = NULL;
}
dsp->decMbuf = calloc( dsp->decM+1, sizeof(float complex));
if (dsp->decMbuf == NULL) return -1;
dsp->DFT.sr = dsp->sr_base;
int mn = 0; // 0: N = M
/*
dsp->DFT.LOG2N = 14;
dsp->DFT.N2 = 1 << dsp->DFT.LOG2N;
if (dsp->DFT.N2 > dsp->DFT.sr/2) {
dsp->DFT.LOG2N = 0;
while ( (1 << (dsp->DFT.LOG2N+1)) < dsp->DFT.sr/2 ) dsp->DFT.LOG2N++;
dsp->DFT.N2 = 1 << dsp->DFT.LOG2N;
}
*/
dsp->DFT.LOG2N = log(dsp->DFT.sr/HZBIN)/log(2)+0.1;
if (dsp->DFT.LOG2N < 10) dsp->DFT.LOG2N = 10;
dsp->DFT.N2 = 1 << dsp->DFT.LOG2N;
dsp->DFT.N = dsp->DFT.N2 << mn;
dsp->DFT.LOG2N += mn;
/*
if (dsp->opt_dbg && dsp->thd->fft) {
//fprintf(stderr, "HZBIN: %d , N: %d , Hz_per_bin: %.1f\n", HZBIN, dsp->DFT.N, bin2freq(&(dsp->DFT), 1));
}
*/
dsp->DFT.X = calloc(dsp->DFT.N+1, sizeof(float complex)); if (dsp->DFT.X == NULL) return -1;
dsp->DFT.Z = calloc(dsp->DFT.N+1, sizeof(float complex)); if (dsp->DFT.Z == NULL) return -1;
dsp->DFT.ew = calloc(dsp->DFT.LOG2N+1, sizeof(float complex)); if (dsp->DFT.ew == NULL) return -1;
// FFT window
// a) N2 = N
// b) N2 < N (interpolation)
dsp->DFT.win = calloc(dsp->DFT.N+1, sizeof(float complex)); if (dsp->DFT.win == NULL) return -1; // float real
dsp->DFT.N2 = dsp->DFT.N;
//dsp->DFT.N2 = dsp->DFT.N/2 - 1; // N=2^log2N
dft_window(&dsp->DFT, 1);
for (n = 0; n < dsp->DFT.LOG2N; n++) {
k = 1 << n;
dsp->DFT.ew[n] = cexp(-I*M_PI/(float)k);
}
return 0;
}
int free_buffers(dsp_t *dsp) {
if (dsp->DFT.ew) { free(dsp->DFT.ew); dsp->DFT.ew = NULL; }
if (dsp->DFT.X) { free(dsp->DFT.X); dsp->DFT.X = NULL; }
if (dsp->DFT.Z) { free(dsp->DFT.Z); dsp->DFT.Z = NULL; }
if (dsp->DFT.win) { free(dsp->DFT.win); dsp->DFT.win = NULL; }
if (dsp->decMbuf) { free(dsp->decMbuf); dsp->decMbuf = NULL; }
if (dsp->decXbuffer) { free(dsp->decXbuffer); dsp->decXbuffer = NULL; }
if (dsp->ex) { free(dsp->ex); dsp->ex = NULL; }
return 0;
}